Properties

Label 1050.4.a.be
Level $1050$
Weight $4$
Character orbit 1050.a
Self dual yes
Analytic conductor $61.952$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,4,Mod(1,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1050.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,4,-6,8,0,-12,-14,16,18,0,51,-24,-53] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.9520055060\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6001}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1500 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{6001})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} - 3 q^{3} + 4 q^{4} - 6 q^{6} - 7 q^{7} + 8 q^{8} + 9 q^{9} + ( - \beta + 26) q^{11} - 12 q^{12} + (\beta - 27) q^{13} - 14 q^{14} + 16 q^{16} + (3 \beta - 11) q^{17} + 18 q^{18} + ( - 2 \beta + 24) q^{19}+ \cdots + ( - 9 \beta + 234) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 6 q^{3} + 8 q^{4} - 12 q^{6} - 14 q^{7} + 16 q^{8} + 18 q^{9} + 51 q^{11} - 24 q^{12} - 53 q^{13} - 28 q^{14} + 32 q^{16} - 19 q^{17} + 36 q^{18} + 46 q^{19} + 42 q^{21} + 102 q^{22} - 46 q^{23}+ \cdots + 459 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
39.2331
−38.2331
2.00000 −3.00000 4.00000 0 −6.00000 −7.00000 8.00000 9.00000 0
1.2 2.00000 −3.00000 4.00000 0 −6.00000 −7.00000 8.00000 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1050.4.a.be yes 2
5.b even 2 1 1050.4.a.bd 2
5.c odd 4 2 1050.4.g.t 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1050.4.a.bd 2 5.b even 2 1
1050.4.a.be yes 2 1.a even 1 1 trivial
1050.4.g.t 4 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1050))\):

\( T_{11}^{2} - 51T_{11} - 850 \) Copy content Toggle raw display
\( T_{13}^{2} + 53T_{13} - 798 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{2} \) Copy content Toggle raw display
$3$ \( (T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 51T - 850 \) Copy content Toggle raw display
$13$ \( T^{2} + 53T - 798 \) Copy content Toggle raw display
$17$ \( T^{2} + 19T - 13412 \) Copy content Toggle raw display
$19$ \( T^{2} - 46T - 5472 \) Copy content Toggle raw display
$23$ \( T^{2} + 46T - 23475 \) Copy content Toggle raw display
$29$ \( T^{2} - 416T + 37263 \) Copy content Toggle raw display
$31$ \( T^{2} + 229T + 11610 \) Copy content Toggle raw display
$37$ \( T^{2} - 215T - 25950 \) Copy content Toggle raw display
$41$ \( T^{2} + 77T - 36024 \) Copy content Toggle raw display
$43$ \( T^{2} - 270T - 5779 \) Copy content Toggle raw display
$47$ \( T^{2} + 410T - 108000 \) Copy content Toggle raw display
$53$ \( T^{2} - 711T + 88874 \) Copy content Toggle raw display
$59$ \( T^{2} - 1403 T + 490602 \) Copy content Toggle raw display
$61$ \( T^{2} - 21T - 541480 \) Copy content Toggle raw display
$67$ \( T^{2} + 849T - 157356 \) Copy content Toggle raw display
$71$ \( T^{2} - 645T - 77524 \) Copy content Toggle raw display
$73$ \( T^{2} - 450T - 99400 \) Copy content Toggle raw display
$79$ \( T^{2} - 737T + 122290 \) Copy content Toggle raw display
$83$ \( T^{2} - 1207 T - 177378 \) Copy content Toggle raw display
$89$ \( (T - 566)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 728T - 83540 \) Copy content Toggle raw display
show more
show less