Properties

Label 1050.3.p.b.451.2
Level $1050$
Weight $3$
Character 1050.451
Analytic conductor $28.610$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,3,Mod(451,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.451"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1050.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-12,-8,0,0,0,0,12,0,-4,24,0,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.6104277578\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.3317760000.3
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{6} + 7x^{4} - 36x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 451.2
Root \(-1.01575 + 1.40294i\) of defining polynomial
Character \(\chi\) \(=\) 1050.451
Dual form 1050.3.p.b.901.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 1.22474i) q^{2} +(-1.50000 - 0.866025i) q^{3} +(-1.00000 + 1.73205i) q^{4} +2.44949i q^{6} +(6.51658 - 2.55620i) q^{7} +2.82843 q^{8} +(1.50000 + 2.59808i) q^{9} +(-6.16205 + 10.6730i) q^{11} +(3.00000 - 1.73205i) q^{12} -7.26007i q^{13} +(-7.73861 - 6.17364i) q^{14} +(-2.00000 - 3.46410i) q^{16} +(-8.04643 - 4.64561i) q^{17} +(2.12132 - 3.67423i) q^{18} +(5.26235 - 3.03822i) q^{19} +(-11.9886 - 1.80922i) q^{21} +17.4289 q^{22} +(-1.12514 - 1.94880i) q^{23} +(-4.24264 - 2.44949i) q^{24} +(-8.89173 + 5.13364i) q^{26} -5.19615i q^{27} +(-2.08911 + 13.8433i) q^{28} +42.2122 q^{29} +(-1.05527 - 0.609262i) q^{31} +(-2.82843 + 4.89898i) q^{32} +(18.4862 - 10.6730i) q^{33} +13.1398i q^{34} -6.00000 q^{36} +(17.5296 + 30.3622i) q^{37} +(-7.44209 - 4.29669i) q^{38} +(-6.28740 + 10.8901i) q^{39} +57.8811i q^{41} +(6.26139 + 15.9623i) q^{42} +34.0190 q^{43} +(-12.3241 - 21.3460i) q^{44} +(-1.59119 + 2.75603i) q^{46} +(-49.4411 + 28.5448i) q^{47} +6.92820i q^{48} +(35.9317 - 33.3154i) q^{49} +(8.04643 + 13.9368i) q^{51} +(12.5748 + 7.26007i) q^{52} +(7.27009 - 12.5922i) q^{53} +(-6.36396 + 3.67423i) q^{54} +(18.4317 - 7.23003i) q^{56} -10.5247 q^{57} +(-29.8485 - 51.6992i) q^{58} +(50.1067 + 28.9291i) q^{59} +(-5.07658 + 2.93096i) q^{61} +1.72325i q^{62} +(16.4161 + 13.0963i) q^{63} +8.00000 q^{64} +(-26.1434 - 15.0939i) q^{66} +(24.7355 - 42.8431i) q^{67} +(16.0929 - 9.29122i) q^{68} +3.89761i q^{69} +101.986 q^{71} +(4.24264 + 7.34847i) q^{72} +(-71.2783 - 41.1525i) q^{73} +(24.7906 - 42.9387i) q^{74} +12.1529i q^{76} +(-12.8732 + 85.3029i) q^{77} +17.7835 q^{78} +(-55.8530 - 96.7403i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(70.8895 - 40.9281i) q^{82} -91.6237i q^{83} +(15.1223 - 18.9557i) q^{84} +(-24.0551 - 41.6646i) q^{86} +(-63.3183 - 36.5568i) q^{87} +(-17.4289 + 30.1878i) q^{88} +(110.673 - 63.8973i) q^{89} +(-18.5582 - 47.3108i) q^{91} +4.50057 q^{92} +(1.05527 + 1.82779i) q^{93} +(69.9203 + 40.3685i) q^{94} +(8.48528 - 4.89898i) q^{96} -61.4455i q^{97} +(-66.2104 - 20.4496i) q^{98} -36.9723 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{3} - 8 q^{4} + 12 q^{9} - 4 q^{11} + 24 q^{12} - 40 q^{14} - 16 q^{16} - 84 q^{17} + 108 q^{19} + 48 q^{22} - 12 q^{23} - 96 q^{26} + 72 q^{29} - 132 q^{31} + 12 q^{33} - 48 q^{36} + 96 q^{37}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 1.22474i −0.353553 0.612372i
\(3\) −1.50000 0.866025i −0.500000 0.288675i
\(4\) −1.00000 + 1.73205i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) 2.44949i 0.408248i
\(7\) 6.51658 2.55620i 0.930940 0.365172i
\(8\) 2.82843 0.353553
\(9\) 1.50000 + 2.59808i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) −6.16205 + 10.6730i −0.560187 + 0.970272i 0.437293 + 0.899319i \(0.355937\pi\)
−0.997480 + 0.0709528i \(0.977396\pi\)
\(12\) 3.00000 1.73205i 0.250000 0.144338i
\(13\) 7.26007i 0.558467i −0.960223 0.279233i \(-0.909920\pi\)
0.960223 0.279233i \(-0.0900803\pi\)
\(14\) −7.73861 6.17364i −0.552758 0.440975i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) −8.04643 4.64561i −0.473319 0.273271i 0.244309 0.969697i \(-0.421439\pi\)
−0.717628 + 0.696426i \(0.754772\pi\)
\(18\) 2.12132 3.67423i 0.117851 0.204124i
\(19\) 5.26235 3.03822i 0.276966 0.159906i −0.355083 0.934835i \(-0.615547\pi\)
0.632049 + 0.774928i \(0.282214\pi\)
\(20\) 0 0
\(21\) −11.9886 1.80922i −0.570886 0.0861535i
\(22\) 17.4289 0.792224
\(23\) −1.12514 1.94880i −0.0489192 0.0847306i 0.840529 0.541767i \(-0.182244\pi\)
−0.889448 + 0.457036i \(0.848911\pi\)
\(24\) −4.24264 2.44949i −0.176777 0.102062i
\(25\) 0 0
\(26\) −8.89173 + 5.13364i −0.341990 + 0.197448i
\(27\) 5.19615i 0.192450i
\(28\) −2.08911 + 13.8433i −0.0746112 + 0.494402i
\(29\) 42.2122 1.45559 0.727797 0.685793i \(-0.240544\pi\)
0.727797 + 0.685793i \(0.240544\pi\)
\(30\) 0 0
\(31\) −1.05527 0.609262i −0.0340411 0.0196536i 0.482883 0.875685i \(-0.339590\pi\)
−0.516924 + 0.856031i \(0.672923\pi\)
\(32\) −2.82843 + 4.89898i −0.0883883 + 0.153093i
\(33\) 18.4862 10.6730i 0.560187 0.323424i
\(34\) 13.1398i 0.386464i
\(35\) 0 0
\(36\) −6.00000 −0.166667
\(37\) 17.5296 + 30.3622i 0.473774 + 0.820600i 0.999549 0.0300231i \(-0.00955808\pi\)
−0.525775 + 0.850623i \(0.676225\pi\)
\(38\) −7.44209 4.29669i −0.195845 0.113071i
\(39\) −6.28740 + 10.8901i −0.161215 + 0.279233i
\(40\) 0 0
\(41\) 57.8811i 1.41173i 0.708345 + 0.705867i \(0.249442\pi\)
−0.708345 + 0.705867i \(0.750558\pi\)
\(42\) 6.26139 + 15.9623i 0.149081 + 0.380055i
\(43\) 34.0190 0.791140 0.395570 0.918436i \(-0.370547\pi\)
0.395570 + 0.918436i \(0.370547\pi\)
\(44\) −12.3241 21.3460i −0.280093 0.485136i
\(45\) 0 0
\(46\) −1.59119 + 2.75603i −0.0345911 + 0.0599136i
\(47\) −49.4411 + 28.5448i −1.05194 + 0.607337i −0.923191 0.384340i \(-0.874429\pi\)
−0.128747 + 0.991677i \(0.541096\pi\)
\(48\) 6.92820i 0.144338i
\(49\) 35.9317 33.3154i 0.733300 0.679906i
\(50\) 0 0
\(51\) 8.04643 + 13.9368i 0.157773 + 0.273271i
\(52\) 12.5748 + 7.26007i 0.241823 + 0.139617i
\(53\) 7.27009 12.5922i 0.137172 0.237588i −0.789253 0.614068i \(-0.789532\pi\)
0.926425 + 0.376480i \(0.122866\pi\)
\(54\) −6.36396 + 3.67423i −0.117851 + 0.0680414i
\(55\) 0 0
\(56\) 18.4317 7.23003i 0.329137 0.129108i
\(57\) −10.5247 −0.184644
\(58\) −29.8485 51.6992i −0.514630 0.891365i
\(59\) 50.1067 + 28.9291i 0.849266 + 0.490324i 0.860403 0.509614i \(-0.170212\pi\)
−0.0111375 + 0.999938i \(0.503545\pi\)
\(60\) 0 0
\(61\) −5.07658 + 2.93096i −0.0832226 + 0.0480486i −0.541034 0.841001i \(-0.681967\pi\)
0.457811 + 0.889049i \(0.348634\pi\)
\(62\) 1.72325i 0.0277944i
\(63\) 16.4161 + 13.0963i 0.260573 + 0.207877i
\(64\) 8.00000 0.125000
\(65\) 0 0
\(66\) −26.1434 15.0939i −0.396112 0.228695i
\(67\) 24.7355 42.8431i 0.369186 0.639449i −0.620252 0.784402i \(-0.712970\pi\)
0.989439 + 0.144953i \(0.0463032\pi\)
\(68\) 16.0929 9.29122i 0.236660 0.136636i
\(69\) 3.89761i 0.0564871i
\(70\) 0 0
\(71\) 101.986 1.43643 0.718214 0.695822i \(-0.244960\pi\)
0.718214 + 0.695822i \(0.244960\pi\)
\(72\) 4.24264 + 7.34847i 0.0589256 + 0.102062i
\(73\) −71.2783 41.1525i −0.976415 0.563733i −0.0752290 0.997166i \(-0.523969\pi\)
−0.901186 + 0.433433i \(0.857302\pi\)
\(74\) 24.7906 42.9387i 0.335009 0.580252i
\(75\) 0 0
\(76\) 12.1529i 0.159906i
\(77\) −12.8732 + 85.3029i −0.167185 + 1.10783i
\(78\) 17.7835 0.227993
\(79\) −55.8530 96.7403i −0.707001 1.22456i −0.965965 0.258674i \(-0.916714\pi\)
0.258964 0.965887i \(-0.416619\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.0555556 + 0.0962250i
\(82\) 70.8895 40.9281i 0.864507 0.499123i
\(83\) 91.6237i 1.10390i −0.833877 0.551950i \(-0.813884\pi\)
0.833877 0.551950i \(-0.186116\pi\)
\(84\) 15.1223 18.9557i 0.180027 0.225663i
\(85\) 0 0
\(86\) −24.0551 41.6646i −0.279710 0.484472i
\(87\) −63.3183 36.5568i −0.727797 0.420194i
\(88\) −17.4289 + 30.1878i −0.198056 + 0.343043i
\(89\) 110.673 63.8973i 1.24352 0.717947i 0.273712 0.961812i \(-0.411748\pi\)
0.969809 + 0.243864i \(0.0784151\pi\)
\(90\) 0 0
\(91\) −18.5582 47.3108i −0.203936 0.519899i
\(92\) 4.50057 0.0489192
\(93\) 1.05527 + 1.82779i 0.0113470 + 0.0196536i
\(94\) 69.9203 + 40.3685i 0.743833 + 0.429452i
\(95\) 0 0
\(96\) 8.48528 4.89898i 0.0883883 0.0510310i
\(97\) 61.4455i 0.633459i −0.948516 0.316729i \(-0.897415\pi\)
0.948516 0.316729i \(-0.102585\pi\)
\(98\) −66.2104 20.4496i −0.675616 0.208669i
\(99\) −36.9723 −0.373458
\(100\) 0 0
\(101\) 53.8141 + 31.0696i 0.532813 + 0.307620i 0.742161 0.670221i \(-0.233801\pi\)
−0.209348 + 0.977841i \(0.567134\pi\)
\(102\) 11.3794 19.7096i 0.111562 0.193232i
\(103\) 154.102 88.9709i 1.49614 0.863795i 0.496147 0.868238i \(-0.334748\pi\)
0.999990 + 0.00444312i \(0.00141429\pi\)
\(104\) 20.5346i 0.197448i
\(105\) 0 0
\(106\) −20.5629 −0.193990
\(107\) 42.4855 + 73.5871i 0.397061 + 0.687730i 0.993362 0.115031i \(-0.0366968\pi\)
−0.596301 + 0.802761i \(0.703363\pi\)
\(108\) 9.00000 + 5.19615i 0.0833333 + 0.0481125i
\(109\) 86.4291 149.700i 0.792928 1.37339i −0.131219 0.991353i \(-0.541889\pi\)
0.924147 0.382037i \(-0.124777\pi\)
\(110\) 0 0
\(111\) 60.7244i 0.547067i
\(112\) −21.8881 17.4617i −0.195429 0.155908i
\(113\) 82.0616 0.726209 0.363105 0.931748i \(-0.381717\pi\)
0.363105 + 0.931748i \(0.381717\pi\)
\(114\) 7.44209 + 12.8901i 0.0652815 + 0.113071i
\(115\) 0 0
\(116\) −42.2122 + 73.1137i −0.363898 + 0.630290i
\(117\) 18.8622 10.8901i 0.161215 0.0930778i
\(118\) 81.8238i 0.693422i
\(119\) −64.3103 9.70520i −0.540423 0.0815563i
\(120\) 0 0
\(121\) −15.4418 26.7460i −0.127618 0.221042i
\(122\) 7.17937 + 4.14501i 0.0588473 + 0.0339755i
\(123\) 50.1265 86.8216i 0.407532 0.705867i
\(124\) 2.11055 1.21852i 0.0170205 0.00982681i
\(125\) 0 0
\(126\) 4.43168 29.3660i 0.0351720 0.233063i
\(127\) 193.480 1.52346 0.761732 0.647892i \(-0.224349\pi\)
0.761732 + 0.647892i \(0.224349\pi\)
\(128\) −5.65685 9.79796i −0.0441942 0.0765466i
\(129\) −51.0285 29.4613i −0.395570 0.228382i
\(130\) 0 0
\(131\) −156.850 + 90.5572i −1.19733 + 0.691276i −0.959958 0.280143i \(-0.909618\pi\)
−0.237368 + 0.971420i \(0.576285\pi\)
\(132\) 42.6920i 0.323424i
\(133\) 26.5263 33.2504i 0.199446 0.250003i
\(134\) −69.9625 −0.522108
\(135\) 0 0
\(136\) −22.7587 13.1398i −0.167344 0.0966159i
\(137\) 0.631666 1.09408i 0.00461070 0.00798597i −0.863711 0.503988i \(-0.831866\pi\)
0.868322 + 0.496002i \(0.165199\pi\)
\(138\) 4.77358 2.75603i 0.0345911 0.0199712i
\(139\) 12.1327i 0.0872857i 0.999047 + 0.0436428i \(0.0138964\pi\)
−0.999047 + 0.0436428i \(0.986104\pi\)
\(140\) 0 0
\(141\) 98.8822 0.701292
\(142\) −72.1153 124.907i −0.507854 0.879629i
\(143\) 77.4866 + 44.7369i 0.541865 + 0.312846i
\(144\) 6.00000 10.3923i 0.0416667 0.0721688i
\(145\) 0 0
\(146\) 116.397i 0.797239i
\(147\) −82.7495 + 18.8553i −0.562922 + 0.128268i
\(148\) −70.1185 −0.473774
\(149\) −144.863 250.910i −0.972233 1.68396i −0.688780 0.724971i \(-0.741853\pi\)
−0.283453 0.958986i \(-0.591480\pi\)
\(150\) 0 0
\(151\) −58.6516 + 101.588i −0.388421 + 0.672765i −0.992237 0.124358i \(-0.960313\pi\)
0.603816 + 0.797124i \(0.293646\pi\)
\(152\) 14.8842 8.59339i 0.0979223 0.0565354i
\(153\) 27.8737i 0.182181i
\(154\) 113.577 44.5518i 0.737513 0.289298i
\(155\) 0 0
\(156\) −12.5748 21.7802i −0.0806077 0.139617i
\(157\) −159.121 91.8687i −1.01351 0.585151i −0.101294 0.994857i \(-0.532298\pi\)
−0.912218 + 0.409705i \(0.865632\pi\)
\(158\) −78.9881 + 136.811i −0.499925 + 0.865895i
\(159\) −21.8103 + 12.5922i −0.137172 + 0.0791960i
\(160\) 0 0
\(161\) −12.3136 9.82345i −0.0764821 0.0610152i
\(162\) 12.7279 0.0785674
\(163\) 60.7854 + 105.283i 0.372917 + 0.645911i 0.990013 0.140977i \(-0.0450244\pi\)
−0.617096 + 0.786888i \(0.711691\pi\)
\(164\) −100.253 57.8811i −0.611298 0.352933i
\(165\) 0 0
\(166\) −112.216 + 64.7878i −0.675998 + 0.390288i
\(167\) 94.6539i 0.566790i −0.959003 0.283395i \(-0.908539\pi\)
0.959003 0.283395i \(-0.0914608\pi\)
\(168\) −33.9089 5.11726i −0.201839 0.0304599i
\(169\) 116.291 0.688115
\(170\) 0 0
\(171\) 15.7871 + 9.11466i 0.0923220 + 0.0533021i
\(172\) −34.0190 + 58.9227i −0.197785 + 0.342574i
\(173\) 225.766 130.346i 1.30501 0.753445i 0.323747 0.946144i \(-0.395057\pi\)
0.981258 + 0.192699i \(0.0617240\pi\)
\(174\) 103.398i 0.594244i
\(175\) 0 0
\(176\) 49.2964 0.280093
\(177\) −50.1067 86.7873i −0.283089 0.490324i
\(178\) −156.516 90.3645i −0.879302 0.507666i
\(179\) −153.264 + 265.462i −0.856225 + 1.48303i 0.0192782 + 0.999814i \(0.493863\pi\)
−0.875504 + 0.483212i \(0.839470\pi\)
\(180\) 0 0
\(181\) 314.885i 1.73970i −0.493318 0.869849i \(-0.664216\pi\)
0.493318 0.869849i \(-0.335784\pi\)
\(182\) −44.8211 + 56.1828i −0.246270 + 0.308697i
\(183\) 10.1532 0.0554817
\(184\) −3.18238 5.51205i −0.0172956 0.0299568i
\(185\) 0 0
\(186\) 1.49238 2.58488i 0.00802356 0.0138972i
\(187\) 99.1651 57.2530i 0.530295 0.306166i
\(188\) 114.179i 0.607337i
\(189\) −13.2824 33.8612i −0.0702773 0.179160i
\(190\) 0 0
\(191\) 45.3946 + 78.6257i 0.237668 + 0.411653i 0.960045 0.279847i \(-0.0902837\pi\)
−0.722377 + 0.691500i \(0.756950\pi\)
\(192\) −12.0000 6.92820i −0.0625000 0.0360844i
\(193\) −114.828 + 198.887i −0.594961 + 1.03050i 0.398591 + 0.917129i \(0.369499\pi\)
−0.993552 + 0.113374i \(0.963834\pi\)
\(194\) −75.2551 + 43.4485i −0.387913 + 0.223962i
\(195\) 0 0
\(196\) 21.7723 + 95.5509i 0.111083 + 0.487504i
\(197\) −227.989 −1.15730 −0.578652 0.815574i \(-0.696421\pi\)
−0.578652 + 0.815574i \(0.696421\pi\)
\(198\) 26.1434 + 45.2817i 0.132037 + 0.228695i
\(199\) 9.56623 + 5.52307i 0.0480715 + 0.0277541i 0.523843 0.851815i \(-0.324498\pi\)
−0.475772 + 0.879569i \(0.657831\pi\)
\(200\) 0 0
\(201\) −74.2064 + 42.8431i −0.369186 + 0.213150i
\(202\) 87.8781i 0.435040i
\(203\) 275.079 107.903i 1.35507 0.531541i
\(204\) −32.1857 −0.157773
\(205\) 0 0
\(206\) −217.933 125.824i −1.05793 0.610796i
\(207\) 3.37543 5.84641i 0.0163064 0.0282435i
\(208\) −25.1496 + 14.5201i −0.120912 + 0.0698083i
\(209\) 74.8867i 0.358310i
\(210\) 0 0
\(211\) 151.187 0.716526 0.358263 0.933621i \(-0.383369\pi\)
0.358263 + 0.933621i \(0.383369\pi\)
\(212\) 14.5402 + 25.1843i 0.0685858 + 0.118794i
\(213\) −152.980 88.3228i −0.718214 0.414661i
\(214\) 60.0836 104.068i 0.280765 0.486298i
\(215\) 0 0
\(216\) 14.6969i 0.0680414i
\(217\) −8.43417 1.27282i −0.0388671 0.00586552i
\(218\) −244.458 −1.12137
\(219\) 71.2783 + 123.458i 0.325472 + 0.563733i
\(220\) 0 0
\(221\) −33.7274 + 58.4176i −0.152613 + 0.264333i
\(222\) −74.3719 + 42.9387i −0.335009 + 0.193417i
\(223\) 308.586i 1.38379i 0.721997 + 0.691896i \(0.243224\pi\)
−0.721997 + 0.691896i \(0.756776\pi\)
\(224\) −5.90890 + 39.1546i −0.0263790 + 0.174797i
\(225\) 0 0
\(226\) −58.0263 100.505i −0.256754 0.444710i
\(227\) −86.9683 50.2112i −0.383120 0.221195i 0.296055 0.955171i \(-0.404329\pi\)
−0.679175 + 0.733976i \(0.737662\pi\)
\(228\) 10.5247 18.2293i 0.0461610 0.0799532i
\(229\) 277.125 159.998i 1.21015 0.698682i 0.247361 0.968923i \(-0.420437\pi\)
0.962793 + 0.270241i \(0.0871034\pi\)
\(230\) 0 0
\(231\) 93.1843 116.806i 0.403395 0.505653i
\(232\) 119.394 0.514630
\(233\) 155.395 + 269.151i 0.666929 + 1.15516i 0.978758 + 0.205017i \(0.0657251\pi\)
−0.311829 + 0.950138i \(0.600942\pi\)
\(234\) −26.6752 15.4009i −0.113997 0.0658159i
\(235\) 0 0
\(236\) −100.213 + 57.8582i −0.424633 + 0.245162i
\(237\) 193.481i 0.816374i
\(238\) 33.5879 + 85.6264i 0.141126 + 0.359775i
\(239\) 136.263 0.570139 0.285069 0.958507i \(-0.407983\pi\)
0.285069 + 0.958507i \(0.407983\pi\)
\(240\) 0 0
\(241\) 334.441 + 193.090i 1.38772 + 0.801202i 0.993058 0.117623i \(-0.0375274\pi\)
0.394665 + 0.918825i \(0.370861\pi\)
\(242\) −21.8380 + 37.8246i −0.0902398 + 0.156300i
\(243\) 13.5000 7.79423i 0.0555556 0.0320750i
\(244\) 11.7239i 0.0480486i
\(245\) 0 0
\(246\) −141.779 −0.576338
\(247\) −22.0577 38.2050i −0.0893024 0.154676i
\(248\) −2.98476 1.72325i −0.0120353 0.00694860i
\(249\) −79.3485 + 137.436i −0.318669 + 0.551950i
\(250\) 0 0
\(251\) 99.3717i 0.395903i −0.980212 0.197952i \(-0.936571\pi\)
0.980212 0.197952i \(-0.0634289\pi\)
\(252\) −39.0995 + 15.3372i −0.155157 + 0.0608619i
\(253\) 27.7328 0.109616
\(254\) −136.811 236.964i −0.538626 0.932928i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) −18.2886 + 10.5589i −0.0711617 + 0.0410852i −0.535159 0.844752i \(-0.679748\pi\)
0.463997 + 0.885837i \(0.346415\pi\)
\(258\) 83.3292i 0.322982i
\(259\) 191.845 + 153.049i 0.740715 + 0.590921i
\(260\) 0 0
\(261\) 63.3183 + 109.671i 0.242599 + 0.420194i
\(262\) 221.819 + 128.067i 0.846637 + 0.488806i
\(263\) −190.259 + 329.538i −0.723417 + 1.25299i 0.236205 + 0.971703i \(0.424096\pi\)
−0.959622 + 0.281292i \(0.909237\pi\)
\(264\) 52.2868 30.1878i 0.198056 0.114348i
\(265\) 0 0
\(266\) −59.4802 8.97628i −0.223610 0.0337454i
\(267\) −221.347 −0.829014
\(268\) 49.4709 + 85.6862i 0.184593 + 0.319725i
\(269\) 14.5415 + 8.39551i 0.0540574 + 0.0312101i 0.526785 0.849998i \(-0.323397\pi\)
−0.472728 + 0.881209i \(0.656731\pi\)
\(270\) 0 0
\(271\) 320.146 184.836i 1.18135 0.682052i 0.225023 0.974353i \(-0.427754\pi\)
0.956326 + 0.292301i \(0.0944209\pi\)
\(272\) 37.1649i 0.136636i
\(273\) −13.1351 + 87.0381i −0.0481139 + 0.318821i
\(274\) −1.78662 −0.00652051
\(275\) 0 0
\(276\) −6.75086 3.89761i −0.0244596 0.0141218i
\(277\) 242.912 420.736i 0.876940 1.51890i 0.0222577 0.999752i \(-0.492915\pi\)
0.854682 0.519152i \(-0.173752\pi\)
\(278\) 14.8595 8.57912i 0.0534513 0.0308601i
\(279\) 3.65557i 0.0131024i
\(280\) 0 0
\(281\) 360.234 1.28197 0.640986 0.767553i \(-0.278526\pi\)
0.640986 + 0.767553i \(0.278526\pi\)
\(282\) −69.9203 121.106i −0.247944 0.429452i
\(283\) −234.261 135.251i −0.827778 0.477918i 0.0253131 0.999680i \(-0.491942\pi\)
−0.853091 + 0.521762i \(0.825275\pi\)
\(284\) −101.986 + 176.646i −0.359107 + 0.621992i
\(285\) 0 0
\(286\) 126.535i 0.442431i
\(287\) 147.956 + 377.187i 0.515525 + 1.31424i
\(288\) −16.9706 −0.0589256
\(289\) −101.337 175.520i −0.350646 0.607336i
\(290\) 0 0
\(291\) −53.2134 + 92.1683i −0.182864 + 0.316729i
\(292\) 142.557 82.3051i 0.488207 0.281867i
\(293\) 9.63230i 0.0328747i 0.999865 + 0.0164374i \(0.00523241\pi\)
−0.999865 + 0.0164374i \(0.994768\pi\)
\(294\) 81.6057 + 88.0143i 0.277570 + 0.299368i
\(295\) 0 0
\(296\) 49.5813 + 85.8773i 0.167504 + 0.290126i
\(297\) 55.4585 + 32.0190i 0.186729 + 0.107808i
\(298\) −204.867 + 354.840i −0.687472 + 1.19074i
\(299\) −14.1484 + 8.16861i −0.0473192 + 0.0273198i
\(300\) 0 0
\(301\) 221.688 86.9594i 0.736504 0.288902i
\(302\) 165.892 0.549310
\(303\) −53.8141 93.2088i −0.177604 0.307620i
\(304\) −21.0494 12.1529i −0.0692415 0.0399766i
\(305\) 0 0
\(306\) −34.1381 + 19.7096i −0.111562 + 0.0644106i
\(307\) 46.0412i 0.149971i 0.997185 + 0.0749857i \(0.0238911\pi\)
−0.997185 + 0.0749857i \(0.976109\pi\)
\(308\) −134.876 107.600i −0.437908 0.349350i
\(309\) −308.204 −0.997425
\(310\) 0 0
\(311\) −378.160 218.331i −1.21595 0.702029i −0.251901 0.967753i \(-0.581056\pi\)
−0.964049 + 0.265724i \(0.914389\pi\)
\(312\) −17.7835 + 30.8019i −0.0569983 + 0.0987239i
\(313\) −248.135 + 143.261i −0.792764 + 0.457703i −0.840935 0.541137i \(-0.817994\pi\)
0.0481706 + 0.998839i \(0.484661\pi\)
\(314\) 259.844i 0.827529i
\(315\) 0 0
\(316\) 223.412 0.707001
\(317\) −0.684418 1.18545i −0.00215905 0.00373958i 0.864944 0.501869i \(-0.167354\pi\)
−0.867103 + 0.498129i \(0.834021\pi\)
\(318\) 30.8444 + 17.8080i 0.0969949 + 0.0560001i
\(319\) −260.114 + 450.531i −0.815404 + 1.41232i
\(320\) 0 0
\(321\) 147.174i 0.458487i
\(322\) −3.32418 + 22.0273i −0.0103235 + 0.0684077i
\(323\) −56.4575 −0.174791
\(324\) −9.00000 15.5885i −0.0277778 0.0481125i
\(325\) 0 0
\(326\) 85.9636 148.893i 0.263692 0.456728i
\(327\) −259.287 + 149.700i −0.792928 + 0.457797i
\(328\) 163.712i 0.499123i
\(329\) −249.221 + 312.396i −0.757510 + 0.949533i
\(330\) 0 0
\(331\) 192.017 + 332.583i 0.580111 + 1.00478i 0.995466 + 0.0951223i \(0.0303242\pi\)
−0.415354 + 0.909660i \(0.636342\pi\)
\(332\) 158.697 + 91.6237i 0.478003 + 0.275975i
\(333\) −52.5889 + 91.0866i −0.157925 + 0.273533i
\(334\) −115.927 + 66.9304i −0.347087 + 0.200391i
\(335\) 0 0
\(336\) 17.7099 + 45.1482i 0.0527080 + 0.134370i
\(337\) 141.948 0.421211 0.210606 0.977571i \(-0.432456\pi\)
0.210606 + 0.977571i \(0.432456\pi\)
\(338\) −82.2305 142.427i −0.243285 0.421383i
\(339\) −123.092 71.0675i −0.363105 0.209639i
\(340\) 0 0
\(341\) 13.0053 7.50861i 0.0381387 0.0220194i
\(342\) 25.7802i 0.0753806i
\(343\) 148.991 308.951i 0.434376 0.900732i
\(344\) 96.2203 0.279710
\(345\) 0 0
\(346\) −319.281 184.337i −0.922778 0.532766i
\(347\) −125.176 + 216.811i −0.360737 + 0.624815i −0.988082 0.153926i \(-0.950808\pi\)
0.627345 + 0.778741i \(0.284142\pi\)
\(348\) 126.637 73.1137i 0.363898 0.210097i
\(349\) 195.188i 0.559277i 0.960105 + 0.279639i \(0.0902147\pi\)
−0.960105 + 0.279639i \(0.909785\pi\)
\(350\) 0 0
\(351\) −37.7244 −0.107477
\(352\) −34.8578 60.3756i −0.0990280 0.171521i
\(353\) −123.148 71.0997i −0.348862 0.201416i 0.315322 0.948985i \(-0.397887\pi\)
−0.664184 + 0.747569i \(0.731221\pi\)
\(354\) −70.8615 + 122.736i −0.200174 + 0.346711i
\(355\) 0 0
\(356\) 255.589i 0.717947i
\(357\) 88.0605 + 70.2522i 0.246668 + 0.196785i
\(358\) 433.497 1.21089
\(359\) 328.443 + 568.880i 0.914884 + 1.58462i 0.807072 + 0.590453i \(0.201051\pi\)
0.107812 + 0.994171i \(0.465616\pi\)
\(360\) 0 0
\(361\) −162.038 + 280.659i −0.448860 + 0.777448i
\(362\) −385.654 + 222.658i −1.06534 + 0.615076i
\(363\) 53.4921i 0.147361i
\(364\) 100.503 + 15.1671i 0.276107 + 0.0416678i
\(365\) 0 0
\(366\) −7.17937 12.4350i −0.0196158 0.0339755i
\(367\) 444.403 + 256.576i 1.21091 + 0.699117i 0.962957 0.269655i \(-0.0869098\pi\)
0.247950 + 0.968773i \(0.420243\pi\)
\(368\) −4.50057 + 7.79522i −0.0122298 + 0.0211827i
\(369\) −150.379 + 86.8216i −0.407532 + 0.235289i
\(370\) 0 0
\(371\) 15.1880 100.642i 0.0409381 0.271271i
\(372\) −4.22109 −0.0113470
\(373\) −316.262 547.782i −0.847887 1.46858i −0.883090 0.469204i \(-0.844541\pi\)
0.0352027 0.999380i \(-0.488792\pi\)
\(374\) −140.241 80.9679i −0.374975 0.216492i
\(375\) 0 0
\(376\) −139.841 + 80.7370i −0.371916 + 0.214726i
\(377\) 306.463i 0.812900i
\(378\) −32.0792 + 40.2110i −0.0848656 + 0.106378i
\(379\) −617.180 −1.62844 −0.814222 0.580553i \(-0.802836\pi\)
−0.814222 + 0.580553i \(0.802836\pi\)
\(380\) 0 0
\(381\) −290.220 167.559i −0.761732 0.439786i
\(382\) 64.1976 111.193i 0.168057 0.291082i
\(383\) −150.642 + 86.9735i −0.393322 + 0.227085i −0.683599 0.729858i \(-0.739586\pi\)
0.290276 + 0.956943i \(0.406253\pi\)
\(384\) 19.5959i 0.0510310i
\(385\) 0 0
\(386\) 324.781 0.841402
\(387\) 51.0285 + 88.3840i 0.131857 + 0.228382i
\(388\) 106.427 + 61.4455i 0.274296 + 0.158365i
\(389\) −98.0961 + 169.907i −0.252175 + 0.436780i −0.964124 0.265451i \(-0.914479\pi\)
0.711949 + 0.702231i \(0.247813\pi\)
\(390\) 0 0
\(391\) 20.9079i 0.0534729i
\(392\) 101.630 94.2301i 0.259261 0.240383i
\(393\) 313.699 0.798217
\(394\) 161.213 + 279.228i 0.409169 + 0.708702i
\(395\) 0 0
\(396\) 36.9723 64.0379i 0.0933645 0.161712i
\(397\) 345.285 199.350i 0.869736 0.502142i 0.00247542 0.999997i \(-0.499212\pi\)
0.867260 + 0.497855i \(0.165879\pi\)
\(398\) 15.6216i 0.0392502i
\(399\) −68.5851 + 26.9033i −0.171893 + 0.0674267i
\(400\) 0 0
\(401\) −173.599 300.683i −0.432916 0.749833i 0.564207 0.825633i \(-0.309182\pi\)
−0.997123 + 0.0758008i \(0.975849\pi\)
\(402\) 104.944 + 60.5893i 0.261054 + 0.150720i
\(403\) −4.42328 + 7.66135i −0.0109759 + 0.0190108i
\(404\) −107.628 + 62.1392i −0.266407 + 0.153810i
\(405\) 0 0
\(406\) −326.664 260.603i −0.804591 0.641880i
\(407\) −432.074 −1.06161
\(408\) 22.7587 + 39.4193i 0.0557812 + 0.0966159i
\(409\) 293.397 + 169.393i 0.717352 + 0.414163i 0.813777 0.581177i \(-0.197408\pi\)
−0.0964252 + 0.995340i \(0.530741\pi\)
\(410\) 0 0
\(411\) −1.89500 + 1.09408i −0.00461070 + 0.00266199i
\(412\) 355.884i 0.863795i
\(413\) 400.473 + 60.4361i 0.969668 + 0.146334i
\(414\) −9.54715 −0.0230608
\(415\) 0 0
\(416\) 35.5669 + 20.5346i 0.0854974 + 0.0493619i
\(417\) 10.5072 18.1991i 0.0251972 0.0436428i
\(418\) 91.7171 52.9529i 0.219419 0.126682i
\(419\) 369.514i 0.881894i 0.897533 + 0.440947i \(0.145357\pi\)
−0.897533 + 0.440947i \(0.854643\pi\)
\(420\) 0 0
\(421\) −217.571 −0.516797 −0.258398 0.966038i \(-0.583195\pi\)
−0.258398 + 0.966038i \(0.583195\pi\)
\(422\) −106.905 185.166i −0.253330 0.438781i
\(423\) −148.323 85.6345i −0.350646 0.202446i
\(424\) 20.5629 35.6160i 0.0484975 0.0840001i
\(425\) 0 0
\(426\) 249.815i 0.586420i
\(427\) −25.5898 + 32.0766i −0.0599293 + 0.0751209i
\(428\) −169.942 −0.397061
\(429\) −77.4866 134.211i −0.180622 0.312846i
\(430\) 0 0
\(431\) 142.916 247.537i 0.331591 0.574332i −0.651233 0.758878i \(-0.725748\pi\)
0.982824 + 0.184546i \(0.0590814\pi\)
\(432\) −18.0000 + 10.3923i −0.0416667 + 0.0240563i
\(433\) 643.490i 1.48612i 0.669224 + 0.743060i \(0.266626\pi\)
−0.669224 + 0.743060i \(0.733374\pi\)
\(434\) 4.40498 + 11.2297i 0.0101497 + 0.0258749i
\(435\) 0 0
\(436\) 172.858 + 299.399i 0.396464 + 0.686695i
\(437\) −11.8418 6.83686i −0.0270979 0.0156450i
\(438\) 100.803 174.595i 0.230143 0.398620i
\(439\) 494.013 285.218i 1.12531 0.649700i 0.182562 0.983194i \(-0.441561\pi\)
0.942752 + 0.333494i \(0.108228\pi\)
\(440\) 0 0
\(441\) 140.453 + 43.3802i 0.318488 + 0.0983677i
\(442\) 95.3956 0.215827
\(443\) −33.0074 57.1705i −0.0745089 0.129053i 0.826364 0.563137i \(-0.190406\pi\)
−0.900873 + 0.434084i \(0.857072\pi\)
\(444\) 105.178 + 60.7244i 0.236887 + 0.136767i
\(445\) 0 0
\(446\) 377.939 218.203i 0.847396 0.489244i
\(447\) 501.819i 1.12264i
\(448\) 52.1327 20.4496i 0.116368 0.0456464i
\(449\) 515.072 1.14715 0.573577 0.819152i \(-0.305555\pi\)
0.573577 + 0.819152i \(0.305555\pi\)
\(450\) 0 0
\(451\) −617.764 356.666i −1.36977 0.790834i
\(452\) −82.0616 + 142.135i −0.181552 + 0.314458i
\(453\) 175.955 101.588i 0.388421 0.224255i
\(454\) 142.019i 0.312816i
\(455\) 0 0
\(456\) −29.7684 −0.0652815
\(457\) 39.5136 + 68.4395i 0.0864629 + 0.149758i 0.906014 0.423248i \(-0.139110\pi\)
−0.819551 + 0.573007i \(0.805777\pi\)
\(458\) −391.914 226.272i −0.855708 0.494043i
\(459\) −24.1393 + 41.8105i −0.0525910 + 0.0910904i
\(460\) 0 0
\(461\) 9.58316i 0.0207878i −0.999946 0.0103939i \(-0.996691\pi\)
0.999946 0.0103939i \(-0.00330854\pi\)
\(462\) −208.948 31.5328i −0.452269 0.0682529i
\(463\) 232.103 0.501303 0.250652 0.968077i \(-0.419355\pi\)
0.250652 + 0.968077i \(0.419355\pi\)
\(464\) −84.4244 146.227i −0.181949 0.315145i
\(465\) 0 0
\(466\) 219.761 380.637i 0.471590 0.816818i
\(467\) −593.692 + 342.768i −1.27129 + 0.733979i −0.975230 0.221191i \(-0.929006\pi\)
−0.296058 + 0.955170i \(0.595672\pi\)
\(468\) 43.5604i 0.0930778i
\(469\) 51.6752 342.419i 0.110182 0.730105i
\(470\) 0 0
\(471\) 159.121 + 275.606i 0.337837 + 0.585151i
\(472\) 141.723 + 81.8238i 0.300261 + 0.173356i
\(473\) −209.627 + 363.085i −0.443186 + 0.767621i
\(474\) 236.964 136.811i 0.499925 0.288632i
\(475\) 0 0
\(476\) 81.1202 101.684i 0.170421 0.213621i
\(477\) 43.6206 0.0914477
\(478\) −96.3526 166.888i −0.201575 0.349137i
\(479\) −544.818 314.551i −1.13741 0.656682i −0.191619 0.981469i \(-0.561374\pi\)
−0.945787 + 0.324787i \(0.894707\pi\)
\(480\) 0 0
\(481\) 220.432 127.266i 0.458278 0.264587i
\(482\) 546.140i 1.13307i
\(483\) 9.96307 + 25.3991i 0.0206275 + 0.0525861i
\(484\) 61.7673 0.127618
\(485\) 0 0
\(486\) −19.0919 11.0227i −0.0392837 0.0226805i
\(487\) −249.384 + 431.946i −0.512083 + 0.886953i 0.487819 + 0.872945i \(0.337793\pi\)
−0.999902 + 0.0140085i \(0.995541\pi\)
\(488\) −14.3587 + 8.29002i −0.0294236 + 0.0169877i
\(489\) 210.567i 0.430607i
\(490\) 0 0
\(491\) 166.583 0.339274 0.169637 0.985507i \(-0.445741\pi\)
0.169637 + 0.985507i \(0.445741\pi\)
\(492\) 100.253 + 173.643i 0.203766 + 0.352933i
\(493\) −339.658 196.101i −0.688961 0.397772i
\(494\) −31.1943 + 54.0301i −0.0631463 + 0.109373i
\(495\) 0 0
\(496\) 4.87410i 0.00982681i
\(497\) 664.603 260.698i 1.33723 0.524543i
\(498\) 224.431 0.450665
\(499\) −18.1531 31.4421i −0.0363790 0.0630102i 0.847263 0.531174i \(-0.178249\pi\)
−0.883642 + 0.468164i \(0.844916\pi\)
\(500\) 0 0
\(501\) −81.9727 + 141.981i −0.163618 + 0.283395i
\(502\) −121.705 + 70.2664i −0.242440 + 0.139973i
\(503\) 634.940i 1.26231i 0.775658 + 0.631153i \(0.217418\pi\)
−0.775658 + 0.631153i \(0.782582\pi\)
\(504\) 46.4317 + 37.0419i 0.0921263 + 0.0734958i
\(505\) 0 0
\(506\) −19.6100 33.9656i −0.0387550 0.0671256i
\(507\) −174.437 100.711i −0.344057 0.198642i
\(508\) −193.480 + 335.117i −0.380866 + 0.659680i
\(509\) 500.864 289.174i 0.984015 0.568121i 0.0805350 0.996752i \(-0.474337\pi\)
0.903480 + 0.428631i \(0.141004\pi\)
\(510\) 0 0
\(511\) −569.685 85.9723i −1.11484 0.168243i
\(512\) 22.6274 0.0441942
\(513\) −15.7871 27.3440i −0.0307740 0.0533021i
\(514\) 25.8639 + 14.9325i 0.0503189 + 0.0290516i
\(515\) 0 0
\(516\) 102.057 58.9227i 0.197785 0.114191i
\(517\) 703.579i 1.36089i
\(518\) 51.7904 343.183i 0.0999815 0.662516i
\(519\) −451.532 −0.870003
\(520\) 0 0
\(521\) −550.974 318.105i −1.05753 0.610566i −0.132783 0.991145i \(-0.542391\pi\)
−0.924748 + 0.380579i \(0.875725\pi\)
\(522\) 89.5456 155.098i 0.171543 0.297122i
\(523\) −392.868 + 226.823i −0.751182 + 0.433695i −0.826121 0.563493i \(-0.809457\pi\)
0.0749389 + 0.997188i \(0.476124\pi\)
\(524\) 362.229i 0.691276i
\(525\) 0 0
\(526\) 538.133 1.02307
\(527\) 5.66079 + 9.80477i 0.0107415 + 0.0186049i
\(528\) −73.9447 42.6920i −0.140047 0.0808560i
\(529\) 261.968 453.742i 0.495214 0.857735i
\(530\) 0 0
\(531\) 173.575i 0.326882i
\(532\) 31.0652 + 79.1953i 0.0583933 + 0.148863i
\(533\) 420.220 0.788406
\(534\) 156.516 + 271.093i 0.293101 + 0.507666i
\(535\) 0 0
\(536\) 69.9625 121.179i 0.130527 0.226079i
\(537\) 459.793 265.462i 0.856225 0.494342i
\(538\) 23.7461i 0.0441377i
\(539\) 134.162 + 588.790i 0.248909 + 1.09237i
\(540\) 0 0
\(541\) 288.159 + 499.106i 0.532641 + 0.922562i 0.999274 + 0.0381102i \(0.0121338\pi\)
−0.466632 + 0.884451i \(0.654533\pi\)
\(542\) −452.754 261.398i −0.835340 0.482284i
\(543\) −272.699 + 472.328i −0.502208 + 0.869849i
\(544\) 45.5175 26.2795i 0.0836718 0.0483080i
\(545\) 0 0
\(546\) 115.887 45.4581i 0.212248 0.0832566i
\(547\) −481.306 −0.879901 −0.439950 0.898022i \(-0.645004\pi\)
−0.439950 + 0.898022i \(0.645004\pi\)
\(548\) 1.26333 + 2.18815i 0.00230535 + 0.00399298i
\(549\) −15.2297 8.79289i −0.0277409 0.0160162i
\(550\) 0 0
\(551\) 222.136 128.250i 0.403150 0.232759i
\(552\) 11.0241i 0.0199712i
\(553\) −611.259 487.645i −1.10535 0.881817i
\(554\) −687.060 −1.24018
\(555\) 0 0
\(556\) −21.0145 12.1327i −0.0377958 0.0218214i
\(557\) 54.4056 94.2333i 0.0976762 0.169180i −0.813046 0.582199i \(-0.802192\pi\)
0.910722 + 0.413019i \(0.135526\pi\)
\(558\) −4.47714 + 2.58488i −0.00802356 + 0.00463240i
\(559\) 246.980i 0.441825i
\(560\) 0 0
\(561\) −198.330 −0.353530
\(562\) −254.724 441.195i −0.453245 0.785044i
\(563\) −521.516 301.097i −0.926316 0.534809i −0.0406717 0.999173i \(-0.512950\pi\)
−0.885645 + 0.464364i \(0.846283\pi\)
\(564\) −98.8822 + 171.269i −0.175323 + 0.303669i
\(565\) 0 0
\(566\) 382.547i 0.675878i
\(567\) −9.40101 + 62.2946i −0.0165803 + 0.109867i
\(568\) 288.461 0.507854
\(569\) 4.76685 + 8.25642i 0.00837759 + 0.0145104i 0.870184 0.492727i \(-0.164000\pi\)
−0.861806 + 0.507238i \(0.830667\pi\)
\(570\) 0 0
\(571\) −491.103 + 850.615i −0.860075 + 1.48969i 0.0117813 + 0.999931i \(0.496250\pi\)
−0.871856 + 0.489762i \(0.837084\pi\)
\(572\) −154.973 + 89.4739i −0.270932 + 0.156423i
\(573\) 157.251i 0.274435i
\(574\) 357.337 447.919i 0.622538 0.780347i
\(575\) 0 0
\(576\) 12.0000 + 20.7846i 0.0208333 + 0.0360844i
\(577\) 454.001 + 262.117i 0.786830 + 0.454276i 0.838845 0.544370i \(-0.183231\pi\)
−0.0520155 + 0.998646i \(0.516565\pi\)
\(578\) −143.312 + 248.223i −0.247944 + 0.429452i
\(579\) 344.483 198.887i 0.594961 0.343501i
\(580\) 0 0
\(581\) −234.209 597.073i −0.403113 1.02767i
\(582\) 150.510 0.258608
\(583\) 89.5974 + 155.187i 0.153683 + 0.266187i
\(584\) −201.605 116.397i −0.345215 0.199310i
\(585\) 0 0
\(586\) 11.7971 6.81106i 0.0201316 0.0116230i
\(587\) 651.322i 1.10958i −0.831991 0.554789i \(-0.812799\pi\)
0.831991 0.554789i \(-0.187201\pi\)
\(588\) 50.0911 162.182i 0.0851889 0.275819i
\(589\) −7.40429 −0.0125710
\(590\) 0 0
\(591\) 341.984 + 197.444i 0.578652 + 0.334085i
\(592\) 70.1185 121.449i 0.118443 0.205150i
\(593\) 610.904 352.706i 1.03019 0.594782i 0.113152 0.993578i \(-0.463905\pi\)
0.917040 + 0.398796i \(0.130572\pi\)
\(594\) 90.5633i 0.152464i
\(595\) 0 0
\(596\) 579.451 0.972233
\(597\) −9.56623 16.5692i −0.0160238 0.0277541i
\(598\) 20.0089 + 11.5522i 0.0334597 + 0.0193180i
\(599\) 296.910 514.263i 0.495676 0.858535i −0.504312 0.863522i \(-0.668254\pi\)
0.999988 + 0.00498610i \(0.00158713\pi\)
\(600\) 0 0
\(601\) 12.1644i 0.0202403i 0.999949 + 0.0101202i \(0.00322140\pi\)
−0.999949 + 0.0101202i \(0.996779\pi\)
\(602\) −263.260 210.021i −0.437309 0.348873i
\(603\) 148.413 0.246124
\(604\) −117.303 203.175i −0.194211 0.336383i
\(605\) 0 0
\(606\) −76.1047 + 131.817i −0.125585 + 0.217520i
\(607\) −698.521 + 403.291i −1.15078 + 0.664401i −0.949076 0.315047i \(-0.897980\pi\)
−0.201700 + 0.979447i \(0.564647\pi\)
\(608\) 34.3736i 0.0565354i
\(609\) −506.066 76.3714i −0.830978 0.125405i
\(610\) 0 0
\(611\) 207.237 + 358.946i 0.339178 + 0.587473i
\(612\) 48.2786 + 27.8737i 0.0788866 + 0.0455452i
\(613\) −397.237 + 688.035i −0.648021 + 1.12241i 0.335574 + 0.942014i \(0.391070\pi\)
−0.983595 + 0.180392i \(0.942263\pi\)
\(614\) 56.3887 32.5560i 0.0918383 0.0530229i
\(615\) 0 0
\(616\) −36.4110 + 241.273i −0.0591087 + 0.391677i
\(617\) −108.982 −0.176633 −0.0883164 0.996092i \(-0.528149\pi\)
−0.0883164 + 0.996092i \(0.528149\pi\)
\(618\) 217.933 + 377.472i 0.352643 + 0.610796i
\(619\) −310.725 179.397i −0.501979 0.289818i 0.227551 0.973766i \(-0.426928\pi\)
−0.729531 + 0.683948i \(0.760261\pi\)
\(620\) 0 0
\(621\) −10.1263 + 5.84641i −0.0163064 + 0.00941451i
\(622\) 617.533i 0.992819i
\(623\) 557.878 699.296i 0.895470 1.12246i
\(624\) 50.2992 0.0806077
\(625\) 0 0
\(626\) 350.916 + 202.602i 0.560569 + 0.323645i
\(627\) 64.8538 112.330i 0.103435 0.179155i
\(628\) 318.243 183.737i 0.506756 0.292576i
\(629\) 325.743i 0.517875i
\(630\) 0 0
\(631\) −612.351 −0.970446 −0.485223 0.874391i \(-0.661262\pi\)
−0.485223 + 0.874391i \(0.661262\pi\)
\(632\) −157.976 273.623i −0.249962 0.432948i
\(633\) −226.781 130.932i −0.358263 0.206843i
\(634\) −0.967913 + 1.67647i −0.00152668 + 0.00264428i
\(635\) 0 0
\(636\) 50.3687i 0.0791960i
\(637\) −241.872 260.866i −0.379705 0.409523i
\(638\) 735.713 1.15316
\(639\) 152.980 + 264.969i 0.239405 + 0.414661i
\(640\) 0 0
\(641\) −459.706 + 796.233i −0.717169 + 1.24217i 0.244947 + 0.969536i \(0.421229\pi\)
−0.962117 + 0.272637i \(0.912104\pi\)
\(642\) −180.251 + 104.068i −0.280765 + 0.162099i
\(643\) 835.879i 1.29997i −0.759948 0.649984i \(-0.774776\pi\)
0.759948 0.649984i \(-0.225224\pi\)
\(644\) 29.3283 11.5044i 0.0455409 0.0178639i
\(645\) 0 0
\(646\) 39.9215 + 69.1461i 0.0617980 + 0.107037i
\(647\) 492.933 + 284.595i 0.761876 + 0.439869i 0.829969 0.557810i \(-0.188358\pi\)
−0.0680932 + 0.997679i \(0.521692\pi\)
\(648\) −12.7279 + 22.0454i −0.0196419 + 0.0340207i
\(649\) −617.520 + 356.525i −0.951495 + 0.549346i
\(650\) 0 0
\(651\) 11.5490 + 9.21343i 0.0177403 + 0.0141527i
\(652\) −243.142 −0.372917
\(653\) 196.162 + 339.763i 0.300402 + 0.520311i 0.976227 0.216751i \(-0.0695460\pi\)
−0.675825 + 0.737062i \(0.736213\pi\)
\(654\) 366.688 + 211.707i 0.560684 + 0.323711i
\(655\) 0 0
\(656\) 200.506 115.762i 0.305649 0.176467i
\(657\) 246.915i 0.375822i
\(658\) 558.831 + 84.3343i 0.849288 + 0.128168i
\(659\) 505.063 0.766408 0.383204 0.923664i \(-0.374821\pi\)
0.383204 + 0.923664i \(0.374821\pi\)
\(660\) 0 0
\(661\) −255.815 147.695i −0.387013 0.223442i 0.293852 0.955851i \(-0.405063\pi\)
−0.680865 + 0.732409i \(0.738396\pi\)
\(662\) 271.553 470.343i 0.410201 0.710488i
\(663\) 101.182 58.4176i 0.152613 0.0881110i
\(664\) 259.151i 0.390288i
\(665\) 0 0
\(666\) 148.744 0.223339
\(667\) −47.4948 82.2633i −0.0712065 0.123333i
\(668\) 163.945 + 94.6539i 0.245427 + 0.141698i
\(669\) 267.243 462.878i 0.399466 0.691896i
\(670\) 0 0
\(671\) 72.2430i 0.107665i
\(672\) 42.7723 53.6147i 0.0636492 0.0797838i
\(673\) 624.569 0.928038 0.464019 0.885825i \(-0.346407\pi\)
0.464019 + 0.885825i \(0.346407\pi\)
\(674\) −100.373 173.850i −0.148921 0.257938i
\(675\) 0 0
\(676\) −116.291 + 201.423i −0.172029 + 0.297963i
\(677\) 676.847 390.778i 0.999774 0.577220i 0.0915926 0.995797i \(-0.470804\pi\)
0.908181 + 0.418577i \(0.137471\pi\)
\(678\) 201.009i 0.296474i
\(679\) −157.067 400.415i −0.231321 0.589712i
\(680\) 0 0
\(681\) 86.9683 + 150.634i 0.127707 + 0.221195i
\(682\) −18.3923 10.6188i −0.0269681 0.0155701i
\(683\) 50.8525 88.0791i 0.0744546 0.128959i −0.826394 0.563092i \(-0.809612\pi\)
0.900849 + 0.434133i \(0.142945\pi\)
\(684\) −31.5741 + 18.2293i −0.0461610 + 0.0266511i
\(685\) 0 0
\(686\) −483.739 + 35.9855i −0.705158 + 0.0524570i
\(687\) −554.250 −0.806769
\(688\) −68.0380 117.845i −0.0988925 0.171287i
\(689\) −91.4200 52.7814i −0.132685 0.0766057i
\(690\) 0 0
\(691\) 634.684 366.435i 0.918501 0.530297i 0.0353446 0.999375i \(-0.488747\pi\)
0.883157 + 0.469078i \(0.155414\pi\)
\(692\) 521.384i 0.753445i
\(693\) −240.933 + 94.5087i −0.347667 + 0.136376i
\(694\) 354.051 0.510160
\(695\) 0 0
\(696\) −179.091 103.398i −0.257315 0.148561i
\(697\) 268.893 465.736i 0.385786 0.668201i
\(698\) 239.055 138.019i 0.342486 0.197734i
\(699\) 538.303i 0.770104i
\(700\) 0 0
\(701\) −795.928 −1.13542 −0.567709 0.823229i \(-0.692170\pi\)
−0.567709 + 0.823229i \(0.692170\pi\)
\(702\) 26.6752 + 46.2028i 0.0379988 + 0.0658159i
\(703\) 184.494 + 106.518i 0.262438 + 0.151519i
\(704\) −49.2964 + 85.3839i −0.0700233 + 0.121284i
\(705\) 0 0
\(706\) 201.100i 0.284845i
\(707\) 430.104 + 64.9079i 0.608351 + 0.0918075i
\(708\) 200.427 0.283089
\(709\) −514.532 891.196i −0.725715 1.25698i −0.958679 0.284490i \(-0.908176\pi\)
0.232964 0.972485i \(-0.425158\pi\)
\(710\) 0 0
\(711\) 167.559 290.221i 0.235667 0.408187i
\(712\) 313.032 180.729i 0.439651 0.253833i
\(713\) 2.74203i 0.00384576i
\(714\) 23.7728 157.527i 0.0332952 0.220627i
\(715\) 0 0
\(716\) −306.529 530.923i −0.428113 0.741513i
\(717\) −204.395 118.007i −0.285069 0.164585i
\(718\) 464.489 804.518i 0.646920 1.12050i
\(719\) −136.549 + 78.8367i −0.189915 + 0.109648i −0.591943 0.805980i \(-0.701639\pi\)
0.402028 + 0.915628i \(0.368306\pi\)
\(720\) 0 0
\(721\) 776.792 973.702i 1.07738 1.35049i
\(722\) 458.314 0.634784
\(723\) −334.441 579.269i −0.462574 0.801202i
\(724\) 545.397 + 314.885i 0.753311 + 0.434925i
\(725\) 0 0
\(726\) 65.5141 37.8246i 0.0902398 0.0521000i
\(727\) 13.5224i 0.0186003i 0.999957 + 0.00930013i \(0.00296037\pi\)
−0.999957 + 0.00930013i \(0.997040\pi\)
\(728\) −52.4905 133.815i −0.0721023 0.183812i
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) −273.732 158.039i −0.374462 0.216196i
\(732\) −10.1532 + 17.5858i −0.0138704 + 0.0240243i
\(733\) −341.622 + 197.235i −0.466060 + 0.269080i −0.714589 0.699545i \(-0.753386\pi\)
0.248529 + 0.968624i \(0.420053\pi\)
\(734\) 725.707i 0.988701i
\(735\) 0 0
\(736\) 12.7295 0.0172956
\(737\) 304.843 + 528.003i 0.413626 + 0.716422i
\(738\) 212.669 + 122.784i 0.288169 + 0.166374i
\(739\) −475.080 + 822.863i −0.642869 + 1.11348i 0.341920 + 0.939729i \(0.388923\pi\)
−0.984789 + 0.173753i \(0.944411\pi\)
\(740\) 0 0
\(741\) 76.4101i 0.103118i
\(742\) −134.000 + 52.5630i −0.180593 + 0.0708396i
\(743\) −425.883 −0.573194 −0.286597 0.958051i \(-0.592524\pi\)
−0.286597 + 0.958051i \(0.592524\pi\)
\(744\) 2.98476 + 5.16976i 0.00401178 + 0.00694860i
\(745\) 0 0
\(746\) −447.262 + 774.680i −0.599547 + 1.03845i
\(747\) 238.045 137.436i 0.318669 0.183983i
\(748\) 229.012i 0.306166i
\(749\) 464.964 + 370.935i 0.620779 + 0.495240i
\(750\) 0 0
\(751\) 315.874 + 547.109i 0.420604 + 0.728508i 0.995999 0.0893683i \(-0.0284848\pi\)
−0.575395 + 0.817876i \(0.695151\pi\)
\(752\) 197.764 + 114.179i 0.262985 + 0.151834i
\(753\) −86.0584 + 149.058i −0.114287 + 0.197952i
\(754\) −375.340 + 216.702i −0.497798 + 0.287404i
\(755\) 0 0
\(756\) 71.9316 + 10.8553i 0.0951477 + 0.0143589i
\(757\) −882.903 −1.16632 −0.583159 0.812358i \(-0.698184\pi\)
−0.583159 + 0.812358i \(0.698184\pi\)
\(758\) 436.412 + 755.889i 0.575742 + 0.997214i
\(759\) −41.5991 24.0173i −0.0548078 0.0316433i
\(760\) 0 0
\(761\) −981.049 + 566.409i −1.28916 + 0.744295i −0.978504 0.206228i \(-0.933881\pi\)
−0.310653 + 0.950523i \(0.600548\pi\)
\(762\) 473.927i 0.621952i
\(763\) 180.560 1196.46i 0.236645 1.56810i
\(764\) −181.578 −0.237668
\(765\) 0 0
\(766\) 213.041 + 122.999i 0.278121 + 0.160573i
\(767\) 210.027 363.778i 0.273829 0.474287i
\(768\) 24.0000 13.8564i 0.0312500 0.0180422i
\(769\) 41.6421i 0.0541510i −0.999633 0.0270755i \(-0.991381\pi\)
0.999633 0.0270755i \(-0.00861944\pi\)
\(770\) 0 0
\(771\) 36.5771 0.0474411
\(772\) −229.655 397.774i −0.297481 0.515252i
\(773\) −1114.00 643.167i −1.44114 0.832041i −0.443211 0.896417i \(-0.646161\pi\)
−0.997926 + 0.0643767i \(0.979494\pi\)
\(774\) 72.1652 124.994i 0.0932367 0.161491i
\(775\) 0 0
\(776\) 173.794i 0.223962i
\(777\) −155.224 395.716i −0.199773 0.509287i
\(778\) 277.458 0.356629
\(779\) 175.855 + 304.591i 0.225745 + 0.391002i
\(780\) 0 0
\(781\) −628.446 + 1088.50i −0.804668 + 1.39373i
\(782\) 25.6068 14.7841i 0.0327453 0.0189055i
\(783\) 219.341i 0.280129i
\(784\) −187.271 57.8402i −0.238866 0.0737758i
\(785\) 0 0
\(786\) −221.819 384.202i −0.282212 0.488806i
\(787\) 863.836 + 498.736i 1.09763 + 0.633718i 0.935598 0.353067i \(-0.114861\pi\)
0.162034 + 0.986785i \(0.448195\pi\)
\(788\) 227.989 394.889i 0.289326 0.501128i
\(789\) 570.776 329.538i 0.723417 0.417665i
\(790\) 0 0
\(791\) 534.761 209.766i 0.676057 0.265191i
\(792\) −104.574 −0.132037
\(793\) 21.2790 + 36.8563i 0.0268335 + 0.0464770i
\(794\) −488.307 281.924i −0.614996 0.355068i
\(795\) 0 0
\(796\) −19.1325 + 11.0461i −0.0240358 + 0.0138771i
\(797\) 971.547i 1.21901i −0.792784 0.609503i \(-0.791369\pi\)
0.792784 0.609503i \(-0.208631\pi\)
\(798\) 81.4466 + 64.9758i 0.102063 + 0.0814233i
\(799\) 530.433 0.663871
\(800\) 0 0
\(801\) 332.020 + 191.692i 0.414507 + 0.239316i
\(802\) −245.507 + 425.230i −0.306118 + 0.530212i
\(803\) 878.441 507.168i 1.09395 0.631592i
\(804\) 171.372i 0.213150i
\(805\) 0 0
\(806\) 12.5109 0.0155223
\(807\) −14.5415 25.1865i −0.0180191 0.0312101i
\(808\) 152.209 + 87.8781i 0.188378 + 0.108760i
\(809\) 652.112 1129.49i 0.806072 1.39616i −0.109493 0.993988i \(-0.534923\pi\)
0.915565 0.402170i \(-0.131744\pi\)
\(810\) 0 0
\(811\) 210.763i 0.259880i −0.991522 0.129940i \(-0.958521\pi\)
0.991522 0.129940i \(-0.0414785\pi\)
\(812\) −88.1861 + 584.354i −0.108604 + 0.719648i
\(813\) −640.291 −0.787566
\(814\) 305.523 + 529.181i 0.375335 + 0.650099i
\(815\) 0 0
\(816\) 32.1857 55.7473i 0.0394433 0.0683178i
\(817\) 179.020 103.357i 0.219119 0.126508i
\(818\) 479.115i 0.585716i
\(819\) 95.0798 119.182i 0.116093 0.145521i
\(820\) 0 0
\(821\) 362.253 + 627.440i 0.441234 + 0.764239i 0.997781 0.0665766i \(-0.0212077\pi\)
−0.556548 + 0.830816i \(0.687874\pi\)
\(822\) 2.67993 + 1.54726i 0.00326026 + 0.00188231i
\(823\) −223.018 + 386.279i −0.270982 + 0.469355i −0.969114 0.246615i \(-0.920682\pi\)
0.698131 + 0.715970i \(0.254015\pi\)
\(824\) 435.867 251.648i 0.528964 0.305398i
\(825\) 0 0
\(826\) −209.158 533.212i −0.253218 0.645535i
\(827\) 702.737 0.849743 0.424871 0.905254i \(-0.360319\pi\)
0.424871 + 0.905254i \(0.360319\pi\)
\(828\) 6.75086 + 11.6928i 0.00815321 + 0.0141218i
\(829\) −361.023 208.437i −0.435492 0.251431i 0.266192 0.963920i \(-0.414235\pi\)
−0.701683 + 0.712489i \(0.747568\pi\)
\(830\) 0 0
\(831\) −728.737 + 420.736i −0.876940 + 0.506301i
\(832\) 58.0805i 0.0698083i
\(833\) −443.892 + 101.145i −0.532883 + 0.121423i
\(834\) −29.7189 −0.0356342
\(835\) 0 0
\(836\) −129.708 74.8867i −0.155153 0.0895774i
\(837\) −3.16582 + 5.48336i −0.00378234 + 0.00655121i
\(838\) 452.560 261.286i 0.540047 0.311797i
\(839\) 359.231i 0.428166i −0.976815 0.214083i \(-0.931324\pi\)
0.976815 0.214083i \(-0.0686763\pi\)
\(840\) 0 0
\(841\) 940.871 1.11875
\(842\) 153.846 + 266.469i 0.182715 + 0.316472i
\(843\) −540.351 311.972i −0.640986 0.370073i
\(844\) −151.187 + 261.864i −0.179132 + 0.310265i
\(845\) 0 0
\(846\) 242.211i 0.286301i
\(847\) −168.996 134.820i −0.199523 0.159174i
\(848\) −58.1607 −0.0685858
\(849\) 234.261 + 405.752i 0.275926 + 0.477918i
\(850\) 0 0
\(851\) 39.4467 68.3236i 0.0463533 0.0802863i
\(852\) 305.959 176.646i 0.359107 0.207331i
\(853\) 988.948i 1.15938i −0.814838 0.579688i \(-0.803174\pi\)
0.814838 0.579688i \(-0.196826\pi\)
\(854\) 57.3804 + 8.65939i 0.0671902 + 0.0101398i
\(855\) 0 0
\(856\) 120.167 + 208.136i 0.140382 + 0.243149i
\(857\) −312.893 180.649i −0.365103 0.210792i 0.306214 0.951963i \(-0.400938\pi\)
−0.671317 + 0.741170i \(0.734271\pi\)
\(858\) −109.583 + 189.803i −0.127719 + 0.221215i
\(859\) −608.464 + 351.297i −0.708339 + 0.408960i −0.810446 0.585814i \(-0.800775\pi\)
0.102106 + 0.994773i \(0.467442\pi\)
\(860\) 0 0
\(861\) 104.720 693.913i 0.121626 0.805939i
\(862\) −404.226 −0.468940
\(863\) 551.208 + 954.720i 0.638711 + 1.10628i 0.985716 + 0.168417i \(0.0538655\pi\)
−0.347005 + 0.937863i \(0.612801\pi\)
\(864\) 25.4558 + 14.6969i 0.0294628 + 0.0170103i
\(865\) 0 0
\(866\) 788.111 455.016i 0.910059 0.525423i
\(867\) 351.040i 0.404891i
\(868\) 10.6388 13.3356i 0.0122566 0.0153636i
\(869\) 1376.68 1.58421
\(870\) 0 0
\(871\) −311.044 179.581i −0.357111 0.206178i
\(872\) 244.458 423.414i 0.280342 0.485567i
\(873\) 159.640 92.1683i 0.182864 0.105576i
\(874\) 19.3376i 0.0221254i
\(875\) 0 0
\(876\) −285.113 −0.325472
\(877\) 334.061 + 578.610i 0.380913 + 0.659761i 0.991193 0.132425i \(-0.0422764\pi\)
−0.610280 + 0.792186i \(0.708943\pi\)
\(878\) −698.640 403.360i −0.795717 0.459408i
\(879\) 8.34182 14.4484i 0.00949012 0.0164374i
\(880\) 0 0
\(881\) 15.3854i 0.0174636i 0.999962 + 0.00873178i \(0.00277945\pi\)
−0.999962 + 0.00873178i \(0.997221\pi\)
\(882\) −46.1859 202.694i −0.0523650 0.229812i
\(883\) −51.0884 −0.0578577 −0.0289289 0.999581i \(-0.509210\pi\)
−0.0289289 + 0.999581i \(0.509210\pi\)
\(884\) −67.4549 116.835i −0.0763064 0.132167i
\(885\) 0 0
\(886\) −46.6796 + 80.8514i −0.0526857 + 0.0912543i
\(887\) −26.3653 + 15.2220i −0.0297241 + 0.0171612i −0.514788 0.857317i \(-0.672130\pi\)
0.485064 + 0.874478i \(0.338796\pi\)
\(888\) 171.755i 0.193417i
\(889\) 1260.83 494.574i 1.41825 0.556326i
\(890\) 0 0
\(891\) −55.4585 96.0569i −0.0622430 0.107808i
\(892\) −534.486 308.586i −0.599200 0.345948i
\(893\) −173.451 + 300.426i −0.194234 + 0.336423i
\(894\) 614.600 354.840i 0.687472 0.396912i
\(895\) 0 0
\(896\) −61.9089 49.3891i −0.0690948 0.0551218i
\(897\) 28.2969 0.0315462
\(898\) −364.211 630.832i −0.405580 0.702485i
\(899\) −44.5454 25.7183i −0.0495500 0.0286077i
\(900\) 0 0
\(901\) −116.997 + 67.5480i −0.129852 + 0.0749700i
\(902\) 1008.80i 1.11841i
\(903\) −407.841 61.5480i −0.451651 0.0681595i
\(904\) 232.105 0.256754
\(905\) 0 0
\(906\) −248.838 143.666i −0.274655 0.158572i
\(907\) −345.008 + 597.571i −0.380384 + 0.658844i −0.991117 0.132993i \(-0.957541\pi\)
0.610733 + 0.791836i \(0.290875\pi\)
\(908\) 173.937 100.422i 0.191560 0.110597i
\(909\) 186.418i 0.205080i
\(910\) 0 0
\(911\) −264.542 −0.290386 −0.145193 0.989403i \(-0.546380\pi\)
−0.145193 + 0.989403i \(0.546380\pi\)
\(912\) 21.0494 + 36.4587i 0.0230805 + 0.0399766i
\(913\) 977.899 + 564.590i 1.07108 + 0.618390i
\(914\) 55.8806 96.7881i 0.0611385 0.105895i
\(915\) 0 0
\(916\) 639.993i 0.698682i
\(917\) −790.641 + 991.063i −0.862204 + 1.08077i
\(918\) 68.2762 0.0743750
\(919\) −269.068 466.039i −0.292783 0.507115i 0.681684 0.731647i \(-0.261248\pi\)
−0.974467 + 0.224532i \(0.927915\pi\)
\(920\) 0 0
\(921\) 39.8729 69.0618i 0.0432930 0.0749857i
\(922\) −11.7369 + 6.77632i −0.0127299 + 0.00734959i
\(923\) 740.428i 0.802198i
\(924\) 109.129 + 278.206i 0.118105 + 0.301088i
\(925\) 0 0
\(926\) −164.122 284.267i −0.177237 0.306984i
\(927\) 462.306 + 266.913i 0.498712 + 0.287932i
\(928\) −119.394 + 206.797i −0.128658 + 0.222841i
\(929\) −770.069 + 444.600i −0.828922 + 0.478579i −0.853484 0.521120i \(-0.825515\pi\)
0.0245611 + 0.999698i \(0.492181\pi\)
\(930\) 0 0
\(931\) 87.8657 284.486i 0.0943778 0.305570i
\(932\) −621.578 −0.666929
\(933\) 378.160 + 654.993i 0.405317 + 0.702029i
\(934\) 839.607 + 484.747i 0.898937 + 0.519001i
\(935\) 0 0
\(936\) 53.3504 30.8019i 0.0569983 0.0329080i
\(937\) 997.355i 1.06441i 0.846615 + 0.532206i \(0.178637\pi\)
−0.846615 + 0.532206i \(0.821363\pi\)
\(938\) −455.916 + 178.838i −0.486051 + 0.190659i
\(939\) 496.270 0.528509
\(940\) 0 0
\(941\) −959.098 553.735i −1.01923 0.588454i −0.105351 0.994435i \(-0.533597\pi\)
−0.913882 + 0.405981i \(0.866930\pi\)
\(942\) 225.032 389.766i 0.238887 0.413764i
\(943\) 112.799 65.1245i 0.119617 0.0690609i
\(944\) 231.433i 0.245162i
\(945\) 0 0
\(946\) 592.915 0.626760
\(947\) 293.801 + 508.878i 0.310244 + 0.537358i 0.978415 0.206650i \(-0.0662560\pi\)
−0.668171 + 0.744008i \(0.732923\pi\)
\(948\) −335.118 193.481i −0.353500 0.204093i
\(949\) −298.770 + 517.485i −0.314826 + 0.545295i
\(950\) 0 0
\(951\) 2.37089i 0.00249305i
\(952\) −181.897 27.4504i −0.191068 0.0288345i
\(953\) −441.771 −0.463558 −0.231779 0.972768i \(-0.574455\pi\)
−0.231779 + 0.972768i \(0.574455\pi\)
\(954\) −30.8444 53.4241i −0.0323316 0.0560001i
\(955\) 0 0
\(956\) −136.263 + 236.015i −0.142535 + 0.246877i
\(957\) 780.342 450.531i 0.815404 0.470774i
\(958\) 889.684i 0.928688i
\(959\) 1.31962 8.74431i 0.00137604 0.00911815i
\(960\) 0 0
\(961\) −479.758 830.965i −0.499227 0.864687i
\(962\) −311.738 179.982i −0.324051 0.187091i
\(963\) −127.457 + 220.761i −0.132354 + 0.229243i
\(964\) −668.883 + 386.179i −0.693862 + 0.400601i
\(965\) 0 0
\(966\) 24.0624 30.1621i 0.0249094 0.0312237i
\(967\) −1581.63 −1.63561 −0.817804 0.575497i \(-0.804809\pi\)
−0.817804 + 0.575497i \(0.804809\pi\)
\(968\) −43.6761 75.6492i −0.0451199 0.0781500i
\(969\) 84.6863 + 48.8937i 0.0873956 + 0.0504579i
\(970\) 0 0
\(971\) 517.033 298.509i 0.532475 0.307425i −0.209549 0.977798i \(-0.567199\pi\)
0.742024 + 0.670374i \(0.233866\pi\)
\(972\) 31.1769i 0.0320750i
\(973\) 31.0136 + 79.0638i 0.0318742 + 0.0812577i
\(974\) 705.365 0.724194
\(975\) 0 0
\(976\) 20.3063 + 11.7239i 0.0208056 + 0.0120121i
\(977\) −105.721 + 183.114i −0.108210 + 0.187425i −0.915045 0.403351i \(-0.867845\pi\)
0.806835 + 0.590777i \(0.201179\pi\)
\(978\) −257.891 + 148.893i −0.263692 + 0.152243i
\(979\) 1574.96i 1.60874i
\(980\) 0 0
\(981\) 518.575 0.528618
\(982\) −117.792 204.022i −0.119951 0.207762i
\(983\) 513.418 + 296.422i 0.522297 + 0.301548i 0.737874 0.674939i \(-0.235830\pi\)
−0.215577 + 0.976487i \(0.569163\pi\)
\(984\) 141.779 245.569i 0.144084 0.249562i
\(985\) 0 0
\(986\) 554.659i 0.562534i
\(987\) 644.374 252.763i 0.652861 0.256092i
\(988\) 88.2308 0.0893024
\(989\) −38.2762 66.2964i −0.0387020 0.0670338i
\(990\) 0 0
\(991\) 189.970 329.038i 0.191696 0.332027i −0.754117 0.656740i \(-0.771935\pi\)
0.945812 + 0.324714i \(0.105268\pi\)
\(992\) 5.96953 3.44651i 0.00601767 0.00347430i
\(993\) 665.166i 0.669855i
\(994\) −789.233 629.628i −0.793997 0.633428i
\(995\) 0 0
\(996\) −158.697 274.871i −0.159334 0.275975i
\(997\) −178.950 103.317i −0.179489 0.103628i 0.407564 0.913177i \(-0.366378\pi\)
−0.587052 + 0.809549i \(0.699712\pi\)
\(998\) −25.6724 + 44.4658i −0.0257238 + 0.0445550i
\(999\) 157.767 91.0866i 0.157925 0.0911778i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.3.p.b.451.2 8
5.2 odd 4 1050.3.q.c.199.5 16
5.3 odd 4 1050.3.q.c.199.4 16
5.4 even 2 210.3.o.a.31.3 8
7.5 odd 6 inner 1050.3.p.b.901.2 8
15.14 odd 2 630.3.v.b.451.2 8
35.4 even 6 1470.3.f.a.391.1 8
35.12 even 12 1050.3.q.c.649.4 16
35.19 odd 6 210.3.o.a.61.3 yes 8
35.24 odd 6 1470.3.f.a.391.4 8
35.33 even 12 1050.3.q.c.649.5 16
105.89 even 6 630.3.v.b.271.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.3.o.a.31.3 8 5.4 even 2
210.3.o.a.61.3 yes 8 35.19 odd 6
630.3.v.b.271.2 8 105.89 even 6
630.3.v.b.451.2 8 15.14 odd 2
1050.3.p.b.451.2 8 1.1 even 1 trivial
1050.3.p.b.901.2 8 7.5 odd 6 inner
1050.3.q.c.199.4 16 5.3 odd 4
1050.3.q.c.199.5 16 5.2 odd 4
1050.3.q.c.649.4 16 35.12 even 12
1050.3.q.c.649.5 16 35.33 even 12
1470.3.f.a.391.1 8 35.4 even 6
1470.3.f.a.391.4 8 35.24 odd 6