| L(s) = 1 | + (−0.707 − 1.22i)2-s + (−1.5 − 0.866i)3-s + (−0.999 + 1.73i)4-s + 2.44i·6-s + (6.51 − 2.55i)7-s + 2.82·8-s + (1.5 + 2.59i)9-s + (−6.16 + 10.6i)11-s + (2.99 − 1.73i)12-s − 7.26i·13-s + (−7.73 − 6.17i)14-s + (−2.00 − 3.46i)16-s + (−8.04 − 4.64i)17-s + (2.12 − 3.67i)18-s + (5.26 − 3.03i)19-s + ⋯ |
| L(s) = 1 | + (−0.353 − 0.612i)2-s + (−0.5 − 0.288i)3-s + (−0.249 + 0.433i)4-s + 0.408i·6-s + (0.930 − 0.365i)7-s + 0.353·8-s + (0.166 + 0.288i)9-s + (−0.560 + 0.970i)11-s + (0.249 − 0.144i)12-s − 0.558i·13-s + (−0.552 − 0.440i)14-s + (−0.125 − 0.216i)16-s + (−0.473 − 0.273i)17-s + (0.117 − 0.204i)18-s + (0.276 − 0.159i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.479 + 0.877i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1050 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.479 + 0.877i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{3}{2})\) |
\(\approx\) |
\(1.320994997\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.320994997\) |
| \(L(2)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.707 + 1.22i)T \) |
| 3 | \( 1 + (1.5 + 0.866i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-6.51 + 2.55i)T \) |
| good | 11 | \( 1 + (6.16 - 10.6i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + 7.26iT - 169T^{2} \) |
| 17 | \( 1 + (8.04 + 4.64i)T + (144.5 + 250. i)T^{2} \) |
| 19 | \( 1 + (-5.26 + 3.03i)T + (180.5 - 312. i)T^{2} \) |
| 23 | \( 1 + (1.12 + 1.94i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 - 42.2T + 841T^{2} \) |
| 31 | \( 1 + (1.05 + 0.609i)T + (480.5 + 832. i)T^{2} \) |
| 37 | \( 1 + (-17.5 - 30.3i)T + (-684.5 + 1.18e3i)T^{2} \) |
| 41 | \( 1 - 57.8iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 34.0T + 1.84e3T^{2} \) |
| 47 | \( 1 + (49.4 - 28.5i)T + (1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 + (-7.27 + 12.5i)T + (-1.40e3 - 2.43e3i)T^{2} \) |
| 59 | \( 1 + (-50.1 - 28.9i)T + (1.74e3 + 3.01e3i)T^{2} \) |
| 61 | \( 1 + (5.07 - 2.93i)T + (1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-24.7 + 42.8i)T + (-2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 - 101.T + 5.04e3T^{2} \) |
| 73 | \( 1 + (71.2 + 41.1i)T + (2.66e3 + 4.61e3i)T^{2} \) |
| 79 | \( 1 + (55.8 + 96.7i)T + (-3.12e3 + 5.40e3i)T^{2} \) |
| 83 | \( 1 + 91.6iT - 6.88e3T^{2} \) |
| 89 | \( 1 + (-110. + 63.8i)T + (3.96e3 - 6.85e3i)T^{2} \) |
| 97 | \( 1 + 61.4iT - 9.40e3T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.916220282630928519491623525449, −8.708847546531546153800120564885, −7.88702448496473099519077765939, −7.31485288755439547829551292299, −6.24090170789060445495969592756, −4.89298030697383340273460208332, −4.55875677242676635233226260188, −2.97505628584380045263197209783, −1.88065139013966097520376689067, −0.74079026477134117188373256348,
0.819935190971333666227009029646, 2.29077891555635451388954538354, 3.87996580647420176401308117056, 4.91322701505258014249734302231, 5.59067285745412870601069260169, 6.40848368629717615992935671646, 7.38553501789975766535714654300, 8.342392646333544864801006357171, 8.802642597091222904578019309967, 9.825818399368273263580840354875