Properties

Label 1050.2.u.f.899.1
Level $1050$
Weight $2$
Character 1050.899
Analytic conductor $8.384$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,2,Mod(299,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.299"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1050.u (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-6,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.38429221223\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 11 x^{10} - 32 x^{9} + 64 x^{8} - 120 x^{7} + 237 x^{6} - 360 x^{5} + 576 x^{4} + \cdots + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 899.1
Root \(-1.21252 + 1.23685i\) of defining polynomial
Character \(\chi\) \(=\) 1050.899
Dual form 1050.2.u.f.299.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-1.21252 + 1.23685i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.67740 + 0.431645i) q^{6} +(2.62736 + 0.311378i) q^{7} +1.00000 q^{8} +(-0.0596020 - 2.99941i) q^{9} +(-4.44749 - 2.56776i) q^{11} +(-0.464886 - 1.66850i) q^{12} +5.00256 q^{13} +(-1.04402 - 2.43105i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(-3.25579 - 1.87973i) q^{17} +(-2.56776 + 1.55132i) q^{18} +(-2.33193 + 1.34634i) q^{19} +(-3.57085 + 2.87211i) q^{21} +5.13552i q^{22} +(1.24302 + 2.15298i) q^{23} +(-1.21252 + 1.23685i) q^{24} +(-2.50128 - 4.33235i) q^{26} +(3.78209 + 3.56312i) q^{27} +(-1.58334 + 2.11968i) q^{28} -6.18694i q^{29} +(-4.13446 - 2.38703i) q^{31} +(-0.500000 + 0.866025i) q^{32} +(8.56861 - 2.38743i) q^{33} +3.75947i q^{34} +(2.62736 + 1.44809i) q^{36} +(-0.0453927 + 0.0262075i) q^{37} +(2.33193 + 1.34634i) q^{38} +(-6.06570 + 6.18743i) q^{39} +6.55478 q^{41} +(4.27275 + 1.65640i) q^{42} -9.45088i q^{43} +(4.44749 - 2.56776i) q^{44} +(1.24302 - 2.15298i) q^{46} +(2.65776 - 1.53446i) q^{47} +(1.67740 + 0.431645i) q^{48} +(6.80609 + 1.63621i) q^{49} +(6.27266 - 1.74772i) q^{51} +(-2.50128 + 4.33235i) q^{52} +(0.556019 - 0.963053i) q^{53} +(1.19470 - 5.05694i) q^{54} +(2.62736 + 0.311378i) q^{56} +(1.16228 - 4.51670i) q^{57} +(-5.35804 + 3.09347i) q^{58} +(6.63079 - 11.4849i) q^{59} +(3.59330 - 2.07459i) q^{61} +4.77406i q^{62} +(0.777354 - 7.89910i) q^{63} +1.00000 q^{64} +(-6.35188 - 6.22691i) q^{66} +(-0.776110 - 0.448087i) q^{67} +(3.25579 - 1.87973i) q^{68} +(-4.17010 - 1.07309i) q^{69} +13.4240i q^{71} +(-0.0596020 - 2.99941i) q^{72} +(3.49014 - 6.04511i) q^{73} +(0.0453927 + 0.0262075i) q^{74} -2.69268i q^{76} +(-10.8856 - 8.13130i) q^{77} +(8.39132 + 2.15933i) q^{78} +(-8.37381 - 14.5039i) q^{79} +(-8.99290 + 0.357541i) q^{81} +(-3.27739 - 5.67661i) q^{82} -1.37724i q^{83} +(-0.701891 - 4.52850i) q^{84} +(-8.18470 + 4.72544i) q^{86} +(7.65232 + 7.50177i) q^{87} +(-4.44749 - 2.56776i) q^{88} +(-2.67056 - 4.62555i) q^{89} +(13.1436 + 1.55769i) q^{91} -2.48605 q^{92} +(7.96551 - 2.21939i) q^{93} +(-2.65776 - 1.53446i) q^{94} +(-0.464886 - 1.66850i) q^{96} +0.633608 q^{97} +(-1.98605 - 6.71235i) q^{98} +(-7.43669 + 13.4929i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{2} + 4 q^{3} - 6 q^{4} - 2 q^{6} + 6 q^{7} + 12 q^{8} - 6 q^{9} - 12 q^{11} - 2 q^{12} + 8 q^{13} - 12 q^{14} - 6 q^{16} + 12 q^{17} - 18 q^{21} + 2 q^{23} + 4 q^{24} - 4 q^{26} + 28 q^{27}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −1.21252 + 1.23685i −0.700047 + 0.714096i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0 0
\(6\) 1.67740 + 0.431645i 0.684797 + 0.176219i
\(7\) 2.62736 + 0.311378i 0.993050 + 0.117690i
\(8\) 1.00000 0.353553
\(9\) −0.0596020 2.99941i −0.0198673 0.999803i
\(10\) 0 0
\(11\) −4.44749 2.56776i −1.34097 0.774210i −0.354020 0.935238i \(-0.615186\pi\)
−0.986950 + 0.161028i \(0.948519\pi\)
\(12\) −0.464886 1.66850i −0.134201 0.481654i
\(13\) 5.00256 1.38746 0.693731 0.720234i \(-0.255966\pi\)
0.693731 + 0.720234i \(0.255966\pi\)
\(14\) −1.04402 2.43105i −0.279026 0.649726i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.25579 1.87973i −0.789646 0.455902i 0.0501922 0.998740i \(-0.484017\pi\)
−0.839838 + 0.542837i \(0.817350\pi\)
\(18\) −2.56776 + 1.55132i −0.605227 + 0.365650i
\(19\) −2.33193 + 1.34634i −0.534981 + 0.308871i −0.743042 0.669245i \(-0.766618\pi\)
0.208062 + 0.978116i \(0.433285\pi\)
\(20\) 0 0
\(21\) −3.57085 + 2.87211i −0.779224 + 0.626745i
\(22\) 5.13552i 1.09490i
\(23\) 1.24302 + 2.15298i 0.259188 + 0.448927i 0.966025 0.258450i \(-0.0832116\pi\)
−0.706836 + 0.707377i \(0.749878\pi\)
\(24\) −1.21252 + 1.23685i −0.247504 + 0.252471i
\(25\) 0 0
\(26\) −2.50128 4.33235i −0.490542 0.849643i
\(27\) 3.78209 + 3.56312i 0.727864 + 0.685722i
\(28\) −1.58334 + 2.11968i −0.299224 + 0.400581i
\(29\) 6.18694i 1.14889i −0.818545 0.574443i \(-0.805219\pi\)
0.818545 0.574443i \(-0.194781\pi\)
\(30\) 0 0
\(31\) −4.13446 2.38703i −0.742571 0.428724i 0.0804322 0.996760i \(-0.474370\pi\)
−0.823003 + 0.568036i \(0.807703\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 8.56861 2.38743i 1.49160 0.415599i
\(34\) 3.75947i 0.644743i
\(35\) 0 0
\(36\) 2.62736 + 1.44809i 0.437894 + 0.241348i
\(37\) −0.0453927 + 0.0262075i −0.00746252 + 0.00430849i −0.503727 0.863863i \(-0.668038\pi\)
0.496264 + 0.868172i \(0.334705\pi\)
\(38\) 2.33193 + 1.34634i 0.378288 + 0.218405i
\(39\) −6.06570 + 6.18743i −0.971289 + 0.990781i
\(40\) 0 0
\(41\) 6.55478 1.02369 0.511843 0.859079i \(-0.328963\pi\)
0.511843 + 0.859079i \(0.328963\pi\)
\(42\) 4.27275 + 1.65640i 0.659299 + 0.255588i
\(43\) 9.45088i 1.44125i −0.693327 0.720623i \(-0.743856\pi\)
0.693327 0.720623i \(-0.256144\pi\)
\(44\) 4.44749 2.56776i 0.670485 0.387105i
\(45\) 0 0
\(46\) 1.24302 2.15298i 0.183274 0.317440i
\(47\) 2.65776 1.53446i 0.387674 0.223824i −0.293478 0.955966i \(-0.594813\pi\)
0.681152 + 0.732142i \(0.261479\pi\)
\(48\) 1.67740 + 0.431645i 0.242112 + 0.0623027i
\(49\) 6.80609 + 1.63621i 0.972298 + 0.233744i
\(50\) 0 0
\(51\) 6.27266 1.74772i 0.878347 0.244730i
\(52\) −2.50128 + 4.33235i −0.346865 + 0.600788i
\(53\) 0.556019 0.963053i 0.0763751 0.132286i −0.825308 0.564682i \(-0.808999\pi\)
0.901683 + 0.432397i \(0.142332\pi\)
\(54\) 1.19470 5.05694i 0.162579 0.688163i
\(55\) 0 0
\(56\) 2.62736 + 0.311378i 0.351096 + 0.0416096i
\(57\) 1.16228 4.51670i 0.153948 0.598252i
\(58\) −5.35804 + 3.09347i −0.703546 + 0.406192i
\(59\) 6.63079 11.4849i 0.863255 1.49520i −0.00551419 0.999985i \(-0.501755\pi\)
0.868769 0.495217i \(-0.164911\pi\)
\(60\) 0 0
\(61\) 3.59330 2.07459i 0.460075 0.265624i −0.252001 0.967727i \(-0.581089\pi\)
0.712076 + 0.702103i \(0.247755\pi\)
\(62\) 4.77406i 0.606307i
\(63\) 0.777354 7.89910i 0.0979373 0.995193i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −6.35188 6.22691i −0.781862 0.766480i
\(67\) −0.776110 0.448087i −0.0948169 0.0547426i 0.451842 0.892098i \(-0.350767\pi\)
−0.546659 + 0.837356i \(0.684100\pi\)
\(68\) 3.25579 1.87973i 0.394823 0.227951i
\(69\) −4.17010 1.07309i −0.502021 0.129185i
\(70\) 0 0
\(71\) 13.4240i 1.59313i 0.604551 + 0.796567i \(0.293353\pi\)
−0.604551 + 0.796567i \(0.706647\pi\)
\(72\) −0.0596020 2.99941i −0.00702416 0.353484i
\(73\) 3.49014 6.04511i 0.408490 0.707526i −0.586230 0.810144i \(-0.699389\pi\)
0.994721 + 0.102618i \(0.0327220\pi\)
\(74\) 0.0453927 + 0.0262075i 0.00527680 + 0.00304656i
\(75\) 0 0
\(76\) 2.69268i 0.308871i
\(77\) −10.8856 8.13130i −1.24053 0.926648i
\(78\) 8.39132 + 2.15933i 0.950130 + 0.244496i
\(79\) −8.37381 14.5039i −0.942127 1.63181i −0.761403 0.648279i \(-0.775489\pi\)
−0.180724 0.983534i \(-0.557844\pi\)
\(80\) 0 0
\(81\) −8.99290 + 0.357541i −0.999211 + 0.0397268i
\(82\) −3.27739 5.67661i −0.361927 0.626877i
\(83\) 1.37724i 0.151172i −0.997139 0.0755861i \(-0.975917\pi\)
0.997139 0.0755861i \(-0.0240828\pi\)
\(84\) −0.701891 4.52850i −0.0765826 0.494100i
\(85\) 0 0
\(86\) −8.18470 + 4.72544i −0.882579 + 0.509557i
\(87\) 7.65232 + 7.50177i 0.820415 + 0.804274i
\(88\) −4.44749 2.56776i −0.474105 0.273724i
\(89\) −2.67056 4.62555i −0.283079 0.490307i 0.689062 0.724702i \(-0.258023\pi\)
−0.972142 + 0.234395i \(0.924689\pi\)
\(90\) 0 0
\(91\) 13.1436 + 1.55769i 1.37782 + 0.163290i
\(92\) −2.48605 −0.259188
\(93\) 7.96551 2.21939i 0.825985 0.230141i
\(94\) −2.65776 1.53446i −0.274127 0.158267i
\(95\) 0 0
\(96\) −0.464886 1.66850i −0.0474472 0.170290i
\(97\) 0.633608 0.0643331 0.0321666 0.999483i \(-0.489759\pi\)
0.0321666 + 0.999483i \(0.489759\pi\)
\(98\) −1.98605 6.71235i −0.200621 0.678050i
\(99\) −7.43669 + 13.4929i −0.747415 + 1.35609i
\(100\) 0 0
\(101\) 8.81430 15.2668i 0.877056 1.51910i 0.0224989 0.999747i \(-0.492838\pi\)
0.854557 0.519358i \(-0.173829\pi\)
\(102\) −4.64990 4.55842i −0.460409 0.451351i
\(103\) 7.35823 + 12.7448i 0.725028 + 1.25579i 0.958962 + 0.283533i \(0.0915066\pi\)
−0.233934 + 0.972252i \(0.575160\pi\)
\(104\) 5.00256 0.490542
\(105\) 0 0
\(106\) −1.11204 −0.108011
\(107\) −2.35501 4.07900i −0.227667 0.394331i 0.729449 0.684035i \(-0.239777\pi\)
−0.957116 + 0.289704i \(0.906443\pi\)
\(108\) −4.97679 + 1.49383i −0.478892 + 0.143744i
\(109\) 4.31181 7.46828i 0.412997 0.715331i −0.582219 0.813032i \(-0.697815\pi\)
0.995216 + 0.0977007i \(0.0311488\pi\)
\(110\) 0 0
\(111\) 0.0226247 0.0879211i 0.00214744 0.00834510i
\(112\) −1.04402 2.43105i −0.0986507 0.229713i
\(113\) 15.3809 1.44691 0.723455 0.690372i \(-0.242553\pi\)
0.723455 + 0.690372i \(0.242553\pi\)
\(114\) −4.49272 + 1.25179i −0.420782 + 0.117241i
\(115\) 0 0
\(116\) 5.35804 + 3.09347i 0.497482 + 0.287221i
\(117\) −0.298163 15.0047i −0.0275652 1.38719i
\(118\) −13.2616 −1.22083
\(119\) −7.96885 5.95252i −0.730503 0.545667i
\(120\) 0 0
\(121\) 7.68681 + 13.3139i 0.698801 + 1.21036i
\(122\) −3.59330 2.07459i −0.325322 0.187825i
\(123\) −7.94779 + 8.10729i −0.716628 + 0.731010i
\(124\) 4.13446 2.38703i 0.371286 0.214362i
\(125\) 0 0
\(126\) −7.22949 + 3.27634i −0.644055 + 0.291880i
\(127\) 1.78518i 0.158409i 0.996858 + 0.0792047i \(0.0252381\pi\)
−0.996858 + 0.0792047i \(0.974762\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 11.6893 + 11.4594i 1.02919 + 1.00894i
\(130\) 0 0
\(131\) −1.55132 2.68697i −0.135540 0.234761i 0.790264 0.612767i \(-0.209943\pi\)
−0.925803 + 0.378005i \(0.876610\pi\)
\(132\) −2.21673 + 8.61435i −0.192941 + 0.749783i
\(133\) −6.54604 + 2.81121i −0.567614 + 0.243763i
\(134\) 0.896174i 0.0774177i
\(135\) 0 0
\(136\) −3.25579 1.87973i −0.279182 0.161186i
\(137\) −4.87855 + 8.44989i −0.416803 + 0.721923i −0.995616 0.0935370i \(-0.970183\pi\)
0.578813 + 0.815460i \(0.303516\pi\)
\(138\) 1.15573 + 4.14796i 0.0983821 + 0.353098i
\(139\) 4.26248i 0.361539i 0.983526 + 0.180769i \(0.0578588\pi\)
−0.983526 + 0.180769i \(0.942141\pi\)
\(140\) 0 0
\(141\) −1.32468 + 5.14781i −0.111558 + 0.433524i
\(142\) 11.6255 6.71199i 0.975591 0.563258i
\(143\) −22.2489 12.8454i −1.86054 1.07419i
\(144\) −2.56776 + 1.55132i −0.213980 + 0.129277i
\(145\) 0 0
\(146\) −6.98029 −0.577693
\(147\) −10.2762 + 6.43419i −0.847570 + 0.530683i
\(148\) 0.0524150i 0.00430849i
\(149\) −7.77014 + 4.48609i −0.636554 + 0.367515i −0.783286 0.621662i \(-0.786458\pi\)
0.146732 + 0.989176i \(0.453125\pi\)
\(150\) 0 0
\(151\) −6.61328 + 11.4545i −0.538181 + 0.932157i 0.460821 + 0.887493i \(0.347555\pi\)
−0.999002 + 0.0446642i \(0.985778\pi\)
\(152\) −2.33193 + 1.34634i −0.189144 + 0.109202i
\(153\) −5.44403 + 9.87748i −0.440124 + 0.798547i
\(154\) −1.59909 + 13.4929i −0.128858 + 1.08729i
\(155\) 0 0
\(156\) −2.32562 8.34676i −0.186199 0.668276i
\(157\) 4.28200 7.41664i 0.341741 0.591912i −0.643015 0.765853i \(-0.722317\pi\)
0.984756 + 0.173941i \(0.0556502\pi\)
\(158\) −8.37381 + 14.5039i −0.666185 + 1.15387i
\(159\) 0.516971 + 1.85543i 0.0409985 + 0.147145i
\(160\) 0 0
\(161\) 2.59549 + 6.04371i 0.204553 + 0.476311i
\(162\) 4.80609 + 7.60931i 0.377602 + 0.597843i
\(163\) 9.59085 5.53728i 0.751213 0.433713i −0.0749190 0.997190i \(-0.523870\pi\)
0.826132 + 0.563477i \(0.190536\pi\)
\(164\) −3.27739 + 5.67661i −0.255921 + 0.443269i
\(165\) 0 0
\(166\) −1.19273 + 0.688622i −0.0925737 + 0.0534474i
\(167\) 2.95799i 0.228896i −0.993429 0.114448i \(-0.963490\pi\)
0.993429 0.114448i \(-0.0365099\pi\)
\(168\) −3.57085 + 2.87211i −0.275497 + 0.221588i
\(169\) 12.0256 0.925049
\(170\) 0 0
\(171\) 4.17720 + 6.91415i 0.319439 + 0.528738i
\(172\) 8.18470 + 4.72544i 0.624078 + 0.360311i
\(173\) −17.9628 + 10.3708i −1.36568 + 0.788478i −0.990374 0.138421i \(-0.955797\pi\)
−0.375311 + 0.926899i \(0.622464\pi\)
\(174\) 2.67056 10.3780i 0.202455 0.786753i
\(175\) 0 0
\(176\) 5.13552i 0.387105i
\(177\) 6.16512 + 22.1269i 0.463399 + 1.66316i
\(178\) −2.67056 + 4.62555i −0.200167 + 0.346700i
\(179\) 21.2335 + 12.2592i 1.58707 + 0.916294i 0.993787 + 0.111298i \(0.0355009\pi\)
0.593281 + 0.804996i \(0.297832\pi\)
\(180\) 0 0
\(181\) 18.6533i 1.38649i −0.720704 0.693243i \(-0.756181\pi\)
0.720704 0.693243i \(-0.243819\pi\)
\(182\) −5.22278 12.1615i −0.387138 0.901470i
\(183\) −1.79098 + 6.95985i −0.132393 + 0.514487i
\(184\) 1.24302 + 2.15298i 0.0916369 + 0.158720i
\(185\) 0 0
\(186\) −5.90481 5.78864i −0.432962 0.424444i
\(187\) 9.65341 + 16.7202i 0.705927 + 1.22270i
\(188\) 3.06892i 0.223824i
\(189\) 8.82745 + 10.5393i 0.642103 + 0.766619i
\(190\) 0 0
\(191\) −6.29976 + 3.63717i −0.455835 + 0.263176i −0.710291 0.703908i \(-0.751437\pi\)
0.254457 + 0.967084i \(0.418103\pi\)
\(192\) −1.21252 + 1.23685i −0.0875059 + 0.0892620i
\(193\) 9.58185 + 5.53208i 0.689716 + 0.398208i 0.803506 0.595297i \(-0.202966\pi\)
−0.113789 + 0.993505i \(0.536299\pi\)
\(194\) −0.316804 0.548721i −0.0227452 0.0393958i
\(195\) 0 0
\(196\) −4.82004 + 5.07614i −0.344289 + 0.362582i
\(197\) −8.86701 −0.631748 −0.315874 0.948801i \(-0.602298\pi\)
−0.315874 + 0.948801i \(0.602298\pi\)
\(198\) 15.4035 0.306087i 1.09468 0.0217527i
\(199\) −16.0911 9.29018i −1.14066 0.658563i −0.194070 0.980988i \(-0.562169\pi\)
−0.946595 + 0.322425i \(0.895502\pi\)
\(200\) 0 0
\(201\) 1.49526 0.416619i 0.105468 0.0293860i
\(202\) −17.6286 −1.24034
\(203\) 1.92648 16.2553i 0.135212 1.14090i
\(204\) −1.62276 + 6.30614i −0.113616 + 0.441518i
\(205\) 0 0
\(206\) 7.35823 12.7448i 0.512672 0.887974i
\(207\) 6.38358 3.85666i 0.443689 0.268056i
\(208\) −2.50128 4.33235i −0.173433 0.300394i
\(209\) 13.8283 0.956524
\(210\) 0 0
\(211\) −7.36879 −0.507288 −0.253644 0.967298i \(-0.581629\pi\)
−0.253644 + 0.967298i \(0.581629\pi\)
\(212\) 0.556019 + 0.963053i 0.0381876 + 0.0661428i
\(213\) −16.6035 16.2768i −1.13765 1.11527i
\(214\) −2.35501 + 4.07900i −0.160985 + 0.278834i
\(215\) 0 0
\(216\) 3.78209 + 3.56312i 0.257339 + 0.242439i
\(217\) −10.1195 7.55898i −0.686954 0.513137i
\(218\) −8.62362 −0.584065
\(219\) 3.24504 + 11.6466i 0.219279 + 0.787003i
\(220\) 0 0
\(221\) −16.2873 9.40348i −1.09560 0.632547i
\(222\) −0.0874543 + 0.0243670i −0.00586955 + 0.00163541i
\(223\) 5.79472 0.388043 0.194021 0.980997i \(-0.437847\pi\)
0.194021 + 0.980997i \(0.437847\pi\)
\(224\) −1.58334 + 2.11968i −0.105792 + 0.141627i
\(225\) 0 0
\(226\) −7.69043 13.3202i −0.511560 0.886047i
\(227\) −9.24746 5.33902i −0.613775 0.354363i 0.160666 0.987009i \(-0.448636\pi\)
−0.774442 + 0.632645i \(0.781969\pi\)
\(228\) 3.33044 + 3.26492i 0.220564 + 0.216224i
\(229\) 7.46827 4.31181i 0.493517 0.284932i −0.232515 0.972593i \(-0.574696\pi\)
0.726032 + 0.687661i \(0.241362\pi\)
\(230\) 0 0
\(231\) 23.2562 3.60458i 1.53015 0.237164i
\(232\) 6.18694i 0.406192i
\(233\) −8.03272 13.9131i −0.526241 0.911476i −0.999533 0.0305704i \(-0.990268\pi\)
0.473292 0.880906i \(-0.343066\pi\)
\(234\) −12.8454 + 7.76058i −0.839730 + 0.507325i
\(235\) 0 0
\(236\) 6.63079 + 11.4849i 0.431628 + 0.747601i
\(237\) 28.0925 + 7.22904i 1.82481 + 0.469576i
\(238\) −1.17061 + 9.87748i −0.0758797 + 0.640262i
\(239\) 11.0070i 0.711981i 0.934490 + 0.355990i \(0.115856\pi\)
−0.934490 + 0.355990i \(0.884144\pi\)
\(240\) 0 0
\(241\) 8.40789 + 4.85430i 0.541600 + 0.312693i 0.745727 0.666252i \(-0.232102\pi\)
−0.204127 + 0.978944i \(0.565436\pi\)
\(242\) 7.68681 13.3139i 0.494127 0.855853i
\(243\) 10.4618 11.5564i 0.671126 0.741343i
\(244\) 4.14918i 0.265624i
\(245\) 0 0
\(246\) 10.9950 + 2.82934i 0.701017 + 0.180392i
\(247\) −11.6656 + 6.73514i −0.742265 + 0.428547i
\(248\) −4.13446 2.38703i −0.262539 0.151577i
\(249\) 1.70345 + 1.66993i 0.107951 + 0.105828i
\(250\) 0 0
\(251\) −4.59082 −0.289770 −0.144885 0.989449i \(-0.546281\pi\)
−0.144885 + 0.989449i \(0.546281\pi\)
\(252\) 6.45214 + 4.62276i 0.406447 + 0.291206i
\(253\) 12.7672i 0.802664i
\(254\) 1.54601 0.892591i 0.0970055 0.0560062i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 10.1694 5.87132i 0.634352 0.366243i −0.148084 0.988975i \(-0.547311\pi\)
0.782435 + 0.622732i \(0.213977\pi\)
\(258\) 4.07943 15.8529i 0.253974 0.986961i
\(259\) −0.127424 + 0.0547224i −0.00791772 + 0.00340028i
\(260\) 0 0
\(261\) −18.5571 + 0.368754i −1.14866 + 0.0228253i
\(262\) −1.55132 + 2.68697i −0.0958409 + 0.166001i
\(263\) −11.4564 + 19.8431i −0.706432 + 1.22358i 0.259740 + 0.965679i \(0.416363\pi\)
−0.966172 + 0.257898i \(0.916970\pi\)
\(264\) 8.56861 2.38743i 0.527361 0.146936i
\(265\) 0 0
\(266\) 5.70760 + 4.26343i 0.349955 + 0.261408i
\(267\) 8.95922 + 2.30547i 0.548295 + 0.141093i
\(268\) 0.776110 0.448087i 0.0474084 0.0273713i
\(269\) −4.06200 + 7.03559i −0.247665 + 0.428968i −0.962877 0.269939i \(-0.912996\pi\)
0.715213 + 0.698907i \(0.246330\pi\)
\(270\) 0 0
\(271\) −9.47446 + 5.47008i −0.575533 + 0.332284i −0.759356 0.650675i \(-0.774486\pi\)
0.183823 + 0.982959i \(0.441153\pi\)
\(272\) 3.75947i 0.227951i
\(273\) −17.8634 + 14.3679i −1.08114 + 0.869585i
\(274\) 9.75710 0.589448
\(275\) 0 0
\(276\) 3.01438 3.07487i 0.181444 0.185085i
\(277\) 4.14209 + 2.39144i 0.248874 + 0.143688i 0.619249 0.785195i \(-0.287437\pi\)
−0.370374 + 0.928883i \(0.620771\pi\)
\(278\) 3.69142 2.13124i 0.221396 0.127823i
\(279\) −6.91326 + 12.5432i −0.413886 + 0.750942i
\(280\) 0 0
\(281\) 21.1040i 1.25896i 0.777018 + 0.629479i \(0.216732\pi\)
−0.777018 + 0.629479i \(0.783268\pi\)
\(282\) 5.12048 1.42670i 0.304920 0.0849585i
\(283\) −11.0026 + 19.0570i −0.654035 + 1.13282i 0.328100 + 0.944643i \(0.393592\pi\)
−0.982135 + 0.188178i \(0.939742\pi\)
\(284\) −11.6255 6.71199i −0.689847 0.398283i
\(285\) 0 0
\(286\) 25.6908i 1.51913i
\(287\) 17.2218 + 2.04102i 1.01657 + 0.120477i
\(288\) 2.62736 + 1.44809i 0.154819 + 0.0853294i
\(289\) −1.43321 2.48239i −0.0843065 0.146023i
\(290\) 0 0
\(291\) −0.768261 + 0.783679i −0.0450362 + 0.0459401i
\(292\) 3.49014 + 6.04511i 0.204245 + 0.353763i
\(293\) 11.2905i 0.659598i 0.944051 + 0.329799i \(0.106981\pi\)
−0.944051 + 0.329799i \(0.893019\pi\)
\(294\) 10.7103 + 5.68240i 0.624637 + 0.331404i
\(295\) 0 0
\(296\) −0.0453927 + 0.0262075i −0.00263840 + 0.00152328i
\(297\) −7.67159 25.5584i −0.445151 1.48305i
\(298\) 7.77014 + 4.48609i 0.450112 + 0.259872i
\(299\) 6.21830 + 10.7704i 0.359614 + 0.622869i
\(300\) 0 0
\(301\) 2.94280 24.8309i 0.169620 1.43123i
\(302\) 13.2266 0.761103
\(303\) 8.19529 + 29.4133i 0.470807 + 1.68975i
\(304\) 2.33193 + 1.34634i 0.133745 + 0.0772178i
\(305\) 0 0
\(306\) 11.2762 0.224072i 0.644616 0.0128093i
\(307\) 2.12162 0.121087 0.0605436 0.998166i \(-0.480717\pi\)
0.0605436 + 0.998166i \(0.480717\pi\)
\(308\) 12.4847 5.36160i 0.711384 0.305505i
\(309\) −24.6854 6.35229i −1.40431 0.361369i
\(310\) 0 0
\(311\) 5.50229 9.53025i 0.312006 0.540411i −0.666790 0.745245i \(-0.732332\pi\)
0.978797 + 0.204835i \(0.0656656\pi\)
\(312\) −6.06570 + 6.18743i −0.343402 + 0.350294i
\(313\) −3.71718 6.43835i −0.210108 0.363917i 0.741640 0.670798i \(-0.234048\pi\)
−0.951748 + 0.306881i \(0.900715\pi\)
\(314\) −8.56400 −0.483294
\(315\) 0 0
\(316\) 16.7476 0.942127
\(317\) 2.23730 + 3.87512i 0.125659 + 0.217648i 0.921990 0.387213i \(-0.126562\pi\)
−0.796331 + 0.604861i \(0.793229\pi\)
\(318\) 1.34837 1.37543i 0.0756126 0.0771301i
\(319\) −15.8866 + 27.5164i −0.889478 + 1.54062i
\(320\) 0 0
\(321\) 7.90060 + 2.03306i 0.440969 + 0.113474i
\(322\) 3.93627 5.26961i 0.219360 0.293664i
\(323\) 10.1230 0.563260
\(324\) 4.18681 7.96685i 0.232600 0.442603i
\(325\) 0 0
\(326\) −9.59085 5.53728i −0.531188 0.306681i
\(327\) 4.00900 + 14.3885i 0.221698 + 0.795685i
\(328\) 6.55478 0.361927
\(329\) 7.46070 3.20401i 0.411322 0.176643i
\(330\) 0 0
\(331\) −8.48598 14.6981i −0.466432 0.807883i 0.532833 0.846220i \(-0.321127\pi\)
−0.999265 + 0.0383371i \(0.987794\pi\)
\(332\) 1.19273 + 0.688622i 0.0654595 + 0.0377930i
\(333\) 0.0813125 + 0.134589i 0.00445590 + 0.00737545i
\(334\) −2.56169 + 1.47899i −0.140169 + 0.0809269i
\(335\) 0 0
\(336\) 4.27275 + 1.65640i 0.233097 + 0.0903638i
\(337\) 30.7045i 1.67258i −0.548287 0.836290i \(-0.684720\pi\)
0.548287 0.836290i \(-0.315280\pi\)
\(338\) −6.01282 10.4145i −0.327054 0.566475i
\(339\) −18.6496 + 19.0238i −1.01291 + 1.03323i
\(340\) 0 0
\(341\) 12.2587 + 21.2326i 0.663844 + 1.14981i
\(342\) 3.89923 7.07464i 0.210846 0.382553i
\(343\) 17.3726 + 6.41818i 0.938032 + 0.346549i
\(344\) 9.45088i 0.509557i
\(345\) 0 0
\(346\) 17.9628 + 10.3708i 0.965685 + 0.557538i
\(347\) −16.6003 + 28.7525i −0.891149 + 1.54352i −0.0526494 + 0.998613i \(0.516767\pi\)
−0.838500 + 0.544902i \(0.816567\pi\)
\(348\) −10.3229 + 2.87622i −0.553365 + 0.154181i
\(349\) 21.5465i 1.15336i −0.816972 0.576678i \(-0.804349\pi\)
0.816972 0.576678i \(-0.195651\pi\)
\(350\) 0 0
\(351\) 18.9201 + 17.8247i 1.00988 + 0.951413i
\(352\) 4.44749 2.56776i 0.237052 0.136862i
\(353\) −4.77779 2.75846i −0.254296 0.146818i 0.367434 0.930050i \(-0.380237\pi\)
−0.621730 + 0.783232i \(0.713570\pi\)
\(354\) 16.0799 16.4026i 0.854637 0.871788i
\(355\) 0 0
\(356\) 5.34113 0.283079
\(357\) 17.0248 2.63874i 0.901045 0.139657i
\(358\) 24.5184i 1.29584i
\(359\) −16.7632 + 9.67826i −0.884730 + 0.510799i −0.872215 0.489122i \(-0.837317\pi\)
−0.0125151 + 0.999922i \(0.503984\pi\)
\(360\) 0 0
\(361\) −5.87475 + 10.1754i −0.309197 + 0.535545i
\(362\) −16.1542 + 9.32664i −0.849046 + 0.490197i
\(363\) −25.7878 6.63595i −1.35351 0.348297i
\(364\) −7.92078 + 10.6038i −0.415161 + 0.555791i
\(365\) 0 0
\(366\) 6.92290 1.92890i 0.361866 0.100825i
\(367\) −7.01628 + 12.1526i −0.366247 + 0.634358i −0.988975 0.148080i \(-0.952691\pi\)
0.622728 + 0.782438i \(0.286024\pi\)
\(368\) 1.24302 2.15298i 0.0647971 0.112232i
\(369\) −0.390678 19.6605i −0.0203379 1.02348i
\(370\) 0 0
\(371\) 1.76074 2.35716i 0.0914130 0.122378i
\(372\) −2.06070 + 8.00803i −0.106842 + 0.415197i
\(373\) −1.15907 + 0.669190i −0.0600144 + 0.0346493i −0.529707 0.848181i \(-0.677698\pi\)
0.469693 + 0.882830i \(0.344365\pi\)
\(374\) 9.65341 16.7202i 0.499166 0.864581i
\(375\) 0 0
\(376\) 2.65776 1.53446i 0.137063 0.0791336i
\(377\) 30.9505i 1.59403i
\(378\) 4.71354 12.9144i 0.242439 0.664247i
\(379\) −8.07964 −0.415023 −0.207512 0.978233i \(-0.566536\pi\)
−0.207512 + 0.978233i \(0.566536\pi\)
\(380\) 0 0
\(381\) −2.20801 2.16457i −0.113120 0.110894i
\(382\) 6.29976 + 3.63717i 0.322324 + 0.186094i
\(383\) 20.1734 11.6471i 1.03081 0.595141i 0.113596 0.993527i \(-0.463763\pi\)
0.917218 + 0.398386i \(0.130430\pi\)
\(384\) 1.67740 + 0.431645i 0.0855996 + 0.0220273i
\(385\) 0 0
\(386\) 11.0642i 0.563151i
\(387\) −28.3470 + 0.563291i −1.44096 + 0.0286337i
\(388\) −0.316804 + 0.548721i −0.0160833 + 0.0278571i
\(389\) −10.1748 5.87442i −0.515882 0.297845i 0.219366 0.975643i \(-0.429601\pi\)
−0.735248 + 0.677798i \(0.762934\pi\)
\(390\) 0 0
\(391\) 9.34621i 0.472658i
\(392\) 6.80609 + 1.63621i 0.343759 + 0.0826409i
\(393\) 5.20438 + 1.33924i 0.262526 + 0.0675558i
\(394\) 4.43350 + 7.67905i 0.223357 + 0.386865i
\(395\) 0 0
\(396\) −7.96685 13.1868i −0.400349 0.662662i
\(397\) −8.61072 14.9142i −0.432160 0.748522i 0.564899 0.825160i \(-0.308915\pi\)
−0.997059 + 0.0766373i \(0.975582\pi\)
\(398\) 18.5804i 0.931349i
\(399\) 4.46014 11.5051i 0.223286 0.575976i
\(400\) 0 0
\(401\) −7.31712 + 4.22454i −0.365400 + 0.210964i −0.671447 0.741053i \(-0.734327\pi\)
0.306047 + 0.952016i \(0.400993\pi\)
\(402\) −1.10843 1.08663i −0.0552837 0.0541960i
\(403\) −20.6829 11.9413i −1.03029 0.594838i
\(404\) 8.81430 + 15.2668i 0.438528 + 0.759552i
\(405\) 0 0
\(406\) −15.0408 + 6.45929i −0.746461 + 0.320569i
\(407\) 0.269179 0.0133427
\(408\) 6.27266 1.74772i 0.310543 0.0865251i
\(409\) 25.2043 + 14.5517i 1.24627 + 0.719535i 0.970364 0.241649i \(-0.0776882\pi\)
0.275908 + 0.961184i \(0.411021\pi\)
\(410\) 0 0
\(411\) −4.53594 16.2797i −0.223741 0.803018i
\(412\) −14.7165 −0.725028
\(413\) 20.9976 28.1102i 1.03323 1.38321i
\(414\) −6.53175 3.60001i −0.321018 0.176931i
\(415\) 0 0
\(416\) −2.50128 + 4.33235i −0.122635 + 0.212411i
\(417\) −5.27205 5.16833i −0.258174 0.253094i
\(418\) −6.91415 11.9757i −0.338182 0.585749i
\(419\) −2.07947 −0.101589 −0.0507944 0.998709i \(-0.516175\pi\)
−0.0507944 + 0.998709i \(0.516175\pi\)
\(420\) 0 0
\(421\) −32.8371 −1.60038 −0.800190 0.599746i \(-0.795268\pi\)
−0.800190 + 0.599746i \(0.795268\pi\)
\(422\) 3.68439 + 6.38156i 0.179354 + 0.310649i
\(423\) −4.76087 7.88025i −0.231482 0.383151i
\(424\) 0.556019 0.963053i 0.0270027 0.0467700i
\(425\) 0 0
\(426\) −5.79440 + 22.5174i −0.280740 + 1.09097i
\(427\) 10.0869 4.33183i 0.488138 0.209632i
\(428\) 4.71002 0.227667
\(429\) 42.8650 11.9433i 2.06954 0.576627i
\(430\) 0 0
\(431\) 7.57956 + 4.37606i 0.365094 + 0.210787i 0.671313 0.741174i \(-0.265731\pi\)
−0.306219 + 0.951961i \(0.599064\pi\)
\(432\) 1.19470 5.05694i 0.0574802 0.243302i
\(433\) 12.3440 0.593214 0.296607 0.955000i \(-0.404145\pi\)
0.296607 + 0.955000i \(0.404145\pi\)
\(434\) −1.48654 + 12.5432i −0.0713561 + 0.602093i
\(435\) 0 0
\(436\) 4.31181 + 7.46828i 0.206498 + 0.357666i
\(437\) −5.79728 3.34706i −0.277321 0.160112i
\(438\) 8.46372 8.63358i 0.404412 0.412528i
\(439\) 9.72433 5.61435i 0.464117 0.267958i −0.249657 0.968334i \(-0.580318\pi\)
0.713774 + 0.700376i \(0.246984\pi\)
\(440\) 0 0
\(441\) 4.50200 20.5118i 0.214381 0.976750i
\(442\) 18.8070i 0.894556i
\(443\) 16.7161 + 28.9532i 0.794208 + 1.37561i 0.923341 + 0.383981i \(0.125447\pi\)
−0.129133 + 0.991627i \(0.541220\pi\)
\(444\) 0.0648296 + 0.0635541i 0.00307667 + 0.00301614i
\(445\) 0 0
\(446\) −2.89736 5.01837i −0.137194 0.237627i
\(447\) 3.87280 15.0500i 0.183177 0.711839i
\(448\) 2.62736 + 0.311378i 0.124131 + 0.0147112i
\(449\) 27.8343i 1.31358i −0.754073 0.656791i \(-0.771914\pi\)
0.754073 0.656791i \(-0.228086\pi\)
\(450\) 0 0
\(451\) −29.1524 16.8311i −1.37273 0.792547i
\(452\) −7.69043 + 13.3202i −0.361727 + 0.626530i
\(453\) −6.14884 22.0685i −0.288898 1.03687i
\(454\) 10.6780i 0.501146i
\(455\) 0 0
\(456\) 1.16228 4.51670i 0.0544288 0.211514i
\(457\) −24.5277 + 14.1611i −1.14736 + 0.662427i −0.948242 0.317550i \(-0.897140\pi\)
−0.199115 + 0.979976i \(0.563807\pi\)
\(458\) −7.46827 4.31181i −0.348969 0.201477i
\(459\) −5.61599 18.7101i −0.262132 0.873312i
\(460\) 0 0
\(461\) −35.5758 −1.65693 −0.828466 0.560040i \(-0.810786\pi\)
−0.828466 + 0.560040i \(0.810786\pi\)
\(462\) −14.7498 18.3382i −0.686222 0.853171i
\(463\) 18.8371i 0.875434i 0.899113 + 0.437717i \(0.144213\pi\)
−0.899113 + 0.437717i \(0.855787\pi\)
\(464\) −5.35804 + 3.09347i −0.248741 + 0.143611i
\(465\) 0 0
\(466\) −8.03272 + 13.9131i −0.372109 + 0.644511i
\(467\) 10.8853 6.28462i 0.503711 0.290818i −0.226534 0.974003i \(-0.572739\pi\)
0.730245 + 0.683186i \(0.239406\pi\)
\(468\) 13.1436 + 7.24415i 0.607561 + 0.334861i
\(469\) −1.89960 1.41895i −0.0877153 0.0655211i
\(470\) 0 0
\(471\) 3.98128 + 14.2890i 0.183448 + 0.658403i
\(472\) 6.63079 11.4849i 0.305207 0.528634i
\(473\) −24.2676 + 42.0327i −1.11583 + 1.93267i
\(474\) −7.78573 27.9434i −0.357611 1.28348i
\(475\) 0 0
\(476\) 9.13946 3.92496i 0.418906 0.179900i
\(477\) −2.92173 1.61033i −0.133777 0.0737319i
\(478\) 9.53230 5.50348i 0.435997 0.251723i
\(479\) 10.7038 18.5395i 0.489069 0.847093i −0.510852 0.859669i \(-0.670670\pi\)
0.999921 + 0.0125762i \(0.00400322\pi\)
\(480\) 0 0
\(481\) −0.227080 + 0.131105i −0.0103540 + 0.00597786i
\(482\) 9.70859i 0.442214i
\(483\) −10.6222 4.11788i −0.483329 0.187370i
\(484\) −15.3736 −0.698801
\(485\) 0 0
\(486\) −15.2390 3.28200i −0.691257 0.148875i
\(487\) 2.17886 + 1.25796i 0.0987335 + 0.0570038i 0.548554 0.836115i \(-0.315179\pi\)
−0.449820 + 0.893119i \(0.648512\pi\)
\(488\) 3.59330 2.07459i 0.162661 0.0939123i
\(489\) −4.78028 + 18.5765i −0.216172 + 0.840058i
\(490\) 0 0
\(491\) 34.7105i 1.56646i −0.621729 0.783232i \(-0.713570\pi\)
0.621729 0.783232i \(-0.286430\pi\)
\(492\) −3.04723 10.9366i −0.137380 0.493062i
\(493\) −11.6298 + 20.1434i −0.523779 + 0.907212i
\(494\) 11.6656 + 6.73514i 0.524861 + 0.303028i
\(495\) 0 0
\(496\) 4.77406i 0.214362i
\(497\) −4.17993 + 35.2697i −0.187496 + 1.58206i
\(498\) 0.594481 2.31019i 0.0266393 0.103522i
\(499\) −3.07500 5.32606i −0.137656 0.238427i 0.788953 0.614454i \(-0.210624\pi\)
−0.926609 + 0.376026i \(0.877290\pi\)
\(500\) 0 0
\(501\) 3.65859 + 3.58661i 0.163454 + 0.160238i
\(502\) 2.29541 + 3.97576i 0.102449 + 0.177447i
\(503\) 5.99378i 0.267249i 0.991032 + 0.133625i \(0.0426617\pi\)
−0.991032 + 0.133625i \(0.957338\pi\)
\(504\) 0.777354 7.89910i 0.0346261 0.351854i
\(505\) 0 0
\(506\) −11.0567 + 6.38358i −0.491529 + 0.283785i
\(507\) −14.5813 + 14.8739i −0.647578 + 0.660574i
\(508\) −1.54601 0.892591i −0.0685933 0.0396023i
\(509\) 7.71953 + 13.3706i 0.342162 + 0.592642i 0.984834 0.173499i \(-0.0555075\pi\)
−0.642672 + 0.766142i \(0.722174\pi\)
\(510\) 0 0
\(511\) 11.0522 14.7959i 0.488920 0.654534i
\(512\) 1.00000 0.0441942
\(513\) −13.6167 3.21695i −0.601193 0.142032i
\(514\) −10.1694 5.87132i −0.448554 0.258973i
\(515\) 0 0
\(516\) −15.7688 + 4.39358i −0.694181 + 0.193417i
\(517\) −15.7605 −0.693146
\(518\) 0.111103 + 0.0829910i 0.00488158 + 0.00364641i
\(519\) 8.95303 34.7921i 0.392994 1.52720i
\(520\) 0 0
\(521\) 21.0358 36.4350i 0.921594 1.59625i 0.124646 0.992201i \(-0.460221\pi\)
0.796949 0.604047i \(-0.206446\pi\)
\(522\) 9.59792 + 15.8866i 0.420090 + 0.695337i
\(523\) 8.91333 + 15.4383i 0.389753 + 0.675071i 0.992416 0.122924i \(-0.0392272\pi\)
−0.602663 + 0.797996i \(0.705894\pi\)
\(524\) 3.10264 0.135540
\(525\) 0 0
\(526\) 22.9128 0.999046
\(527\) 8.97396 + 15.5434i 0.390912 + 0.677080i
\(528\) −6.35188 6.22691i −0.276430 0.270992i
\(529\) 8.40979 14.5662i 0.365643 0.633312i
\(530\) 0 0
\(531\) −34.8430 19.2039i −1.51206 0.833379i
\(532\) 0.838440 7.07464i 0.0363510 0.306725i
\(533\) 32.7907 1.42032
\(534\) −2.48301 8.91165i −0.107450 0.385645i
\(535\) 0 0
\(536\) −0.776110 0.448087i −0.0335228 0.0193544i
\(537\) −40.9088 + 11.3982i −1.76534 + 0.491870i
\(538\) 8.12400 0.350251
\(539\) −26.0686 24.7534i −1.12286 1.06621i
\(540\) 0 0
\(541\) 17.7195 + 30.6912i 0.761823 + 1.31952i 0.941910 + 0.335865i \(0.109029\pi\)
−0.180087 + 0.983651i \(0.557638\pi\)
\(542\) 9.47446 + 5.47008i 0.406963 + 0.234960i
\(543\) 23.0713 + 22.6174i 0.990085 + 0.970606i
\(544\) 3.25579 1.87973i 0.139591 0.0805929i
\(545\) 0 0
\(546\) 21.3747 + 8.28623i 0.914752 + 0.354618i
\(547\) 33.9313i 1.45080i −0.688329 0.725399i \(-0.741655\pi\)
0.688329 0.725399i \(-0.258345\pi\)
\(548\) −4.87855 8.44989i −0.208401 0.360962i
\(549\) −6.43671 10.6541i −0.274712 0.454706i
\(550\) 0 0
\(551\) 8.32971 + 14.4275i 0.354857 + 0.614631i
\(552\) −4.17010 1.07309i −0.177491 0.0456738i
\(553\) −17.4849 40.7144i −0.743532 1.73135i
\(554\) 4.78288i 0.203205i
\(555\) 0 0
\(556\) −3.69142 2.13124i −0.156551 0.0903847i
\(557\) 3.39140 5.87408i 0.143698 0.248893i −0.785188 0.619257i \(-0.787434\pi\)
0.928887 + 0.370364i \(0.120767\pi\)
\(558\) 14.3194 0.284544i 0.606187 0.0120457i
\(559\) 47.2786i 1.99967i
\(560\) 0 0
\(561\) −32.3853 8.33370i −1.36731 0.351849i
\(562\) 18.2766 10.5520i 0.770951 0.445109i
\(563\) 16.8803 + 9.74586i 0.711421 + 0.410739i 0.811587 0.584232i \(-0.198604\pi\)
−0.100166 + 0.994971i \(0.531937\pi\)
\(564\) −3.79579 3.72111i −0.159832 0.156687i
\(565\) 0 0
\(566\) 22.0051 0.924944
\(567\) −23.7389 1.86080i −0.996942 0.0781462i
\(568\) 13.4240i 0.563258i
\(569\) −24.4915 + 14.1402i −1.02674 + 0.592788i −0.916049 0.401067i \(-0.868639\pi\)
−0.110690 + 0.993855i \(0.535306\pi\)
\(570\) 0 0
\(571\) 9.87150 17.0979i 0.413110 0.715527i −0.582118 0.813104i \(-0.697776\pi\)
0.995228 + 0.0975773i \(0.0311093\pi\)
\(572\) 22.2489 12.8454i 0.930272 0.537093i
\(573\) 3.13993 12.2020i 0.131173 0.509746i
\(574\) −6.84333 15.9350i −0.285635 0.665115i
\(575\) 0 0
\(576\) −0.0596020 2.99941i −0.00248342 0.124975i
\(577\) −10.0431 + 17.3952i −0.418101 + 0.724172i −0.995748 0.0921142i \(-0.970638\pi\)
0.577647 + 0.816286i \(0.303971\pi\)
\(578\) −1.43321 + 2.48239i −0.0596137 + 0.103254i
\(579\) −18.4605 + 5.14357i −0.767193 + 0.213760i
\(580\) 0 0
\(581\) 0.428843 3.61852i 0.0177914 0.150122i
\(582\) 1.06282 + 0.273494i 0.0440551 + 0.0113367i
\(583\) −4.94579 + 2.85545i −0.204833 + 0.118261i
\(584\) 3.49014 6.04511i 0.144423 0.250148i
\(585\) 0 0
\(586\) 9.77786 5.64525i 0.403920 0.233203i
\(587\) 31.1052i 1.28385i 0.766767 + 0.641925i \(0.221864\pi\)
−0.766767 + 0.641925i \(0.778136\pi\)
\(588\) −0.434047 12.1166i −0.0178998 0.499679i
\(589\) 12.8550 0.529681
\(590\) 0 0
\(591\) 10.7514 10.9672i 0.442254 0.451129i
\(592\) 0.0453927 + 0.0262075i 0.00186563 + 0.00107712i
\(593\) −7.73070 + 4.46332i −0.317462 + 0.183287i −0.650261 0.759711i \(-0.725340\pi\)
0.332799 + 0.942998i \(0.392007\pi\)
\(594\) −18.2985 + 19.4230i −0.750795 + 0.796936i
\(595\) 0 0
\(596\) 8.97218i 0.367515i
\(597\) 31.0013 8.63774i 1.26880 0.353519i
\(598\) 6.21830 10.7704i 0.254285 0.440435i
\(599\) 4.30419 + 2.48502i 0.175864 + 0.101535i 0.585348 0.810782i \(-0.300958\pi\)
−0.409484 + 0.912317i \(0.634291\pi\)
\(600\) 0 0
\(601\) 25.0660i 1.02246i 0.859442 + 0.511232i \(0.170811\pi\)
−0.859442 + 0.511232i \(0.829189\pi\)
\(602\) −22.9756 + 9.86692i −0.936415 + 0.402146i
\(603\) −1.29774 + 2.35458i −0.0528480 + 0.0958858i
\(604\) −6.61328 11.4545i −0.269091 0.466079i
\(605\) 0 0
\(606\) 21.3750 21.8040i 0.868300 0.885725i
\(607\) 11.5970 + 20.0866i 0.470709 + 0.815291i 0.999439 0.0334986i \(-0.0106649\pi\)
−0.528730 + 0.848790i \(0.677332\pi\)
\(608\) 2.69268i 0.109202i
\(609\) 17.7695 + 22.0926i 0.720058 + 0.895239i
\(610\) 0 0
\(611\) 13.2956 7.67622i 0.537883 0.310547i
\(612\) −5.83214 9.65341i −0.235750 0.390216i
\(613\) −3.72873 2.15278i −0.150602 0.0869500i 0.422805 0.906221i \(-0.361045\pi\)
−0.573407 + 0.819270i \(0.694379\pi\)
\(614\) −1.06081 1.83737i −0.0428108 0.0741504i
\(615\) 0 0
\(616\) −10.8856 8.13130i −0.438595 0.327619i
\(617\) 36.2107 1.45779 0.728895 0.684626i \(-0.240034\pi\)
0.728895 + 0.684626i \(0.240034\pi\)
\(618\) 6.84147 + 24.5544i 0.275204 + 0.987722i
\(619\) −17.5269 10.1191i −0.704464 0.406723i 0.104544 0.994520i \(-0.466662\pi\)
−0.809008 + 0.587798i \(0.799995\pi\)
\(620\) 0 0
\(621\) −2.97009 + 12.5718i −0.119186 + 0.504489i
\(622\) −11.0046 −0.441244
\(623\) −5.57625 12.9846i −0.223408 0.520215i
\(624\) 8.39132 + 2.15933i 0.335922 + 0.0864425i
\(625\) 0 0
\(626\) −3.71718 + 6.43835i −0.148569 + 0.257328i
\(627\) −16.7671 + 17.1036i −0.669612 + 0.683050i
\(628\) 4.28200 + 7.41664i 0.170870 + 0.295956i
\(629\) 0.197052 0.00785699
\(630\) 0 0
\(631\) −16.1847 −0.644304 −0.322152 0.946688i \(-0.604406\pi\)
−0.322152 + 0.946688i \(0.604406\pi\)
\(632\) −8.37381 14.5039i −0.333092 0.576933i
\(633\) 8.93479 9.11410i 0.355126 0.362253i
\(634\) 2.23730 3.87512i 0.0888545 0.153901i
\(635\) 0 0
\(636\) −1.86534 0.480006i −0.0739654 0.0190335i
\(637\) 34.0479 + 8.18523i 1.34903 + 0.324311i
\(638\) 31.7732 1.25791
\(639\) 40.2640 0.800096i 1.59282 0.0316513i
\(640\) 0 0
\(641\) −5.57645 3.21957i −0.220257 0.127165i 0.385812 0.922577i \(-0.373921\pi\)
−0.606069 + 0.795412i \(0.707255\pi\)
\(642\) −2.18962 7.85865i −0.0864174 0.310156i
\(643\) −35.5764 −1.40299 −0.701497 0.712672i \(-0.747485\pi\)
−0.701497 + 0.712672i \(0.747485\pi\)
\(644\) −6.53175 0.774100i −0.257387 0.0305038i
\(645\) 0 0
\(646\) −5.06151 8.76679i −0.199142 0.344925i
\(647\) 11.8748 + 6.85590i 0.466845 + 0.269533i 0.714918 0.699208i \(-0.246464\pi\)
−0.248073 + 0.968741i \(0.579797\pi\)
\(648\) −8.99290 + 0.357541i −0.353274 + 0.0140455i
\(649\) −58.9808 + 34.0526i −2.31520 + 1.33668i
\(650\) 0 0
\(651\) 21.6194 3.35087i 0.847330 0.131331i
\(652\) 11.0746i 0.433713i
\(653\) −0.930370 1.61145i −0.0364082 0.0630608i 0.847247 0.531199i \(-0.178258\pi\)
−0.883655 + 0.468138i \(0.844925\pi\)
\(654\) 10.4563 10.6661i 0.408873 0.417079i
\(655\) 0 0
\(656\) −3.27739 5.67661i −0.127961 0.221634i
\(657\) −18.3398 10.1081i −0.715502 0.394353i
\(658\) −6.50511 4.85915i −0.253595 0.189429i
\(659\) 13.8786i 0.540633i −0.962771 0.270317i \(-0.912872\pi\)
0.962771 0.270317i \(-0.0871284\pi\)
\(660\) 0 0
\(661\) 19.0521 + 10.9997i 0.741041 + 0.427840i 0.822448 0.568841i \(-0.192608\pi\)
−0.0814067 + 0.996681i \(0.525941\pi\)
\(662\) −8.48598 + 14.6981i −0.329817 + 0.571260i
\(663\) 31.3794 8.74309i 1.21867 0.339553i
\(664\) 1.37724i 0.0534474i
\(665\) 0 0
\(666\) 0.0759015 0.137713i 0.00294112 0.00533628i
\(667\) 13.3203 7.69051i 0.515766 0.297778i
\(668\) 2.56169 + 1.47899i 0.0991148 + 0.0572240i
\(669\) −7.02620 + 7.16720i −0.271648 + 0.277100i
\(670\) 0 0
\(671\) −21.3082 −0.822595
\(672\) −0.701891 4.52850i −0.0270760 0.174691i
\(673\) 13.4735i 0.519366i 0.965694 + 0.259683i \(0.0836181\pi\)
−0.965694 + 0.259683i \(0.916382\pi\)
\(674\) −26.5909 + 15.3523i −1.02424 + 0.591347i
\(675\) 0 0
\(676\) −6.01282 + 10.4145i −0.231262 + 0.400558i
\(677\) −1.10725 + 0.639271i −0.0425551 + 0.0245692i −0.521127 0.853479i \(-0.674488\pi\)
0.478572 + 0.878049i \(0.341155\pi\)
\(678\) 25.7999 + 6.63908i 0.990839 + 0.254972i
\(679\) 1.66472 + 0.197292i 0.0638860 + 0.00757136i
\(680\) 0 0
\(681\) 17.8163 4.96407i 0.682721 0.190224i
\(682\) 12.2587 21.2326i 0.469409 0.813039i
\(683\) 20.0122 34.6622i 0.765747 1.32631i −0.174104 0.984727i \(-0.555703\pi\)
0.939851 0.341585i \(-0.110964\pi\)
\(684\) −8.07643 + 0.160489i −0.308810 + 0.00613644i
\(685\) 0 0
\(686\) −3.12799 18.2542i −0.119427 0.696948i
\(687\) −3.72234 + 14.4653i −0.142016 + 0.551885i
\(688\) −8.18470 + 4.72544i −0.312039 + 0.180156i
\(689\) 2.78152 4.81774i 0.105968 0.183541i
\(690\) 0 0
\(691\) 21.6787 12.5162i 0.824696 0.476138i −0.0273375 0.999626i \(-0.508703\pi\)
0.852033 + 0.523488i \(0.175370\pi\)
\(692\) 20.7416i 0.788478i
\(693\) −23.7403 + 33.1351i −0.901819 + 1.25870i
\(694\) 33.2005 1.26027
\(695\) 0 0
\(696\) 7.65232 + 7.50177i 0.290060 + 0.284354i
\(697\) −21.3410 12.3212i −0.808348 0.466700i
\(698\) −18.6598 + 10.7732i −0.706283 + 0.407773i
\(699\) 26.9482 + 6.93458i 1.01928 + 0.262290i
\(700\) 0 0
\(701\) 7.09535i 0.267988i −0.990982 0.133994i \(-0.957220\pi\)
0.990982 0.133994i \(-0.0427802\pi\)
\(702\) 5.97658 25.2977i 0.225572 0.954800i
\(703\) 0.0705683 0.122228i 0.00266153 0.00460991i
\(704\) −4.44749 2.56776i −0.167621 0.0967762i
\(705\) 0 0
\(706\) 5.51692i 0.207632i
\(707\) 27.9121 37.3669i 1.04974 1.40533i
\(708\) −22.2450 5.72430i −0.836019 0.215132i
\(709\) 13.9611 + 24.1814i 0.524320 + 0.908150i 0.999599 + 0.0283143i \(0.00901394\pi\)
−0.475279 + 0.879835i \(0.657653\pi\)
\(710\) 0 0
\(711\) −43.0039 + 25.9809i −1.61277 + 0.974361i
\(712\) −2.67056 4.62555i −0.100084 0.173350i
\(713\) 11.8685i 0.444481i
\(714\) −10.7976 13.4245i −0.404090 0.502399i
\(715\) 0 0
\(716\) −21.2335 + 12.2592i −0.793534 + 0.458147i
\(717\) −13.6140 13.3461i −0.508423 0.498420i
\(718\) 16.7632 + 9.67826i 0.625599 + 0.361190i
\(719\) 12.0025 + 20.7889i 0.447618 + 0.775296i 0.998230 0.0594644i \(-0.0189393\pi\)
−0.550613 + 0.834761i \(0.685606\pi\)
\(720\) 0 0
\(721\) 15.3643 + 35.7765i 0.572196 + 1.33239i
\(722\) 11.7495 0.437271
\(723\) −16.1988 + 4.51339i −0.602438 + 0.167855i
\(724\) 16.1542 + 9.32664i 0.600366 + 0.346622i
\(725\) 0 0
\(726\) 7.14698 + 25.6508i 0.265249 + 0.951991i
\(727\) 12.3007 0.456206 0.228103 0.973637i \(-0.426748\pi\)
0.228103 + 0.973637i \(0.426748\pi\)
\(728\) 13.1436 + 1.55769i 0.487133 + 0.0577318i
\(729\) 1.60841 + 26.9521i 0.0595706 + 0.998224i
\(730\) 0 0
\(731\) −17.7651 + 30.7701i −0.657067 + 1.13807i
\(732\) −5.13192 5.03096i −0.189681 0.185949i
\(733\) −10.7803 18.6720i −0.398178 0.689665i 0.595323 0.803486i \(-0.297024\pi\)
−0.993501 + 0.113822i \(0.963691\pi\)
\(734\) 14.0326 0.517951
\(735\) 0 0
\(736\) −2.48605 −0.0916369
\(737\) 2.30116 + 3.98573i 0.0847644 + 0.146816i
\(738\) −16.8311 + 10.1686i −0.619562 + 0.374310i
\(739\) 0.411063 0.711982i 0.0151212 0.0261907i −0.858366 0.513038i \(-0.828520\pi\)
0.873487 + 0.486847i \(0.161853\pi\)
\(740\) 0 0
\(741\) 5.81439 22.5951i 0.213597 0.830052i
\(742\) −2.92173 0.346264i −0.107260 0.0127118i
\(743\) 10.6722 0.391526 0.195763 0.980651i \(-0.437282\pi\)
0.195763 + 0.980651i \(0.437282\pi\)
\(744\) 7.96551 2.21939i 0.292030 0.0813670i
\(745\) 0 0
\(746\) 1.15907 + 0.669190i 0.0424366 + 0.0245008i
\(747\) −4.13092 + 0.0820865i −0.151142 + 0.00300339i
\(748\) −19.3068 −0.705927
\(749\) −4.91736 11.4503i −0.179676 0.418385i
\(750\) 0 0
\(751\) 13.4066 + 23.2209i 0.489213 + 0.847342i 0.999923 0.0124115i \(-0.00395079\pi\)
−0.510710 + 0.859753i \(0.670617\pi\)
\(752\) −2.65776 1.53446i −0.0969185 0.0559559i
\(753\) 5.56644 5.67816i 0.202853 0.206923i
\(754\) −26.8040 + 15.4753i −0.976142 + 0.563576i
\(755\) 0 0
\(756\) −13.5410 + 2.37517i −0.492481 + 0.0863839i
\(757\) 14.2502i 0.517934i 0.965886 + 0.258967i \(0.0833821\pi\)
−0.965886 + 0.258967i \(0.916618\pi\)
\(758\) 4.03982 + 6.99717i 0.146733 + 0.254149i
\(759\) 15.7911 + 15.4804i 0.573180 + 0.561903i
\(760\) 0 0
\(761\) 13.6118 + 23.5763i 0.493428 + 0.854642i 0.999971 0.00757262i \(-0.00241046\pi\)
−0.506544 + 0.862214i \(0.669077\pi\)
\(762\) −0.770566 + 2.99447i −0.0279147 + 0.108478i
\(763\) 13.6542 18.2793i 0.494314 0.661754i
\(764\) 7.27434i 0.263176i
\(765\) 0 0
\(766\) −20.1734 11.6471i −0.728896 0.420828i
\(767\) 33.1709 57.4538i 1.19773 2.07453i
\(768\) −0.464886 1.66850i −0.0167751 0.0602067i
\(769\) 6.31431i 0.227700i 0.993498 + 0.113850i \(0.0363183\pi\)
−0.993498 + 0.113850i \(0.963682\pi\)
\(770\) 0 0
\(771\) −5.06866 + 19.6972i −0.182543 + 0.709376i
\(772\) −9.58185 + 5.53208i −0.344858 + 0.199104i
\(773\) 36.7341 + 21.2084i 1.32123 + 0.762814i 0.983925 0.178580i \(-0.0571505\pi\)
0.337308 + 0.941395i \(0.390484\pi\)
\(774\) 14.6613 + 24.2676i 0.526991 + 0.872282i
\(775\) 0 0
\(776\) 0.633608 0.0227452
\(777\) 0.0868200 0.223956i 0.00311465 0.00803437i
\(778\) 11.7488i 0.421216i
\(779\) −15.2853 + 8.82495i −0.547652 + 0.316187i
\(780\) 0 0
\(781\) 34.4696 59.7031i 1.23342 2.13634i
\(782\) −8.09405 + 4.67310i −0.289443 + 0.167110i
\(783\) 22.0448 23.3995i 0.787816 0.836232i
\(784\) −1.98605 6.71235i −0.0709302 0.239727i
\(785\) 0 0
\(786\) −1.44237 5.17675i −0.0514478 0.184648i
\(787\) −19.9571 + 34.5667i −0.711393 + 1.23217i 0.252941 + 0.967482i \(0.418602\pi\)
−0.964334 + 0.264687i \(0.914731\pi\)
\(788\) 4.43350 7.67905i 0.157937 0.273555i
\(789\) −10.6518 38.2300i −0.379216 1.36102i
\(790\) 0 0
\(791\) 40.4111 + 4.78926i 1.43685 + 0.170287i
\(792\) −7.43669 + 13.4929i −0.264251 + 0.479449i
\(793\) 17.9757 10.3783i 0.638336 0.368543i
\(794\) −8.61072 + 14.9142i −0.305583 + 0.529285i
\(795\) 0 0
\(796\) 16.0911 9.29018i 0.570332 0.329282i
\(797\) 17.5658i 0.622211i 0.950375 + 0.311105i \(0.100699\pi\)
−0.950375 + 0.311105i \(0.899301\pi\)
\(798\) −12.1938 + 1.88997i −0.431656 + 0.0669041i
\(799\) −11.5375 −0.408167
\(800\) 0 0
\(801\) −13.7147 + 8.28580i −0.484587 + 0.292764i
\(802\) 7.31712 + 4.22454i 0.258377 + 0.149174i
\(803\) −31.0448 + 17.9237i −1.09555 + 0.632514i
\(804\) −0.386830 + 1.50325i −0.0136424 + 0.0530154i
\(805\) 0 0
\(806\) 23.8826i 0.841227i
\(807\) −3.77673 13.5549i −0.132947 0.477154i
\(808\) 8.81430 15.2668i 0.310086 0.537085i
\(809\) −16.6120 9.59095i −0.584047 0.337200i 0.178693 0.983905i \(-0.442813\pi\)
−0.762740 + 0.646705i \(0.776146\pi\)
\(810\) 0 0
\(811\) 45.4972i 1.59762i −0.601582 0.798811i \(-0.705463\pi\)
0.601582 0.798811i \(-0.294537\pi\)
\(812\) 13.1143 + 9.79604i 0.460222 + 0.343774i
\(813\) 4.72227 18.3511i 0.165617 0.643600i
\(814\) −0.134589 0.233115i −0.00471735 0.00817069i
\(815\) 0 0
\(816\) −4.64990 4.55842i −0.162779 0.159577i
\(817\) 12.7241 + 22.0388i 0.445159 + 0.771038i
\(818\) 29.1034i 1.01758i
\(819\) 3.88876 39.5157i 0.135884 1.38079i
\(820\) 0 0
\(821\) −2.21615 + 1.27949i −0.0773441 + 0.0446546i −0.538173 0.842834i \(-0.680885\pi\)
0.460829 + 0.887489i \(0.347552\pi\)
\(822\) −11.8307 + 12.0681i −0.412641 + 0.420923i
\(823\) 30.7738 + 17.7673i 1.07271 + 0.619328i 0.928920 0.370281i \(-0.120739\pi\)
0.143787 + 0.989609i \(0.454072\pi\)
\(824\) 7.35823 + 12.7448i 0.256336 + 0.443987i
\(825\) 0 0
\(826\) −34.8430 4.12936i −1.21234 0.143679i
\(827\) 1.85721 0.0645814 0.0322907 0.999479i \(-0.489720\pi\)
0.0322907 + 0.999479i \(0.489720\pi\)
\(828\) 0.148173 + 7.45667i 0.00514938 + 0.259137i
\(829\) 46.4027 + 26.7906i 1.61163 + 0.930477i 0.988992 + 0.147970i \(0.0472738\pi\)
0.622641 + 0.782507i \(0.286060\pi\)
\(830\) 0 0
\(831\) −7.98021 + 2.22349i −0.276831 + 0.0771320i
\(832\) 5.00256 0.173433
\(833\) −19.0836 18.1208i −0.661207 0.627848i
\(834\) −1.83988 + 7.14990i −0.0637098 + 0.247581i
\(835\) 0 0
\(836\) −6.91415 + 11.9757i −0.239131 + 0.414187i
\(837\) −7.13163 23.7595i −0.246505 0.821250i
\(838\) 1.03974 + 1.80088i 0.0359171 + 0.0622102i
\(839\) −6.41502 −0.221471 −0.110736 0.993850i \(-0.535321\pi\)
−0.110736 + 0.993850i \(0.535321\pi\)
\(840\) 0 0
\(841\) −9.27817 −0.319937
\(842\) 16.4185 + 28.4377i 0.565820 + 0.980029i
\(843\) −26.1025 25.5889i −0.899017 0.881330i
\(844\) 3.68439 6.38156i 0.126822 0.219662i
\(845\) 0 0
\(846\) −4.44406 + 8.06316i −0.152790 + 0.277217i
\(847\) 16.0504 + 37.3741i 0.551497 + 1.28419i
\(848\) −1.11204 −0.0381876
\(849\) −10.2299 36.7155i −0.351088 1.26007i
\(850\) 0 0
\(851\) −0.112848 0.0651531i −0.00386839 0.00223342i
\(852\) 22.3979 6.24062i 0.767338 0.213800i
\(853\) 40.7419 1.39498 0.697488 0.716596i \(-0.254301\pi\)
0.697488 + 0.716596i \(0.254301\pi\)
\(854\) −8.79492 6.56958i −0.300956 0.224806i
\(855\) 0 0
\(856\) −2.35501 4.07900i −0.0804926 0.139417i
\(857\) 6.99524 + 4.03870i 0.238953 + 0.137959i 0.614695 0.788765i \(-0.289279\pi\)
−0.375743 + 0.926724i \(0.622612\pi\)
\(858\) −31.7757 31.1505i −1.08480 1.06346i
\(859\) 11.3048 6.52683i 0.385715 0.222693i −0.294587 0.955625i \(-0.595182\pi\)
0.680302 + 0.732932i \(0.261849\pi\)
\(860\) 0 0
\(861\) −23.4062 + 18.8260i −0.797680 + 0.641590i
\(862\) 8.75212i 0.298098i
\(863\) −27.0946 46.9292i −0.922310 1.59749i −0.795831 0.605518i \(-0.792966\pi\)
−0.126479 0.991969i \(-0.540368\pi\)
\(864\) −4.97679 + 1.49383i −0.169314 + 0.0508211i
\(865\) 0 0
\(866\) −6.17199 10.6902i −0.209733 0.363268i
\(867\) 4.80815 + 1.23728i 0.163293 + 0.0420202i
\(868\) 11.6060 4.98422i 0.393934 0.169176i
\(869\) 86.0078i 2.91762i
\(870\) 0 0
\(871\) −3.88254 2.24158i −0.131555 0.0759532i
\(872\) 4.31181 7.46828i 0.146016 0.252908i
\(873\) −0.0377643 1.90045i −0.00127813 0.0643204i
\(874\) 6.69412i 0.226432i
\(875\) 0 0
\(876\) −11.7088 3.01301i −0.395602 0.101800i
\(877\) 16.2332 9.37226i 0.548157 0.316479i −0.200221 0.979751i \(-0.564166\pi\)
0.748378 + 0.663272i \(0.230833\pi\)
\(878\) −9.72433 5.61435i −0.328180 0.189475i
\(879\) −13.9647 13.6899i −0.471017 0.461750i
\(880\) 0 0
\(881\) 36.3542 1.22480 0.612402 0.790546i \(-0.290203\pi\)
0.612402 + 0.790546i \(0.290203\pi\)
\(882\) −20.0147 + 6.35703i −0.673930 + 0.214052i
\(883\) 22.9059i 0.770845i −0.922740 0.385422i \(-0.874056\pi\)
0.922740 0.385422i \(-0.125944\pi\)
\(884\) 16.2873 9.40348i 0.547801 0.316273i
\(885\) 0 0
\(886\) 16.7161 28.9532i 0.561590 0.972702i
\(887\) −44.9860 + 25.9727i −1.51048 + 0.872077i −0.510557 + 0.859844i \(0.670561\pi\)
−0.999925 + 0.0122334i \(0.996106\pi\)
\(888\) 0.0226247 0.0879211i 0.000759235 0.00295044i
\(889\) −0.555867 + 4.69033i −0.0186432 + 0.157308i
\(890\) 0 0
\(891\) 40.9139 + 21.5015i 1.37067 + 0.720326i
\(892\) −2.89736 + 5.01837i −0.0970107 + 0.168028i
\(893\) −4.13180 + 7.15648i −0.138265 + 0.239483i
\(894\) −14.9701 + 4.17104i −0.500673 + 0.139500i
\(895\) 0 0
\(896\) −1.04402 2.43105i −0.0348783 0.0812158i
\(897\) −20.8612 5.36821i −0.696535 0.179239i
\(898\) −24.1052 + 13.9171i −0.804401 + 0.464421i
\(899\) −14.7684 + 25.5796i −0.492554 + 0.853129i
\(900\) 0 0
\(901\) −3.62057 + 2.09033i −0.120619 + 0.0696391i
\(902\) 33.6622i 1.12083i
\(903\) 27.1439 + 33.7477i 0.903294 + 1.12305i
\(904\) 15.3809 0.511560
\(905\) 0 0
\(906\) −16.0374 + 16.3593i −0.532808 + 0.543501i
\(907\) −2.87864 1.66199i −0.0955838 0.0551853i 0.451446 0.892298i \(-0.350908\pi\)
−0.547030 + 0.837113i \(0.684242\pi\)
\(908\) 9.24746 5.33902i 0.306888 0.177182i
\(909\) −46.3168 25.5277i −1.53623 0.846702i
\(910\) 0 0
\(911\) 0.497610i 0.0164866i −0.999966 0.00824328i \(-0.997376\pi\)
0.999966 0.00824328i \(-0.00262395\pi\)
\(912\) −4.49272 + 1.25179i −0.148769 + 0.0414508i
\(913\) −3.53644 + 6.12529i −0.117039 + 0.202717i
\(914\) 24.5277 + 14.1611i 0.811304 + 0.468406i
\(915\) 0 0
\(916\) 8.62361i 0.284932i
\(917\) −3.23922 7.54269i −0.106969 0.249081i
\(918\) −13.3954 + 14.2186i −0.442114 + 0.469285i
\(919\) 24.7546 + 42.8762i 0.816579 + 1.41436i 0.908189 + 0.418561i \(0.137465\pi\)
−0.0916101 + 0.995795i \(0.529201\pi\)
\(920\) 0 0
\(921\) −2.57250 + 2.62413i −0.0847667 + 0.0864679i
\(922\) 17.7879 + 30.8096i 0.585814 + 1.01466i
\(923\) 67.1543i 2.21041i
\(924\) −8.50647 + 21.9428i −0.279842 + 0.721865i
\(925\) 0 0
\(926\) 16.3134 9.41855i 0.536092 0.309513i
\(927\) 37.7884 22.8300i 1.24113 0.749834i
\(928\) 5.35804 + 3.09347i 0.175886 + 0.101548i
\(929\) 26.4197 + 45.7602i 0.866802 + 1.50134i 0.865247 + 0.501346i \(0.167162\pi\)
0.00155503 + 0.999999i \(0.499505\pi\)
\(930\) 0 0
\(931\) −18.0742 + 5.34778i −0.592357 + 0.175266i
\(932\) 16.0654 0.526241
\(933\) 5.11587 + 18.3611i 0.167486 + 0.601116i
\(934\) −10.8853 6.28462i −0.356177 0.205639i
\(935\) 0 0
\(936\) −0.298163 15.0047i −0.00974575 0.490445i
\(937\) 55.7017 1.81970 0.909848 0.414941i \(-0.136198\pi\)
0.909848 + 0.414941i \(0.136198\pi\)
\(938\) −0.279049 + 2.35458i −0.00911127 + 0.0768796i
\(939\) 12.4704 + 3.20901i 0.406957 + 0.104722i
\(940\) 0 0
\(941\) −0.110773 + 0.191865i −0.00361110 + 0.00625461i −0.867825 0.496869i \(-0.834483\pi\)
0.864214 + 0.503124i \(0.167816\pi\)
\(942\) 10.3840 10.5924i 0.338329 0.345119i
\(943\) 8.14775 + 14.1123i 0.265327 + 0.459560i
\(944\) −13.2616 −0.431628
\(945\) 0 0
\(946\) 48.5352 1.57802
\(947\) 8.67143 + 15.0194i 0.281784 + 0.488064i 0.971824 0.235707i \(-0.0757406\pi\)
−0.690041 + 0.723771i \(0.742407\pi\)
\(948\) −20.3068 + 20.7143i −0.659534 + 0.672770i
\(949\) 17.4597 30.2410i 0.566765 0.981665i
\(950\) 0 0
\(951\) −7.50571 1.93144i −0.243389 0.0626312i
\(952\) −7.96885 5.95252i −0.258272 0.192922i
\(953\) −47.2619 −1.53096 −0.765482 0.643458i \(-0.777499\pi\)
−0.765482 + 0.643458i \(0.777499\pi\)
\(954\) 0.0662797 + 3.33546i 0.00214588 + 0.107989i
\(955\) 0 0
\(956\) −9.53230 5.50348i −0.308297 0.177995i
\(957\) −14.7709 53.0134i −0.477475 1.71368i
\(958\) −21.4076 −0.691648
\(959\) −15.4488 + 20.6819i −0.498869 + 0.667853i
\(960\) 0 0
\(961\) −4.10415 7.10860i −0.132392 0.229310i
\(962\) 0.227080 + 0.131105i 0.00732135 + 0.00422698i
\(963\) −12.0942 + 7.30675i −0.389730 + 0.235457i
\(964\) −8.40789 + 4.85430i −0.270800 + 0.156346i
\(965\) 0 0
\(966\) 1.74493 + 11.2581i 0.0561423 + 0.362223i
\(967\) 56.9397i 1.83106i −0.402254 0.915528i \(-0.631773\pi\)
0.402254 0.915528i \(-0.368227\pi\)
\(968\) 7.68681 + 13.3139i 0.247063 + 0.427926i
\(969\) −12.2743 + 12.5207i −0.394309 + 0.402222i
\(970\) 0 0
\(971\) −0.585122 1.01346i −0.0187775 0.0325235i 0.856484 0.516174i \(-0.172644\pi\)
−0.875261 + 0.483650i \(0.839311\pi\)
\(972\) 4.77723 + 14.8384i 0.153230 + 0.475942i
\(973\) −1.32724 + 11.1991i −0.0425494 + 0.359026i
\(974\) 2.51593i 0.0806155i
\(975\) 0 0
\(976\) −3.59330 2.07459i −0.115019 0.0664060i
\(977\) −16.2443 + 28.1359i −0.519700 + 0.900146i 0.480038 + 0.877248i \(0.340623\pi\)
−0.999738 + 0.0228986i \(0.992711\pi\)
\(978\) 18.4779 5.14840i 0.590857 0.164628i
\(979\) 27.4295i 0.876650i
\(980\) 0 0
\(981\) −22.6574 12.4878i −0.723395 0.398703i
\(982\) −30.0602 + 17.3553i −0.959260 + 0.553829i
\(983\) 21.4685 + 12.3949i 0.684740 + 0.395335i 0.801638 0.597809i \(-0.203962\pi\)
−0.116899 + 0.993144i \(0.537295\pi\)
\(984\) −7.94779 + 8.10729i −0.253366 + 0.258451i
\(985\) 0 0
\(986\) 23.2596 0.740736
\(987\) −5.08334 + 13.1127i −0.161805 + 0.417382i
\(988\) 13.4703i 0.428547i
\(989\) 20.3476 11.7477i 0.647015 0.373554i
\(990\) 0 0
\(991\) −17.7444 + 30.7343i −0.563671 + 0.976307i 0.433501 + 0.901153i \(0.357278\pi\)
−0.997172 + 0.0751537i \(0.976055\pi\)
\(992\) 4.13446 2.38703i 0.131269 0.0757884i
\(993\) 28.4688 + 7.32587i 0.903431 + 0.232479i
\(994\) 32.6344 14.0149i 1.03510 0.444526i
\(995\) 0 0
\(996\) −2.29793 + 0.640261i −0.0728126 + 0.0202875i
\(997\) −19.4263 + 33.6474i −0.615238 + 1.06562i 0.375105 + 0.926982i \(0.377607\pi\)
−0.990343 + 0.138641i \(0.955727\pi\)
\(998\) −3.07500 + 5.32606i −0.0973375 + 0.168593i
\(999\) −0.265060 0.0626204i −0.00838612 0.00198122i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.2.u.f.899.1 12
3.2 odd 2 1050.2.u.h.899.4 12
5.2 odd 4 210.2.r.a.101.6 12
5.3 odd 4 1050.2.s.g.101.1 12
5.4 even 2 1050.2.u.g.899.6 12
7.5 odd 6 1050.2.u.e.299.3 12
15.2 even 4 210.2.r.b.101.3 yes 12
15.8 even 4 1050.2.s.f.101.4 12
15.14 odd 2 1050.2.u.e.899.3 12
21.5 even 6 1050.2.u.g.299.6 12
35.12 even 12 210.2.r.b.131.3 yes 12
35.17 even 12 1470.2.b.a.881.10 12
35.19 odd 6 1050.2.u.h.299.4 12
35.32 odd 12 1470.2.b.b.881.9 12
35.33 even 12 1050.2.s.f.551.4 12
105.17 odd 12 1470.2.b.b.881.3 12
105.32 even 12 1470.2.b.a.881.4 12
105.47 odd 12 210.2.r.a.131.6 yes 12
105.68 odd 12 1050.2.s.g.551.1 12
105.89 even 6 inner 1050.2.u.f.299.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.r.a.101.6 12 5.2 odd 4
210.2.r.a.131.6 yes 12 105.47 odd 12
210.2.r.b.101.3 yes 12 15.2 even 4
210.2.r.b.131.3 yes 12 35.12 even 12
1050.2.s.f.101.4 12 15.8 even 4
1050.2.s.f.551.4 12 35.33 even 12
1050.2.s.g.101.1 12 5.3 odd 4
1050.2.s.g.551.1 12 105.68 odd 12
1050.2.u.e.299.3 12 7.5 odd 6
1050.2.u.e.899.3 12 15.14 odd 2
1050.2.u.f.299.1 12 105.89 even 6 inner
1050.2.u.f.899.1 12 1.1 even 1 trivial
1050.2.u.g.299.6 12 21.5 even 6
1050.2.u.g.899.6 12 5.4 even 2
1050.2.u.h.299.4 12 35.19 odd 6
1050.2.u.h.899.4 12 3.2 odd 2
1470.2.b.a.881.4 12 105.32 even 12
1470.2.b.a.881.10 12 35.17 even 12
1470.2.b.b.881.3 12 105.17 odd 12
1470.2.b.b.881.9 12 35.32 odd 12