Properties

Label 1050.2.s.e.101.1
Level $1050$
Weight $2$
Character 1050.101
Analytic conductor $8.384$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,2,Mod(101,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1050.s (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,4,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.38429221223\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.303595776.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 210)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 101.1
Root \(0.396143 + 1.68614i\) of defining polynomial
Character \(\chi\) \(=\) 1050.101
Dual form 1050.2.s.e.551.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(-1.65831 - 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(1.68614 - 0.396143i) q^{6} +(0.866025 + 2.50000i) q^{7} +1.00000i q^{8} +(2.50000 + 1.65831i) q^{9} +(-0.813859 - 0.469882i) q^{11} +(-1.26217 + 1.18614i) q^{12} -2.00000i q^{13} +(-2.00000 - 1.73205i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(-3.31662 + 5.74456i) q^{17} +(-2.99422 - 0.186141i) q^{18} +(3.00000 - 1.73205i) q^{19} +(-0.186141 - 4.57879i) q^{21} +0.939764 q^{22} +(-1.18843 + 0.686141i) q^{23} +(0.500000 - 1.65831i) q^{24} +(1.00000 + 1.73205i) q^{26} +(-3.31662 - 4.00000i) q^{27} +(2.59808 + 0.500000i) q^{28} -3.31662i q^{29} +(6.55842 + 3.78651i) q^{31} +(0.866025 + 0.500000i) q^{32} +(1.11469 + 1.18614i) q^{33} -6.63325i q^{34} +(2.68614 - 1.33591i) q^{36} +(-4.10891 - 7.11684i) q^{37} +(-1.73205 + 3.00000i) q^{38} +(-1.00000 + 3.31662i) q^{39} -7.37228 q^{41} +(2.45060 + 3.87228i) q^{42} +1.08724 q^{43} +(-0.813859 + 0.469882i) q^{44} +(0.686141 - 1.18843i) q^{46} +(4.25639 + 7.37228i) q^{47} +(0.396143 + 1.68614i) q^{48} +(-5.50000 + 4.33013i) q^{49} +(8.37228 - 7.86797i) q^{51} +(-1.73205 - 1.00000i) q^{52} +(3.78651 + 2.18614i) q^{53} +(4.87228 + 1.80579i) q^{54} +(-2.50000 + 0.866025i) q^{56} +(-5.84096 + 1.37228i) q^{57} +(1.65831 + 2.87228i) q^{58} +(-6.55842 + 11.3595i) q^{59} +(-11.0584 + 6.38458i) q^{61} -7.57301 q^{62} +(-1.98072 + 7.68614i) q^{63} -1.00000 q^{64} +(-1.55842 - 0.469882i) q^{66} +(-1.18843 + 2.05842i) q^{67} +(3.31662 + 5.74456i) q^{68} +(2.31386 - 0.543620i) q^{69} +8.51278i q^{71} +(-1.65831 + 2.50000i) q^{72} +(1.73205 + 1.00000i) q^{73} +(7.11684 + 4.10891i) q^{74} -3.46410i q^{76} +(0.469882 - 2.44158i) q^{77} +(-0.792287 - 3.37228i) q^{78} +(4.55842 + 7.89542i) q^{79} +(3.50000 + 8.29156i) q^{81} +(6.38458 - 3.68614i) q^{82} -11.8294 q^{83} +(-4.05842 - 2.12819i) q^{84} +(-0.941578 + 0.543620i) q^{86} +(-1.65831 + 5.50000i) q^{87} +(0.469882 - 0.813859i) q^{88} +(-0.686141 - 1.18843i) q^{89} +(5.00000 - 1.73205i) q^{91} +1.37228i q^{92} +(-8.98266 - 9.55842i) q^{93} +(-7.37228 - 4.25639i) q^{94} +(-1.18614 - 1.26217i) q^{96} +15.1168i q^{97} +(2.59808 - 6.50000i) q^{98} +(-1.25544 - 2.52434i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} + 2 q^{6} + 20 q^{9} - 18 q^{11} - 16 q^{14} - 4 q^{16} + 24 q^{19} + 10 q^{21} + 4 q^{24} + 8 q^{26} + 18 q^{31} + 10 q^{36} - 8 q^{39} - 36 q^{41} - 18 q^{44} - 6 q^{46} - 44 q^{49} + 44 q^{51}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) −1.65831 0.500000i −0.957427 0.288675i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0 0
\(6\) 1.68614 0.396143i 0.688364 0.161725i
\(7\) 0.866025 + 2.50000i 0.327327 + 0.944911i
\(8\) 1.00000i 0.353553i
\(9\) 2.50000 + 1.65831i 0.833333 + 0.552771i
\(10\) 0 0
\(11\) −0.813859 0.469882i −0.245388 0.141675i 0.372263 0.928127i \(-0.378582\pi\)
−0.617651 + 0.786453i \(0.711915\pi\)
\(12\) −1.26217 + 1.18614i −0.364357 + 0.342409i
\(13\) 2.00000i 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) −2.00000 1.73205i −0.534522 0.462910i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −3.31662 + 5.74456i −0.804400 + 1.39326i 0.112296 + 0.993675i \(0.464180\pi\)
−0.916696 + 0.399586i \(0.869154\pi\)
\(18\) −2.99422 0.186141i −0.705744 0.0438738i
\(19\) 3.00000 1.73205i 0.688247 0.397360i −0.114708 0.993399i \(-0.536593\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) −0.186141 4.57879i −0.0406192 0.999175i
\(22\) 0.939764 0.200358
\(23\) −1.18843 + 0.686141i −0.247805 + 0.143070i −0.618759 0.785581i \(-0.712364\pi\)
0.370954 + 0.928651i \(0.379031\pi\)
\(24\) 0.500000 1.65831i 0.102062 0.338502i
\(25\) 0 0
\(26\) 1.00000 + 1.73205i 0.196116 + 0.339683i
\(27\) −3.31662 4.00000i −0.638285 0.769800i
\(28\) 2.59808 + 0.500000i 0.490990 + 0.0944911i
\(29\) 3.31662i 0.615882i −0.951405 0.307941i \(-0.900360\pi\)
0.951405 0.307941i \(-0.0996399\pi\)
\(30\) 0 0
\(31\) 6.55842 + 3.78651i 1.17793 + 0.680077i 0.955534 0.294880i \(-0.0952798\pi\)
0.222393 + 0.974957i \(0.428613\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 1.11469 + 1.18614i 0.194043 + 0.206481i
\(34\) 6.63325i 1.13759i
\(35\) 0 0
\(36\) 2.68614 1.33591i 0.447690 0.222651i
\(37\) −4.10891 7.11684i −0.675501 1.17000i −0.976322 0.216321i \(-0.930594\pi\)
0.300821 0.953681i \(-0.402739\pi\)
\(38\) −1.73205 + 3.00000i −0.280976 + 0.486664i
\(39\) −1.00000 + 3.31662i −0.160128 + 0.531085i
\(40\) 0 0
\(41\) −7.37228 −1.15136 −0.575678 0.817676i \(-0.695262\pi\)
−0.575678 + 0.817676i \(0.695262\pi\)
\(42\) 2.45060 + 3.87228i 0.378136 + 0.597506i
\(43\) 1.08724 0.165803 0.0829013 0.996558i \(-0.473581\pi\)
0.0829013 + 0.996558i \(0.473581\pi\)
\(44\) −0.813859 + 0.469882i −0.122694 + 0.0708374i
\(45\) 0 0
\(46\) 0.686141 1.18843i 0.101166 0.175225i
\(47\) 4.25639 + 7.37228i 0.620858 + 1.07536i 0.989326 + 0.145717i \(0.0465490\pi\)
−0.368468 + 0.929640i \(0.620118\pi\)
\(48\) 0.396143 + 1.68614i 0.0571784 + 0.243373i
\(49\) −5.50000 + 4.33013i −0.785714 + 0.618590i
\(50\) 0 0
\(51\) 8.37228 7.86797i 1.17235 1.10174i
\(52\) −1.73205 1.00000i −0.240192 0.138675i
\(53\) 3.78651 + 2.18614i 0.520117 + 0.300290i 0.736982 0.675912i \(-0.236250\pi\)
−0.216866 + 0.976201i \(0.569583\pi\)
\(54\) 4.87228 + 1.80579i 0.663034 + 0.245737i
\(55\) 0 0
\(56\) −2.50000 + 0.866025i −0.334077 + 0.115728i
\(57\) −5.84096 + 1.37228i −0.773654 + 0.181763i
\(58\) 1.65831 + 2.87228i 0.217747 + 0.377149i
\(59\) −6.55842 + 11.3595i −0.853834 + 1.47888i 0.0238889 + 0.999715i \(0.492395\pi\)
−0.877723 + 0.479169i \(0.840938\pi\)
\(60\) 0 0
\(61\) −11.0584 + 6.38458i −1.41589 + 0.817462i −0.995934 0.0900844i \(-0.971286\pi\)
−0.419952 + 0.907546i \(0.637953\pi\)
\(62\) −7.57301 −0.961774
\(63\) −1.98072 + 7.68614i −0.249547 + 0.968363i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) −1.55842 0.469882i −0.191828 0.0578385i
\(67\) −1.18843 + 2.05842i −0.145190 + 0.251476i −0.929444 0.368964i \(-0.879713\pi\)
0.784254 + 0.620440i \(0.213046\pi\)
\(68\) 3.31662 + 5.74456i 0.402200 + 0.696631i
\(69\) 2.31386 0.543620i 0.278556 0.0654442i
\(70\) 0 0
\(71\) 8.51278i 1.01028i 0.863037 + 0.505140i \(0.168559\pi\)
−0.863037 + 0.505140i \(0.831441\pi\)
\(72\) −1.65831 + 2.50000i −0.195434 + 0.294628i
\(73\) 1.73205 + 1.00000i 0.202721 + 0.117041i 0.597924 0.801553i \(-0.295992\pi\)
−0.395203 + 0.918594i \(0.629326\pi\)
\(74\) 7.11684 + 4.10891i 0.827316 + 0.477651i
\(75\) 0 0
\(76\) 3.46410i 0.397360i
\(77\) 0.469882 2.44158i 0.0535480 0.278244i
\(78\) −0.792287 3.37228i −0.0897088 0.381836i
\(79\) 4.55842 + 7.89542i 0.512863 + 0.888304i 0.999889 + 0.0149166i \(0.00474828\pi\)
−0.487026 + 0.873387i \(0.661918\pi\)
\(80\) 0 0
\(81\) 3.50000 + 8.29156i 0.388889 + 0.921285i
\(82\) 6.38458 3.68614i 0.705059 0.407066i
\(83\) −11.8294 −1.29845 −0.649223 0.760598i \(-0.724906\pi\)
−0.649223 + 0.760598i \(0.724906\pi\)
\(84\) −4.05842 2.12819i −0.442810 0.232205i
\(85\) 0 0
\(86\) −0.941578 + 0.543620i −0.101533 + 0.0586201i
\(87\) −1.65831 + 5.50000i −0.177790 + 0.589662i
\(88\) 0.469882 0.813859i 0.0500896 0.0867577i
\(89\) −0.686141 1.18843i −0.0727308 0.125973i 0.827366 0.561662i \(-0.189838\pi\)
−0.900097 + 0.435689i \(0.856505\pi\)
\(90\) 0 0
\(91\) 5.00000 1.73205i 0.524142 0.181568i
\(92\) 1.37228i 0.143070i
\(93\) −8.98266 9.55842i −0.931458 0.991162i
\(94\) −7.37228 4.25639i −0.760393 0.439013i
\(95\) 0 0
\(96\) −1.18614 1.26217i −0.121060 0.128820i
\(97\) 15.1168i 1.53488i 0.641119 + 0.767441i \(0.278470\pi\)
−0.641119 + 0.767441i \(0.721530\pi\)
\(98\) 2.59808 6.50000i 0.262445 0.656599i
\(99\) −1.25544 2.52434i −0.126176 0.253705i
\(100\) 0 0
\(101\) −5.31386 + 9.20387i −0.528749 + 0.915820i 0.470689 + 0.882299i \(0.344005\pi\)
−0.999438 + 0.0335207i \(0.989328\pi\)
\(102\) −3.31662 + 11.0000i −0.328395 + 1.08916i
\(103\) 1.83324 1.05842i 0.180635 0.104289i −0.406956 0.913448i \(-0.633410\pi\)
0.587591 + 0.809158i \(0.300077\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) −4.37228 −0.424674
\(107\) −5.41737 + 3.12772i −0.523717 + 0.302368i −0.738454 0.674304i \(-0.764444\pi\)
0.214737 + 0.976672i \(0.431110\pi\)
\(108\) −5.12241 + 0.872281i −0.492905 + 0.0839353i
\(109\) −4.05842 + 7.02939i −0.388726 + 0.673294i −0.992278 0.124030i \(-0.960418\pi\)
0.603552 + 0.797324i \(0.293752\pi\)
\(110\) 0 0
\(111\) 3.25544 + 13.8564i 0.308992 + 1.31519i
\(112\) 1.73205 2.00000i 0.163663 0.188982i
\(113\) 14.7446i 1.38705i −0.720432 0.693526i \(-0.756056\pi\)
0.720432 0.693526i \(-0.243944\pi\)
\(114\) 4.37228 4.10891i 0.409502 0.384835i
\(115\) 0 0
\(116\) −2.87228 1.65831i −0.266685 0.153970i
\(117\) 3.31662 5.00000i 0.306622 0.462250i
\(118\) 13.1168i 1.20750i
\(119\) −17.2337 3.31662i −1.57981 0.304034i
\(120\) 0 0
\(121\) −5.05842 8.76144i −0.459857 0.796495i
\(122\) 6.38458 11.0584i 0.578033 1.00118i
\(123\) 12.2255 + 3.68614i 1.10234 + 0.332368i
\(124\) 6.55842 3.78651i 0.588964 0.340038i
\(125\) 0 0
\(126\) −2.12772 7.64675i −0.189552 0.681227i
\(127\) 7.57301 0.671996 0.335998 0.941863i \(-0.390926\pi\)
0.335998 + 0.941863i \(0.390926\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) −1.80298 0.543620i −0.158744 0.0478631i
\(130\) 0 0
\(131\) −5.18614 8.98266i −0.453115 0.784819i 0.545462 0.838135i \(-0.316354\pi\)
−0.998578 + 0.0533167i \(0.983021\pi\)
\(132\) 1.58457 0.372281i 0.137919 0.0324029i
\(133\) 6.92820 + 6.00000i 0.600751 + 0.520266i
\(134\) 2.37686i 0.205330i
\(135\) 0 0
\(136\) −5.74456 3.31662i −0.492592 0.284398i
\(137\) −7.57301 4.37228i −0.647006 0.373549i 0.140302 0.990109i \(-0.455193\pi\)
−0.787308 + 0.616560i \(0.788526\pi\)
\(138\) −1.73205 + 1.62772i −0.147442 + 0.138561i
\(139\) 8.21782i 0.697027i 0.937304 + 0.348513i \(0.113313\pi\)
−0.937304 + 0.348513i \(0.886687\pi\)
\(140\) 0 0
\(141\) −3.37228 14.3537i −0.283997 1.20880i
\(142\) −4.25639 7.37228i −0.357188 0.618668i
\(143\) −0.939764 + 1.62772i −0.0785870 + 0.136117i
\(144\) 0.186141 2.99422i 0.0155117 0.249518i
\(145\) 0 0
\(146\) −2.00000 −0.165521
\(147\) 11.2858 4.43070i 0.930836 0.365438i
\(148\) −8.21782 −0.675501
\(149\) 7.80298 4.50506i 0.639245 0.369069i −0.145078 0.989420i \(-0.546343\pi\)
0.784324 + 0.620352i \(0.213010\pi\)
\(150\) 0 0
\(151\) −4.55842 + 7.89542i −0.370959 + 0.642520i −0.989713 0.143065i \(-0.954304\pi\)
0.618754 + 0.785585i \(0.287638\pi\)
\(152\) 1.73205 + 3.00000i 0.140488 + 0.243332i
\(153\) −17.8178 + 8.86141i −1.44049 + 0.716402i
\(154\) 0.813859 + 2.34941i 0.0655827 + 0.189321i
\(155\) 0 0
\(156\) 2.37228 + 2.52434i 0.189935 + 0.202109i
\(157\) −6.92820 4.00000i −0.552931 0.319235i 0.197372 0.980329i \(-0.436759\pi\)
−0.750303 + 0.661094i \(0.770093\pi\)
\(158\) −7.89542 4.55842i −0.628126 0.362649i
\(159\) −5.18614 5.51856i −0.411288 0.437650i
\(160\) 0 0
\(161\) −2.74456 2.37686i −0.216302 0.187323i
\(162\) −7.17687 5.43070i −0.563868 0.426676i
\(163\) 1.73205 + 3.00000i 0.135665 + 0.234978i 0.925851 0.377888i \(-0.123350\pi\)
−0.790186 + 0.612866i \(0.790016\pi\)
\(164\) −3.68614 + 6.38458i −0.287839 + 0.498552i
\(165\) 0 0
\(166\) 10.2446 5.91470i 0.795132 0.459070i
\(167\) 14.6487 1.13355 0.566775 0.823873i \(-0.308191\pi\)
0.566775 + 0.823873i \(0.308191\pi\)
\(168\) 4.57879 0.186141i 0.353262 0.0143611i
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 10.3723 + 0.644810i 0.793188 + 0.0493099i
\(172\) 0.543620 0.941578i 0.0414507 0.0717947i
\(173\) 8.51278 + 14.7446i 0.647214 + 1.12101i 0.983785 + 0.179350i \(0.0573995\pi\)
−0.336571 + 0.941658i \(0.609267\pi\)
\(174\) −1.31386 5.59230i −0.0996034 0.423951i
\(175\) 0 0
\(176\) 0.939764i 0.0708374i
\(177\) 16.5557 15.5584i 1.24440 1.16944i
\(178\) 1.18843 + 0.686141i 0.0890766 + 0.0514284i
\(179\) 20.4891 + 11.8294i 1.53143 + 0.884171i 0.999296 + 0.0375102i \(0.0119427\pi\)
0.532133 + 0.846661i \(0.321391\pi\)
\(180\) 0 0
\(181\) 8.01544i 0.595783i −0.954600 0.297892i \(-0.903717\pi\)
0.954600 0.297892i \(-0.0962834\pi\)
\(182\) −3.46410 + 4.00000i −0.256776 + 0.296500i
\(183\) 21.5306 5.05842i 1.59159 0.373929i
\(184\) −0.686141 1.18843i −0.0505830 0.0876123i
\(185\) 0 0
\(186\) 12.5584 + 3.78651i 0.920828 + 0.277640i
\(187\) 5.39853 3.11684i 0.394780 0.227926i
\(188\) 8.51278 0.620858
\(189\) 7.12772 11.7557i 0.518465 0.855099i
\(190\) 0 0
\(191\) −14.7446 + 8.51278i −1.06688 + 0.615963i −0.927327 0.374252i \(-0.877900\pi\)
−0.139552 + 0.990215i \(0.544566\pi\)
\(192\) 1.65831 + 0.500000i 0.119678 + 0.0360844i
\(193\) −8.98266 + 15.5584i −0.646586 + 1.11992i 0.337347 + 0.941380i \(0.390470\pi\)
−0.983933 + 0.178539i \(0.942863\pi\)
\(194\) −7.55842 13.0916i −0.542663 0.939920i
\(195\) 0 0
\(196\) 1.00000 + 6.92820i 0.0714286 + 0.494872i
\(197\) 14.2337i 1.01411i −0.861914 0.507054i \(-0.830734\pi\)
0.861914 0.507054i \(-0.169266\pi\)
\(198\) 2.34941 + 1.55842i 0.166965 + 0.110752i
\(199\) −1.11684 0.644810i −0.0791710 0.0457094i 0.459892 0.887975i \(-0.347888\pi\)
−0.539063 + 0.842266i \(0.681221\pi\)
\(200\) 0 0
\(201\) 3.00000 2.81929i 0.211604 0.198857i
\(202\) 10.6277i 0.747764i
\(203\) 8.29156 2.87228i 0.581954 0.201595i
\(204\) −2.62772 11.1846i −0.183977 0.783078i
\(205\) 0 0
\(206\) −1.05842 + 1.83324i −0.0737438 + 0.127728i
\(207\) −4.10891 0.255437i −0.285589 0.0177541i
\(208\) −1.73205 + 1.00000i −0.120096 + 0.0693375i
\(209\) −3.25544 −0.225183
\(210\) 0 0
\(211\) 16.2337 1.11757 0.558787 0.829311i \(-0.311267\pi\)
0.558787 + 0.829311i \(0.311267\pi\)
\(212\) 3.78651 2.18614i 0.260058 0.150145i
\(213\) 4.25639 14.1168i 0.291643 0.967270i
\(214\) 3.12772 5.41737i 0.213806 0.370324i
\(215\) 0 0
\(216\) 4.00000 3.31662i 0.272166 0.225668i
\(217\) −3.78651 + 19.6753i −0.257045 + 1.33564i
\(218\) 8.11684i 0.549742i
\(219\) −2.37228 2.52434i −0.160304 0.170579i
\(220\) 0 0
\(221\) 11.4891 + 6.63325i 0.772842 + 0.446201i
\(222\) −9.74749 10.3723i −0.654209 0.696142i
\(223\) 0.883156i 0.0591405i −0.999563 0.0295703i \(-0.990586\pi\)
0.999563 0.0295703i \(-0.00941388\pi\)
\(224\) −0.500000 + 2.59808i −0.0334077 + 0.173591i
\(225\) 0 0
\(226\) 7.37228 + 12.7692i 0.490397 + 0.849392i
\(227\) 10.4198 18.0475i 0.691584 1.19786i −0.279735 0.960077i \(-0.590247\pi\)
0.971319 0.237781i \(-0.0764199\pi\)
\(228\) −1.73205 + 5.74456i −0.114708 + 0.380443i
\(229\) −12.0000 + 6.92820i −0.792982 + 0.457829i −0.841011 0.541017i \(-0.818039\pi\)
0.0480291 + 0.998846i \(0.484706\pi\)
\(230\) 0 0
\(231\) −2.00000 + 3.81396i −0.131590 + 0.250940i
\(232\) 3.31662 0.217747
\(233\) −0.442430 + 0.255437i −0.0289846 + 0.0167343i −0.514422 0.857537i \(-0.671994\pi\)
0.485438 + 0.874271i \(0.338660\pi\)
\(234\) −0.372281 + 5.98844i −0.0243368 + 0.391477i
\(235\) 0 0
\(236\) 6.55842 + 11.3595i 0.426917 + 0.739442i
\(237\) −3.61158 15.3723i −0.234597 0.998537i
\(238\) 16.5831 5.74456i 1.07492 0.372365i
\(239\) 23.6588i 1.53036i −0.643816 0.765180i \(-0.722650\pi\)
0.643816 0.765180i \(-0.277350\pi\)
\(240\) 0 0
\(241\) −16.6753 9.62747i −1.07415 0.620160i −0.144836 0.989456i \(-0.546266\pi\)
−0.929312 + 0.369296i \(0.879599\pi\)
\(242\) 8.76144 + 5.05842i 0.563207 + 0.325168i
\(243\) −1.65831 15.5000i −0.106381 0.994325i
\(244\) 12.7692i 0.817462i
\(245\) 0 0
\(246\) −12.4307 + 2.92048i −0.792553 + 0.186203i
\(247\) −3.46410 6.00000i −0.220416 0.381771i
\(248\) −3.78651 + 6.55842i −0.240443 + 0.416460i
\(249\) 19.6168 + 5.91470i 1.24317 + 0.374829i
\(250\) 0 0
\(251\) 1.11684 0.0704946 0.0352473 0.999379i \(-0.488778\pi\)
0.0352473 + 0.999379i \(0.488778\pi\)
\(252\) 5.66603 + 5.55842i 0.356927 + 0.350148i
\(253\) 1.28962 0.0810777
\(254\) −6.55842 + 3.78651i −0.411512 + 0.237587i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −0.939764 1.62772i −0.0586209 0.101534i 0.835226 0.549907i \(-0.185337\pi\)
−0.893847 + 0.448373i \(0.852004\pi\)
\(258\) 1.83324 0.430703i 0.114133 0.0268144i
\(259\) 14.2337 16.4356i 0.884438 1.02126i
\(260\) 0 0
\(261\) 5.50000 8.29156i 0.340441 0.513235i
\(262\) 8.98266 + 5.18614i 0.554951 + 0.320401i
\(263\) −6.38458 3.68614i −0.393690 0.227297i 0.290068 0.957006i \(-0.406322\pi\)
−0.683758 + 0.729709i \(0.739656\pi\)
\(264\) −1.18614 + 1.11469i −0.0730019 + 0.0686046i
\(265\) 0 0
\(266\) −9.00000 1.73205i −0.551825 0.106199i
\(267\) 0.543620 + 2.31386i 0.0332690 + 0.141606i
\(268\) 1.18843 + 2.05842i 0.0725949 + 0.125738i
\(269\) −12.9891 + 22.4978i −0.791961 + 1.37172i 0.132790 + 0.991144i \(0.457606\pi\)
−0.924751 + 0.380572i \(0.875727\pi\)
\(270\) 0 0
\(271\) 7.67527 4.43132i 0.466239 0.269183i −0.248425 0.968651i \(-0.579913\pi\)
0.714664 + 0.699468i \(0.246580\pi\)
\(272\) 6.63325 0.402200
\(273\) −9.15759 + 0.372281i −0.554242 + 0.0225315i
\(274\) 8.74456 0.528278
\(275\) 0 0
\(276\) 0.686141 2.27567i 0.0413008 0.136979i
\(277\) −4.55134 + 7.88316i −0.273464 + 0.473653i −0.969746 0.244115i \(-0.921503\pi\)
0.696283 + 0.717768i \(0.254836\pi\)
\(278\) −4.10891 7.11684i −0.246436 0.426840i
\(279\) 10.1168 + 20.3422i 0.605680 + 1.21785i
\(280\) 0 0
\(281\) 11.3870i 0.679290i −0.940554 0.339645i \(-0.889693\pi\)
0.940554 0.339645i \(-0.110307\pi\)
\(282\) 10.0974 + 10.7446i 0.601289 + 0.639829i
\(283\) −13.8564 8.00000i −0.823678 0.475551i 0.0280052 0.999608i \(-0.491084\pi\)
−0.851683 + 0.524057i \(0.824418\pi\)
\(284\) 7.37228 + 4.25639i 0.437464 + 0.252570i
\(285\) 0 0
\(286\) 1.87953i 0.111139i
\(287\) −6.38458 18.4307i −0.376870 1.08793i
\(288\) 1.33591 + 2.68614i 0.0787191 + 0.158282i
\(289\) −13.5000 23.3827i −0.794118 1.37545i
\(290\) 0 0
\(291\) 7.55842 25.0684i 0.443083 1.46954i
\(292\) 1.73205 1.00000i 0.101361 0.0585206i
\(293\) 21.7244 1.26915 0.634576 0.772861i \(-0.281175\pi\)
0.634576 + 0.772861i \(0.281175\pi\)
\(294\) −7.55842 + 9.47999i −0.440816 + 0.552884i
\(295\) 0 0
\(296\) 7.11684 4.10891i 0.413658 0.238826i
\(297\) 0.819738 + 4.81386i 0.0475660 + 0.279328i
\(298\) −4.50506 + 7.80298i −0.260971 + 0.452015i
\(299\) 1.37228 + 2.37686i 0.0793611 + 0.137457i
\(300\) 0 0
\(301\) 0.941578 + 2.71810i 0.0542717 + 0.156669i
\(302\) 9.11684i 0.524615i
\(303\) 13.4140 12.6060i 0.770613 0.724194i
\(304\) −3.00000 1.73205i −0.172062 0.0993399i
\(305\) 0 0
\(306\) 11.0000 16.5831i 0.628828 0.947994i
\(307\) 24.1168i 1.37642i 0.725511 + 0.688210i \(0.241603\pi\)
−0.725511 + 0.688210i \(0.758397\pi\)
\(308\) −1.87953 1.62772i −0.107096 0.0927479i
\(309\) −3.56930 + 0.838574i −0.203050 + 0.0477048i
\(310\) 0 0
\(311\) −10.1168 + 17.5229i −0.573674 + 0.993632i 0.422511 + 0.906358i \(0.361149\pi\)
−0.996184 + 0.0872739i \(0.972184\pi\)
\(312\) −3.31662 1.00000i −0.187767 0.0566139i
\(313\) −2.69927 + 1.55842i −0.152572 + 0.0880872i −0.574342 0.818615i \(-0.694742\pi\)
0.421771 + 0.906703i \(0.361409\pi\)
\(314\) 8.00000 0.451466
\(315\) 0 0
\(316\) 9.11684 0.512863
\(317\) 0.967215 0.558422i 0.0543242 0.0313641i −0.472592 0.881281i \(-0.656682\pi\)
0.526916 + 0.849917i \(0.323348\pi\)
\(318\) 7.25061 + 2.18614i 0.406594 + 0.122593i
\(319\) −1.55842 + 2.69927i −0.0872549 + 0.151130i
\(320\) 0 0
\(321\) 10.5475 2.47805i 0.588707 0.138311i
\(322\) 3.56529 + 0.686141i 0.198686 + 0.0382371i
\(323\) 22.9783i 1.27854i
\(324\) 8.93070 + 1.11469i 0.496150 + 0.0619273i
\(325\) 0 0
\(326\) −3.00000 1.73205i −0.166155 0.0959294i
\(327\) 10.2448 9.62772i 0.566540 0.532414i
\(328\) 7.37228i 0.407066i
\(329\) −14.7446 + 17.0256i −0.812894 + 0.938649i
\(330\) 0 0
\(331\) 12.1168 + 20.9870i 0.666002 + 1.15355i 0.979013 + 0.203800i \(0.0653291\pi\)
−0.313011 + 0.949750i \(0.601338\pi\)
\(332\) −5.91470 + 10.2446i −0.324611 + 0.562243i
\(333\) 1.52967 24.6060i 0.0838255 1.34840i
\(334\) −12.6861 + 7.32435i −0.694155 + 0.400770i
\(335\) 0 0
\(336\) −3.87228 + 2.45060i −0.211250 + 0.133691i
\(337\) 0.644810 0.0351250 0.0175625 0.999846i \(-0.494409\pi\)
0.0175625 + 0.999846i \(0.494409\pi\)
\(338\) −7.79423 + 4.50000i −0.423950 + 0.244768i
\(339\) −7.37228 + 24.4511i −0.400407 + 1.32800i
\(340\) 0 0
\(341\) −3.55842 6.16337i −0.192699 0.333765i
\(342\) −9.30506 + 4.62772i −0.503160 + 0.250238i
\(343\) −15.5885 10.0000i −0.841698 0.539949i
\(344\) 1.08724i 0.0586201i
\(345\) 0 0
\(346\) −14.7446 8.51278i −0.792673 0.457650i
\(347\) 1.63086 + 0.941578i 0.0875492 + 0.0505466i 0.543135 0.839645i \(-0.317237\pi\)
−0.455586 + 0.890192i \(0.650570\pi\)
\(348\) 3.93398 + 4.18614i 0.210884 + 0.224401i
\(349\) 25.7407i 1.37787i −0.724824 0.688934i \(-0.758079\pi\)
0.724824 0.688934i \(-0.241921\pi\)
\(350\) 0 0
\(351\) −8.00000 + 6.63325i −0.427008 + 0.354057i
\(352\) −0.469882 0.813859i −0.0250448 0.0433788i
\(353\) 6.13592 10.6277i 0.326582 0.565656i −0.655249 0.755413i \(-0.727436\pi\)
0.981831 + 0.189756i \(0.0607698\pi\)
\(354\) −6.55842 + 21.7518i −0.348576 + 1.15610i
\(355\) 0 0
\(356\) −1.37228 −0.0727308
\(357\) 26.9205 + 14.1168i 1.42479 + 0.747143i
\(358\) −23.6588 −1.25041
\(359\) 23.7446 13.7089i 1.25319 0.723530i 0.281448 0.959576i \(-0.409185\pi\)
0.971742 + 0.236047i \(0.0758518\pi\)
\(360\) 0 0
\(361\) −3.50000 + 6.06218i −0.184211 + 0.319062i
\(362\) 4.00772 + 6.94158i 0.210641 + 0.364841i
\(363\) 4.00772 + 17.0584i 0.210351 + 0.895335i
\(364\) 1.00000 5.19615i 0.0524142 0.272352i
\(365\) 0 0
\(366\) −16.1168 + 15.1460i −0.842441 + 0.791696i
\(367\) −11.4607 6.61684i −0.598244 0.345396i 0.170106 0.985426i \(-0.445589\pi\)
−0.768351 + 0.640029i \(0.778922\pi\)
\(368\) 1.18843 + 0.686141i 0.0619512 + 0.0357676i
\(369\) −18.4307 12.2255i −0.959464 0.636436i
\(370\) 0 0
\(371\) −2.18614 + 11.3595i −0.113499 + 0.589757i
\(372\) −12.7692 + 3.00000i −0.662050 + 0.155543i
\(373\) −11.6819 20.2337i −0.604867 1.04766i −0.992072 0.125667i \(-0.959893\pi\)
0.387205 0.921994i \(-0.373440\pi\)
\(374\) −3.11684 + 5.39853i −0.161168 + 0.279151i
\(375\) 0 0
\(376\) −7.37228 + 4.25639i −0.380196 + 0.219506i
\(377\) −6.63325 −0.341630
\(378\) −0.294954 + 13.7446i −0.0151708 + 0.706944i
\(379\) 12.2337 0.628402 0.314201 0.949356i \(-0.398263\pi\)
0.314201 + 0.949356i \(0.398263\pi\)
\(380\) 0 0
\(381\) −12.5584 3.78651i −0.643387 0.193989i
\(382\) 8.51278 14.7446i 0.435552 0.754397i
\(383\) −7.82168 13.5475i −0.399669 0.692247i 0.594016 0.804453i \(-0.297542\pi\)
−0.993685 + 0.112206i \(0.964208\pi\)
\(384\) −1.68614 + 0.396143i −0.0860455 + 0.0202156i
\(385\) 0 0
\(386\) 17.9653i 0.914411i
\(387\) 2.71810 + 1.80298i 0.138169 + 0.0916509i
\(388\) 13.0916 + 7.55842i 0.664624 + 0.383721i
\(389\) −6.51087 3.75906i −0.330114 0.190592i 0.325777 0.945446i \(-0.394374\pi\)
−0.655892 + 0.754855i \(0.727707\pi\)
\(390\) 0 0
\(391\) 9.10268i 0.460343i
\(392\) −4.33013 5.50000i −0.218704 0.277792i
\(393\) 4.10891 + 17.4891i 0.207267 + 0.882210i
\(394\) 7.11684 + 12.3267i 0.358541 + 0.621012i
\(395\) 0 0
\(396\) −2.81386 0.174928i −0.141402 0.00879048i
\(397\) 6.92820 4.00000i 0.347717 0.200754i −0.315963 0.948772i \(-0.602327\pi\)
0.663679 + 0.748017i \(0.268994\pi\)
\(398\) 1.28962 0.0646428
\(399\) −8.48913 13.4140i −0.424988 0.671539i
\(400\) 0 0
\(401\) 14.3139 8.26411i 0.714800 0.412690i −0.0980358 0.995183i \(-0.531256\pi\)
0.812836 + 0.582493i \(0.197923\pi\)
\(402\) −1.18843 + 3.94158i −0.0592735 + 0.196588i
\(403\) 7.57301 13.1168i 0.377239 0.653397i
\(404\) 5.31386 + 9.20387i 0.264374 + 0.457910i
\(405\) 0 0
\(406\) −5.74456 + 6.63325i −0.285098 + 0.329203i
\(407\) 7.72281i 0.382806i
\(408\) 7.86797 + 8.37228i 0.389522 + 0.414490i
\(409\) −3.73369 2.15565i −0.184619 0.106590i 0.404842 0.914387i \(-0.367327\pi\)
−0.589461 + 0.807797i \(0.700660\pi\)
\(410\) 0 0
\(411\) 10.3723 + 11.0371i 0.511627 + 0.544421i
\(412\) 2.11684i 0.104289i
\(413\) −34.0786 6.55842i −1.67690 0.322719i
\(414\) 3.68614 1.83324i 0.181164 0.0900989i
\(415\) 0 0
\(416\) 1.00000 1.73205i 0.0490290 0.0849208i
\(417\) 4.10891 13.6277i 0.201214 0.667352i
\(418\) 2.81929 1.62772i 0.137896 0.0796143i
\(419\) −6.51087 −0.318077 −0.159039 0.987272i \(-0.550839\pi\)
−0.159039 + 0.987272i \(0.550839\pi\)
\(420\) 0 0
\(421\) −2.11684 −0.103169 −0.0515843 0.998669i \(-0.516427\pi\)
−0.0515843 + 0.998669i \(0.516427\pi\)
\(422\) −14.0588 + 8.11684i −0.684371 + 0.395122i
\(423\) −1.58457 + 25.4891i −0.0770446 + 1.23932i
\(424\) −2.18614 + 3.78651i −0.106168 + 0.183889i
\(425\) 0 0
\(426\) 3.37228 + 14.3537i 0.163388 + 0.695441i
\(427\) −25.5383 22.1168i −1.23589 1.07031i
\(428\) 6.25544i 0.302368i
\(429\) 2.37228 2.22938i 0.114535 0.107636i
\(430\) 0 0
\(431\) 14.7446 + 8.51278i 0.710221 + 0.410046i 0.811143 0.584848i \(-0.198846\pi\)
−0.100922 + 0.994894i \(0.532179\pi\)
\(432\) −1.80579 + 4.87228i −0.0868811 + 0.234418i
\(433\) 34.0000i 1.63394i 0.576683 + 0.816968i \(0.304347\pi\)
−0.576683 + 0.816968i \(0.695653\pi\)
\(434\) −6.55842 18.9325i −0.314814 0.908791i
\(435\) 0 0
\(436\) 4.05842 + 7.02939i 0.194363 + 0.336647i
\(437\) −2.37686 + 4.11684i −0.113701 + 0.196935i
\(438\) 3.31662 + 1.00000i 0.158474 + 0.0477818i
\(439\) 2.44158 1.40965i 0.116530 0.0672787i −0.440602 0.897703i \(-0.645235\pi\)
0.557132 + 0.830424i \(0.311902\pi\)
\(440\) 0 0
\(441\) −20.9307 + 1.70460i −0.996700 + 0.0811714i
\(442\) −13.2665 −0.631023
\(443\) 7.79423 4.50000i 0.370315 0.213801i −0.303281 0.952901i \(-0.598082\pi\)
0.673596 + 0.739100i \(0.264749\pi\)
\(444\) 13.6277 + 4.10891i 0.646743 + 0.195000i
\(445\) 0 0
\(446\) 0.441578 + 0.764836i 0.0209093 + 0.0362160i
\(447\) −15.1923 + 3.56930i −0.718572 + 0.168822i
\(448\) −0.866025 2.50000i −0.0409159 0.118114i
\(449\) 20.3971i 0.962598i −0.876557 0.481299i \(-0.840165\pi\)
0.876557 0.481299i \(-0.159835\pi\)
\(450\) 0 0
\(451\) 6.00000 + 3.46410i 0.282529 + 0.163118i
\(452\) −12.7692 7.37228i −0.600611 0.346763i
\(453\) 11.5070 10.8139i 0.540646 0.508079i
\(454\) 20.8395i 0.978047i
\(455\) 0 0
\(456\) −1.37228 5.84096i −0.0642630 0.273528i
\(457\) 1.40965 + 2.44158i 0.0659404 + 0.114212i 0.897111 0.441806i \(-0.145662\pi\)
−0.831170 + 0.556018i \(0.812329\pi\)
\(458\) 6.92820 12.0000i 0.323734 0.560723i
\(459\) 33.9783 5.78606i 1.58597 0.270070i
\(460\) 0 0
\(461\) 23.4891 1.09400 0.546999 0.837133i \(-0.315770\pi\)
0.546999 + 0.837133i \(0.315770\pi\)
\(462\) −0.174928 4.30298i −0.00813840 0.200193i
\(463\) −6.72582 −0.312576 −0.156288 0.987712i \(-0.549953\pi\)
−0.156288 + 0.987712i \(0.549953\pi\)
\(464\) −2.87228 + 1.65831i −0.133342 + 0.0769852i
\(465\) 0 0
\(466\) 0.255437 0.442430i 0.0118329 0.0204952i
\(467\) 18.2140 + 31.5475i 0.842843 + 1.45985i 0.887482 + 0.460843i \(0.152453\pi\)
−0.0446389 + 0.999003i \(0.514214\pi\)
\(468\) −2.67181 5.37228i −0.123505 0.248334i
\(469\) −6.17527 1.18843i −0.285147 0.0548766i
\(470\) 0 0
\(471\) 9.48913 + 10.0974i 0.437236 + 0.465261i
\(472\) −11.3595 6.55842i −0.522864 0.301876i
\(473\) −0.884861 0.510875i −0.0406859 0.0234900i
\(474\) 10.8139 + 11.5070i 0.496697 + 0.528534i
\(475\) 0 0
\(476\) −11.4891 + 13.2665i −0.526603 + 0.608069i
\(477\) 5.84096 + 11.7446i 0.267439 + 0.537747i
\(478\) 11.8294 + 20.4891i 0.541064 + 0.937151i
\(479\) 1.37228 2.37686i 0.0627011 0.108602i −0.832971 0.553317i \(-0.813362\pi\)
0.895672 + 0.444715i \(0.146695\pi\)
\(480\) 0 0
\(481\) −14.2337 + 8.21782i −0.649000 + 0.374701i
\(482\) 19.2549 0.877038
\(483\) 3.36291 + 5.31386i 0.153018 + 0.241789i
\(484\) −10.1168 −0.459857
\(485\) 0 0
\(486\) 9.18614 + 12.5942i 0.416692 + 0.571286i
\(487\) −7.25061 + 12.5584i −0.328556 + 0.569076i −0.982226 0.187704i \(-0.939895\pi\)
0.653669 + 0.756780i \(0.273229\pi\)
\(488\) −6.38458 11.0584i −0.289016 0.500591i
\(489\) −1.37228 5.84096i −0.0620567 0.264137i
\(490\) 0 0
\(491\) 30.2372i 1.36458i −0.731080 0.682292i \(-0.760983\pi\)
0.731080 0.682292i \(-0.239017\pi\)
\(492\) 9.30506 8.74456i 0.419505 0.394235i
\(493\) 19.0526 + 11.0000i 0.858084 + 0.495415i
\(494\) 6.00000 + 3.46410i 0.269953 + 0.155857i
\(495\) 0 0
\(496\) 7.57301i 0.340038i
\(497\) −21.2819 + 7.37228i −0.954626 + 0.330692i
\(498\) −19.9460 + 4.68614i −0.893803 + 0.209991i
\(499\) −3.11684 5.39853i −0.139529 0.241671i 0.787789 0.615945i \(-0.211226\pi\)
−0.927318 + 0.374273i \(0.877892\pi\)
\(500\) 0 0
\(501\) −24.2921 7.32435i −1.08529 0.327228i
\(502\) −0.967215 + 0.558422i −0.0431689 + 0.0249236i
\(503\) 6.13592 0.273587 0.136793 0.990600i \(-0.456320\pi\)
0.136793 + 0.990600i \(0.456320\pi\)
\(504\) −7.68614 1.98072i −0.342368 0.0882282i
\(505\) 0 0
\(506\) −1.11684 + 0.644810i −0.0496498 + 0.0286653i
\(507\) −14.9248 4.50000i −0.662834 0.199852i
\(508\) 3.78651 6.55842i 0.167999 0.290983i
\(509\) −5.87228 10.1711i −0.260284 0.450826i 0.706033 0.708179i \(-0.250483\pi\)
−0.966317 + 0.257353i \(0.917150\pi\)
\(510\) 0 0
\(511\) −1.00000 + 5.19615i −0.0442374 + 0.229864i
\(512\) 1.00000i 0.0441942i
\(513\) −16.8781 6.25544i −0.745185 0.276184i
\(514\) 1.62772 + 0.939764i 0.0717956 + 0.0414512i
\(515\) 0 0
\(516\) −1.37228 + 1.28962i −0.0604113 + 0.0567724i
\(517\) 8.00000i 0.351840i
\(518\) −4.10891 + 21.3505i −0.180535 + 0.938089i
\(519\) −6.74456 28.7075i −0.296053 1.26012i
\(520\) 0 0
\(521\) 7.37228 12.7692i 0.322986 0.559427i −0.658117 0.752916i \(-0.728647\pi\)
0.981103 + 0.193488i \(0.0619802\pi\)
\(522\) −0.617359 + 9.93070i −0.0270211 + 0.434655i
\(523\) −8.86263 + 5.11684i −0.387536 + 0.223744i −0.681092 0.732198i \(-0.738495\pi\)
0.293556 + 0.955942i \(0.405161\pi\)
\(524\) −10.3723 −0.453115
\(525\) 0 0
\(526\) 7.37228 0.321447
\(527\) −43.5036 + 25.1168i −1.89505 + 1.09411i
\(528\) 0.469882 1.55842i 0.0204490 0.0678216i
\(529\) −10.5584 + 18.2877i −0.459062 + 0.795118i
\(530\) 0 0
\(531\) −35.2337 + 17.5229i −1.52901 + 0.760429i
\(532\) 8.66025 3.00000i 0.375470 0.130066i
\(533\) 14.7446i 0.638658i
\(534\) −1.62772 1.73205i −0.0704383 0.0749532i
\(535\) 0 0
\(536\) −2.05842 1.18843i −0.0889103 0.0513324i
\(537\) −28.0627 29.8614i −1.21099 1.28861i
\(538\) 25.9783i 1.12000i
\(539\) 6.51087 0.939764i 0.280443 0.0404785i
\(540\) 0 0
\(541\) −19.1753 33.2125i −0.824409 1.42792i −0.902370 0.430962i \(-0.858174\pi\)
0.0779610 0.996956i \(-0.475159\pi\)
\(542\) −4.43132 + 7.67527i −0.190341 + 0.329681i
\(543\) −4.00772 + 13.2921i −0.171988 + 0.570419i
\(544\) −5.74456 + 3.31662i −0.246296 + 0.142199i
\(545\) 0 0
\(546\) 7.74456 4.90120i 0.331437 0.209752i
\(547\) 9.30506 0.397856 0.198928 0.980014i \(-0.436254\pi\)
0.198928 + 0.980014i \(0.436254\pi\)
\(548\) −7.57301 + 4.37228i −0.323503 + 0.186775i
\(549\) −38.2337 2.37686i −1.63177 0.101442i
\(550\) 0 0
\(551\) −5.74456 9.94987i −0.244727 0.423879i
\(552\) 0.543620 + 2.31386i 0.0231380 + 0.0984844i
\(553\) −15.7908 + 18.2337i −0.671495 + 0.775375i
\(554\) 9.10268i 0.386736i
\(555\) 0 0
\(556\) 7.11684 + 4.10891i 0.301821 + 0.174257i
\(557\) 24.1287 + 13.9307i 1.02237 + 0.590263i 0.914788 0.403934i \(-0.132357\pi\)
0.107577 + 0.994197i \(0.465691\pi\)
\(558\) −18.9325 12.5584i −0.801478 0.531640i
\(559\) 2.17448i 0.0919708i
\(560\) 0 0
\(561\) −10.5109 + 2.46943i −0.443769 + 0.104260i
\(562\) 5.69349 + 9.86141i 0.240165 + 0.415978i
\(563\) 0.718549 1.24456i 0.0302832 0.0524521i −0.850487 0.525997i \(-0.823692\pi\)
0.880770 + 0.473545i \(0.157026\pi\)
\(564\) −14.1168 4.25639i −0.594426 0.179226i
\(565\) 0 0
\(566\) 16.0000 0.672530
\(567\) −17.6978 + 15.9307i −0.743238 + 0.669027i
\(568\) −8.51278 −0.357188
\(569\) 9.86141 5.69349i 0.413412 0.238683i −0.278843 0.960337i \(-0.589951\pi\)
0.692255 + 0.721653i \(0.256618\pi\)
\(570\) 0 0
\(571\) 0.116844 0.202380i 0.00488977 0.00846933i −0.863570 0.504229i \(-0.831777\pi\)
0.868460 + 0.495759i \(0.165110\pi\)
\(572\) 0.939764 + 1.62772i 0.0392935 + 0.0680583i
\(573\) 28.7075 6.74456i 1.19927 0.281758i
\(574\) 14.7446 + 12.7692i 0.615426 + 0.532975i
\(575\) 0 0
\(576\) −2.50000 1.65831i −0.104167 0.0690963i
\(577\) 30.4121 + 17.5584i 1.26607 + 0.730967i 0.974242 0.225504i \(-0.0724028\pi\)
0.291829 + 0.956470i \(0.405736\pi\)
\(578\) 23.3827 + 13.5000i 0.972592 + 0.561526i
\(579\) 22.6753 21.3094i 0.942352 0.885588i
\(580\) 0 0
\(581\) −10.2446 29.5735i −0.425016 1.22692i
\(582\) 5.98844 + 25.4891i 0.248229 + 1.05656i
\(583\) −2.05446 3.55842i −0.0850869 0.147375i
\(584\) −1.00000 + 1.73205i −0.0413803 + 0.0716728i
\(585\) 0 0
\(586\) −18.8139 + 10.8622i −0.777193 + 0.448713i
\(587\) −0.0549029 −0.00226608 −0.00113304 0.999999i \(-0.500361\pi\)
−0.00113304 + 0.999999i \(0.500361\pi\)
\(588\) 1.80579 11.9891i 0.0744695 0.494423i
\(589\) 26.2337 1.08094
\(590\) 0 0
\(591\) −7.11684 + 23.6039i −0.292748 + 0.970935i
\(592\) −4.10891 + 7.11684i −0.168875 + 0.292500i
\(593\) 13.7089 + 23.7446i 0.562958 + 0.975072i 0.997236 + 0.0742935i \(0.0236702\pi\)
−0.434278 + 0.900779i \(0.642997\pi\)
\(594\) −3.11684 3.75906i −0.127886 0.154236i
\(595\) 0 0
\(596\) 9.01011i 0.369069i
\(597\) 1.52967 + 1.62772i 0.0626053 + 0.0666181i
\(598\) −2.37686 1.37228i −0.0971971 0.0561168i
\(599\) −1.62772 0.939764i −0.0665068 0.0383977i 0.466378 0.884586i \(-0.345559\pi\)
−0.532885 + 0.846188i \(0.678892\pi\)
\(600\) 0 0
\(601\) 19.2549i 0.785425i −0.919661 0.392713i \(-0.871537\pi\)
0.919661 0.392713i \(-0.128463\pi\)
\(602\) −2.17448 1.88316i −0.0886252 0.0767517i
\(603\) −6.38458 + 3.17527i −0.260000 + 0.129307i
\(604\) 4.55842 + 7.89542i 0.185480 + 0.321260i
\(605\) 0 0
\(606\) −5.31386 + 17.6241i −0.215861 + 0.715929i
\(607\) −35.9118 + 20.7337i −1.45762 + 0.841554i −0.998894 0.0470257i \(-0.985026\pi\)
−0.458721 + 0.888580i \(0.651692\pi\)
\(608\) 3.46410 0.140488
\(609\) −15.1861 + 0.617359i −0.615373 + 0.0250166i
\(610\) 0 0
\(611\) 14.7446 8.51278i 0.596501 0.344390i
\(612\) −1.23472 + 19.8614i −0.0499105 + 0.802850i
\(613\) 13.4140 23.2337i 0.541785 0.938400i −0.457016 0.889458i \(-0.651082\pi\)
0.998802 0.0489415i \(-0.0155848\pi\)
\(614\) −12.0584 20.8858i −0.486638 0.842882i
\(615\) 0 0
\(616\) 2.44158 + 0.469882i 0.0983740 + 0.0189321i
\(617\) 46.9783i 1.89127i 0.325225 + 0.945637i \(0.394560\pi\)
−0.325225 + 0.945637i \(0.605440\pi\)
\(618\) 2.67181 2.51087i 0.107476 0.101002i
\(619\) 14.2337 + 8.21782i 0.572100 + 0.330302i 0.757988 0.652269i \(-0.226183\pi\)
−0.185888 + 0.982571i \(0.559516\pi\)
\(620\) 0 0
\(621\) 6.68614 + 2.47805i 0.268306 + 0.0994408i
\(622\) 20.2337i 0.811297i
\(623\) 2.37686 2.74456i 0.0952269 0.109959i
\(624\) 3.37228 0.792287i 0.134999 0.0317169i
\(625\) 0 0
\(626\) 1.55842 2.69927i 0.0622871 0.107884i
\(627\) 5.39853 + 1.62772i 0.215597 + 0.0650048i
\(628\) −6.92820 + 4.00000i −0.276465 + 0.159617i
\(629\) 54.5109 2.17349
\(630\) 0 0
\(631\) 12.8832 0.512870 0.256435 0.966561i \(-0.417452\pi\)
0.256435 + 0.966561i \(0.417452\pi\)
\(632\) −7.89542 + 4.55842i −0.314063 + 0.181324i
\(633\) −26.9205 8.11684i −1.06999 0.322616i
\(634\) −0.558422 + 0.967215i −0.0221778 + 0.0384130i
\(635\) 0 0
\(636\) −7.37228 + 1.73205i −0.292330 + 0.0686803i
\(637\) 8.66025 + 11.0000i 0.343132 + 0.435836i
\(638\) 3.11684i 0.123397i
\(639\) −14.1168 + 21.2819i −0.558454 + 0.841901i
\(640\) 0 0
\(641\) 7.80298 + 4.50506i 0.308199 + 0.177939i 0.646120 0.763235i \(-0.276390\pi\)
−0.337921 + 0.941174i \(0.609724\pi\)
\(642\) −7.89542 + 7.41983i −0.311607 + 0.292837i
\(643\) 18.2337i 0.719066i 0.933132 + 0.359533i \(0.117064\pi\)
−0.933132 + 0.359533i \(0.882936\pi\)
\(644\) −3.43070 + 1.18843i −0.135189 + 0.0468307i
\(645\) 0 0
\(646\) −11.4891 19.8997i −0.452034 0.782945i
\(647\) 21.0333 36.4307i 0.826903 1.43224i −0.0735524 0.997291i \(-0.523434\pi\)
0.900456 0.434947i \(-0.143233\pi\)
\(648\) −8.29156 + 3.50000i −0.325723 + 0.137493i
\(649\) 10.6753 6.16337i 0.419041 0.241933i
\(650\) 0 0
\(651\) 16.1168 30.7345i 0.631669 1.20458i
\(652\) 3.46410 0.135665
\(653\) −14.1788 + 8.18614i −0.554860 + 0.320348i −0.751080 0.660211i \(-0.770467\pi\)
0.196220 + 0.980560i \(0.437133\pi\)
\(654\) −4.05842 + 13.4603i −0.158697 + 0.526338i
\(655\) 0 0
\(656\) 3.68614 + 6.38458i 0.143920 + 0.249276i
\(657\) 2.67181 + 5.37228i 0.104237 + 0.209593i
\(658\) 4.25639 22.1168i 0.165931 0.862204i
\(659\) 16.1407i 0.628752i 0.949299 + 0.314376i \(0.101795\pi\)
−0.949299 + 0.314376i \(0.898205\pi\)
\(660\) 0 0
\(661\) 11.0584 + 6.38458i 0.430123 + 0.248331i 0.699399 0.714732i \(-0.253451\pi\)
−0.269276 + 0.963063i \(0.586784\pi\)
\(662\) −20.9870 12.1168i −0.815683 0.470935i
\(663\) −15.7359 16.7446i −0.611133 0.650305i
\(664\) 11.8294i 0.459070i
\(665\) 0 0
\(666\) 10.9783 + 22.0742i 0.425399 + 0.855359i
\(667\) 2.27567 + 3.94158i 0.0881143 + 0.152619i
\(668\) 7.32435 12.6861i 0.283387 0.490842i
\(669\) −0.441578 + 1.46455i −0.0170724 + 0.0566227i
\(670\) 0 0
\(671\) 12.0000 0.463255
\(672\) 2.12819 4.05842i 0.0820969 0.156557i
\(673\) 46.9678 1.81047 0.905237 0.424907i \(-0.139693\pi\)
0.905237 + 0.424907i \(0.139693\pi\)
\(674\) −0.558422 + 0.322405i −0.0215096 + 0.0124186i
\(675\) 0 0
\(676\) 4.50000 7.79423i 0.173077 0.299778i
\(677\) 0.912312 + 1.58017i 0.0350630 + 0.0607309i 0.883024 0.469327i \(-0.155503\pi\)
−0.847961 + 0.530058i \(0.822170\pi\)
\(678\) −5.84096 24.8614i −0.224321 0.954797i
\(679\) −37.7921 + 13.0916i −1.45033 + 0.502408i
\(680\) 0 0
\(681\) −26.3030 + 24.7186i −1.00793 + 0.947219i
\(682\) 6.16337 + 3.55842i 0.236008 + 0.136259i
\(683\) −27.6940 15.9891i −1.05968 0.611807i −0.134337 0.990936i \(-0.542890\pi\)
−0.925344 + 0.379129i \(0.876224\pi\)
\(684\) 5.74456 8.66025i 0.219649 0.331133i
\(685\) 0 0
\(686\) 18.5000 + 0.866025i 0.706333 + 0.0330650i
\(687\) 23.3639 5.48913i 0.891386 0.209423i
\(688\) −0.543620 0.941578i −0.0207253 0.0358973i
\(689\) 4.37228 7.57301i 0.166571 0.288509i
\(690\) 0 0
\(691\) 8.23369 4.75372i 0.313224 0.180840i −0.335144 0.942167i \(-0.608785\pi\)
0.648368 + 0.761327i \(0.275452\pi\)
\(692\) 17.0256 0.647214
\(693\) 5.22360 5.32473i 0.198428 0.202270i
\(694\) −1.88316 −0.0714836
\(695\) 0 0
\(696\) −5.50000 1.65831i −0.208477 0.0628582i
\(697\) 24.4511 42.3505i 0.926151 1.60414i
\(698\) 12.8704 + 22.2921i 0.487150 + 0.843769i
\(699\) 0.861407 0.202380i 0.0325814 0.00765470i
\(700\) 0 0
\(701\) 39.2473i 1.48235i 0.671313 + 0.741174i \(0.265731\pi\)
−0.671313 + 0.741174i \(0.734269\pi\)
\(702\) 3.61158 9.74456i 0.136310 0.367785i
\(703\) −24.6535 14.2337i −0.929823 0.536834i
\(704\) 0.813859 + 0.469882i 0.0306735 + 0.0177093i
\(705\) 0 0
\(706\) 12.2718i 0.461857i
\(707\) −27.6116 5.31386i −1.03844 0.199848i
\(708\) −5.19615 22.1168i −0.195283 0.831202i
\(709\) 6.05842 + 10.4935i 0.227529 + 0.394091i 0.957075 0.289840i \(-0.0936021\pi\)
−0.729546 + 0.683931i \(0.760269\pi\)
\(710\) 0 0
\(711\) −1.69702 + 27.2978i −0.0636430 + 1.02375i
\(712\) 1.18843 0.686141i 0.0445383 0.0257142i
\(713\) −10.3923 −0.389195
\(714\) −30.3723 + 1.23472i −1.13665 + 0.0462081i
\(715\) 0 0
\(716\) 20.4891 11.8294i 0.765715 0.442086i
\(717\) −11.8294 + 39.2337i −0.441777 + 1.46521i
\(718\) −13.7089 + 23.7446i −0.511613 + 0.886139i
\(719\) 22.3723 + 38.7499i 0.834345 + 1.44513i 0.894562 + 0.446943i \(0.147487\pi\)
−0.0602171 + 0.998185i \(0.519179\pi\)
\(720\) 0 0
\(721\) 4.23369 + 3.66648i 0.157671 + 0.136547i
\(722\) 7.00000i 0.260513i
\(723\) 22.8391 + 24.3030i 0.849394 + 0.903838i
\(724\) −6.94158 4.00772i −0.257982 0.148946i
\(725\) 0 0
\(726\) −12.0000 12.7692i −0.445362 0.473908i
\(727\) 19.0000i 0.704671i −0.935874 0.352335i \(-0.885388\pi\)
0.935874 0.352335i \(-0.114612\pi\)
\(728\) 1.73205 + 5.00000i 0.0641941 + 0.185312i
\(729\) −5.00000 + 26.5330i −0.185185 + 0.982704i
\(730\) 0 0
\(731\) −3.60597 + 6.24572i −0.133372 + 0.231006i
\(732\) 6.38458 21.1753i 0.235981 0.782660i
\(733\) 28.1176 16.2337i 1.03855 0.599605i 0.119125 0.992879i \(-0.461991\pi\)
0.919421 + 0.393274i \(0.128658\pi\)
\(734\) 13.2337 0.488464
\(735\) 0 0
\(736\) −1.37228 −0.0505830
\(737\) 1.93443 1.11684i 0.0712557 0.0411395i
\(738\) 22.0742 + 1.37228i 0.812564 + 0.0505144i
\(739\) −0.883156 + 1.52967i −0.0324874 + 0.0562699i −0.881812 0.471601i \(-0.843676\pi\)
0.849325 + 0.527871i \(0.177010\pi\)
\(740\) 0 0
\(741\) 2.74456 + 11.6819i 0.100824 + 0.429146i
\(742\) −3.78651 10.9307i −0.139007 0.401279i
\(743\) 21.6060i 0.792646i 0.918111 + 0.396323i \(0.129714\pi\)
−0.918111 + 0.396323i \(0.870286\pi\)
\(744\) 9.55842 8.98266i 0.350429 0.329320i
\(745\) 0 0
\(746\) 20.2337 + 11.6819i 0.740808 + 0.427706i
\(747\) −29.5735 19.6168i −1.08204 0.717743i
\(748\) 6.23369i 0.227926i
\(749\) −12.5109 10.8347i −0.457137 0.395893i
\(750\) 0 0
\(751\) −12.4416 21.5494i −0.454000 0.786350i 0.544630 0.838676i \(-0.316670\pi\)
−0.998630 + 0.0523257i \(0.983337\pi\)
\(752\) 4.25639 7.37228i 0.155215 0.268839i
\(753\) −1.85208 0.558422i −0.0674934 0.0203500i
\(754\) 5.74456 3.31662i 0.209205 0.120784i
\(755\) 0 0
\(756\) −6.61684 12.0506i −0.240652 0.438277i
\(757\) −25.5383 −0.928206 −0.464103 0.885781i \(-0.653623\pi\)
−0.464103 + 0.885781i \(0.653623\pi\)
\(758\) −10.5947 + 6.11684i −0.384816 + 0.222174i
\(759\) −2.13859 0.644810i −0.0776260 0.0234051i
\(760\) 0 0
\(761\) −3.51087 6.08101i −0.127269 0.220437i 0.795349 0.606152i \(-0.207288\pi\)
−0.922618 + 0.385716i \(0.873955\pi\)
\(762\) 12.7692 3.00000i 0.462578 0.108679i
\(763\) −21.0882 4.05842i −0.763443 0.146925i
\(764\) 17.0256i 0.615963i
\(765\) 0 0
\(766\) 13.5475 + 7.82168i 0.489493 + 0.282609i
\(767\) 22.7190 + 13.1168i 0.820337 + 0.473622i
\(768\) 1.26217 1.18614i 0.0455446 0.0428012i
\(769\) 30.5321i 1.10102i −0.834830 0.550508i \(-0.814434\pi\)
0.834830 0.550508i \(-0.185566\pi\)
\(770\) 0 0
\(771\) 0.744563 + 3.16915i 0.0268148 + 0.114134i
\(772\) 8.98266 + 15.5584i 0.323293 + 0.559960i
\(773\) −4.25639 + 7.37228i −0.153092 + 0.265163i −0.932363 0.361525i \(-0.882256\pi\)
0.779271 + 0.626687i \(0.215590\pi\)
\(774\) −3.25544 0.202380i −0.117014 0.00727439i
\(775\) 0 0
\(776\) −15.1168 −0.542663
\(777\) −31.8217 + 20.1386i −1.14160 + 0.722468i
\(778\) 7.51811 0.269537
\(779\) −22.1168 + 12.7692i −0.792418 + 0.457503i
\(780\) 0 0
\(781\) 4.00000 6.92820i 0.143131 0.247911i
\(782\) 4.55134 + 7.88316i 0.162756 + 0.281901i
\(783\) −13.2665 + 11.0000i −0.474106 + 0.393108i
\(784\) 6.50000 + 2.59808i 0.232143 + 0.0927884i
\(785\) 0 0
\(786\) −12.3030 13.0916i −0.438833 0.466961i
\(787\) −8.55906 4.94158i −0.305098 0.176148i 0.339633 0.940558i \(-0.389697\pi\)
−0.644731 + 0.764410i \(0.723030\pi\)
\(788\) −12.3267 7.11684i −0.439122 0.253527i
\(789\) 8.74456 + 9.30506i 0.311315 + 0.331269i
\(790\) 0 0
\(791\) 36.8614 12.7692i 1.31064 0.454019i
\(792\) 2.52434 1.25544i 0.0896984 0.0446100i
\(793\) 12.7692 + 22.1168i 0.453446 + 0.785392i
\(794\) −4.00000 + 6.92820i −0.141955 + 0.245873i
\(795\) 0 0
\(796\) −1.11684 + 0.644810i −0.0395855 + 0.0228547i
\(797\) −0.939764 −0.0332881 −0.0166441 0.999861i \(-0.505298\pi\)
−0.0166441 + 0.999861i \(0.505298\pi\)
\(798\) 14.0588 + 7.37228i 0.497676 + 0.260976i
\(799\) −56.4674 −1.99767
\(800\) 0 0
\(801\) 0.255437 4.10891i 0.00902544 0.145181i
\(802\) −8.26411 + 14.3139i −0.291816 + 0.505440i
\(803\) −0.939764 1.62772i −0.0331635 0.0574409i
\(804\) −0.941578 4.00772i −0.0332069 0.141341i
\(805\) 0 0
\(806\) 15.1460i 0.533496i
\(807\) 32.7889 30.8139i 1.15423 1.08470i
\(808\) −9.20387 5.31386i −0.323791 0.186941i
\(809\) 36.4307 + 21.0333i 1.28084 + 0.739491i 0.977001 0.213234i \(-0.0683998\pi\)
0.303834 + 0.952725i \(0.401733\pi\)
\(810\) 0 0
\(811\) 10.3923i 0.364923i 0.983213 + 0.182462i \(0.0584065\pi\)
−0.983213 + 0.182462i \(0.941593\pi\)
\(812\) 1.65831 8.61684i 0.0581954 0.302392i
\(813\) −14.9436 + 3.51087i −0.524097 + 0.123132i
\(814\) −3.86141 6.68815i −0.135342 0.234420i
\(815\) 0 0
\(816\) −11.0000 3.31662i −0.385077 0.116105i
\(817\) 3.26172 1.88316i 0.114113 0.0658833i
\(818\) 4.31129 0.150741
\(819\) 15.3723 + 3.96143i 0.537151 + 0.138424i
\(820\) 0 0
\(821\) −4.06930 + 2.34941i −0.142019 + 0.0819950i −0.569326 0.822112i \(-0.692796\pi\)
0.427307 + 0.904107i \(0.359462\pi\)
\(822\) −14.5012 4.37228i −0.505788 0.152501i
\(823\) 6.82701 11.8247i 0.237975 0.412184i −0.722158 0.691728i \(-0.756850\pi\)
0.960133 + 0.279544i \(0.0901831\pi\)
\(824\) 1.05842 + 1.83324i 0.0368719 + 0.0638640i
\(825\) 0 0
\(826\) 32.7921 11.3595i 1.14098 0.395248i
\(827\) 33.0000i 1.14752i −0.819023 0.573761i \(-0.805484\pi\)
0.819023 0.573761i \(-0.194516\pi\)
\(828\) −2.27567 + 3.43070i −0.0790850 + 0.119225i
\(829\) −1.11684 0.644810i −0.0387896 0.0223952i 0.480480 0.877006i \(-0.340463\pi\)
−0.519269 + 0.854611i \(0.673796\pi\)
\(830\) 0 0
\(831\) 11.4891 10.7971i 0.398553 0.374546i
\(832\) 2.00000i 0.0693375i
\(833\) −6.63325 45.9565i −0.229828 1.59230i
\(834\) 3.25544 + 13.8564i 0.112727 + 0.479808i
\(835\) 0 0
\(836\) −1.62772 + 2.81929i −0.0562958 + 0.0975072i
\(837\) −6.60580 38.7921i −0.228330 1.34085i
\(838\) 5.63858 3.25544i 0.194782 0.112457i
\(839\) −55.7228 −1.92377 −0.961883 0.273463i \(-0.911831\pi\)
−0.961883 + 0.273463i \(0.911831\pi\)
\(840\) 0 0
\(841\) 18.0000 0.620690
\(842\) 1.83324 1.05842i 0.0631776 0.0364756i
\(843\) −5.69349 + 18.8832i −0.196094 + 0.650370i
\(844\) 8.11684 14.0588i 0.279393 0.483923i
\(845\) 0 0
\(846\) −11.3723 22.8665i −0.390987 0.786167i
\(847\) 17.5229 20.2337i 0.602094 0.695238i
\(848\) 4.37228i 0.150145i
\(849\) 18.9783 + 20.1947i 0.651332 + 0.693080i
\(850\) 0 0
\(851\) 9.76631 + 5.63858i 0.334785 + 0.193288i
\(852\) −10.0974 10.7446i −0.345930 0.368103i
\(853\) 38.4674i 1.31710i 0.752538 + 0.658549i \(0.228829\pi\)
−0.752538 + 0.658549i \(0.771171\pi\)
\(854\) 33.1753 + 6.38458i 1.13523 + 0.218476i
\(855\) 0 0
\(856\) −3.12772 5.41737i −0.106903 0.185162i
\(857\) 12.2718 21.2554i 0.419198 0.726072i −0.576661 0.816983i \(-0.695645\pi\)
0.995859 + 0.0909115i \(0.0289780\pi\)
\(858\) −0.939764 + 3.11684i −0.0320830 + 0.106407i
\(859\) 40.4674 23.3639i 1.38073 0.797164i 0.388483 0.921456i \(-0.372999\pi\)
0.992246 + 0.124291i \(0.0396658\pi\)
\(860\) 0 0
\(861\) 1.37228 + 33.7562i 0.0467672 + 1.15041i
\(862\) −17.0256 −0.579893
\(863\) 11.5807 6.68614i 0.394213 0.227599i −0.289771 0.957096i \(-0.593579\pi\)
0.683984 + 0.729497i \(0.260246\pi\)
\(864\) −0.872281 5.12241i −0.0296756 0.174268i
\(865\) 0 0
\(866\) −17.0000 29.4449i −0.577684 1.00058i
\(867\) 10.6959 + 45.5258i 0.363251 + 1.54614i
\(868\) 15.1460 + 13.1168i 0.514090 + 0.445215i
\(869\) 8.56768i 0.290639i
\(870\) 0 0
\(871\) 4.11684 + 2.37686i 0.139494 + 0.0805369i
\(872\) −7.02939 4.05842i −0.238045 0.137436i
\(873\) −25.0684 + 37.7921i −0.848438 + 1.27907i
\(874\) 4.75372i 0.160797i
\(875\) 0 0
\(876\) −3.37228 + 0.792287i −0.113939 + 0.0267689i
\(877\) 14.0588 + 24.3505i 0.474731 + 0.822259i 0.999581 0.0289358i \(-0.00921184\pi\)
−0.524850 + 0.851195i \(0.675879\pi\)
\(878\) −1.40965 + 2.44158i −0.0475732 + 0.0823993i
\(879\) −36.0258 10.8622i −1.21512 0.366372i
\(880\) 0 0
\(881\) −0.350532 −0.0118097 −0.00590486 0.999983i \(-0.501880\pi\)
−0.00590486 + 0.999983i \(0.501880\pi\)
\(882\) 17.2742 11.9416i 0.581653 0.402094i
\(883\) 44.5532 1.49934 0.749668 0.661815i \(-0.230213\pi\)
0.749668 + 0.661815i \(0.230213\pi\)
\(884\) 11.4891 6.63325i 0.386421 0.223100i
\(885\) 0 0
\(886\) −4.50000 + 7.79423i −0.151180 + 0.261852i
\(887\) −4.06262 7.03667i −0.136410 0.236268i 0.789725 0.613460i \(-0.210223\pi\)
−0.926135 + 0.377192i \(0.876890\pi\)
\(888\) −13.8564 + 3.25544i −0.464991 + 0.109245i
\(889\) 6.55842 + 18.9325i 0.219962 + 0.634977i
\(890\) 0 0
\(891\) 1.04755 8.39275i 0.0350942 0.281168i
\(892\) −0.764836 0.441578i −0.0256086 0.0147851i
\(893\) 25.5383 + 14.7446i 0.854608 + 0.493408i
\(894\) 11.3723 10.6873i 0.380346 0.357435i
\(895\) 0 0
\(896\) 2.00000 + 1.73205i 0.0668153 + 0.0578638i
\(897\) −1.08724 4.62772i −0.0363019 0.154515i
\(898\) 10.1985 + 17.6644i 0.340330 + 0.589468i
\(899\) 12.5584 21.7518i 0.418847 0.725464i
\(900\) 0 0
\(901\) −25.1168 + 14.5012i −0.836763 + 0.483106i
\(902\) −6.92820 −0.230684
\(903\) −0.202380 4.97825i −0.00673477 0.165666i
\(904\) 14.7446 0.490397
\(905\) 0 0
\(906\) −4.55842 + 15.1186i −0.151443 + 0.502281i
\(907\) −2.47805 + 4.29211i −0.0822823 + 0.142517i −0.904230 0.427046i \(-0.859554\pi\)
0.821948 + 0.569563i \(0.192888\pi\)
\(908\) −10.4198 18.0475i −0.345792 0.598929i
\(909\) −28.5475 + 14.1976i −0.946862 + 0.470906i
\(910\) 0 0
\(911\) 37.8102i 1.25271i −0.779539 0.626353i \(-0.784547\pi\)
0.779539 0.626353i \(-0.215453\pi\)
\(912\) 4.10891 + 4.37228i 0.136060 + 0.144781i
\(913\) 9.62747 + 5.55842i 0.318623 + 0.183957i
\(914\) −2.44158 1.40965i −0.0807602 0.0466269i
\(915\) 0 0
\(916\) 13.8564i 0.457829i
\(917\) 17.9653 20.7446i 0.593267 0.685046i
\(918\) −26.5330 + 22.0000i −0.875719 + 0.726108i
\(919\) 8.11684 + 14.0588i 0.267750 + 0.463757i 0.968280 0.249866i \(-0.0803865\pi\)
−0.700530 + 0.713622i \(0.747053\pi\)
\(920\) 0 0
\(921\) 12.0584 39.9933i 0.397339 1.31782i
\(922\) −20.3422 + 11.7446i −0.669934 + 0.386787i
\(923\) 17.0256 0.560403
\(924\) 2.30298 + 3.63903i 0.0757626 + 0.119715i
\(925\) 0 0
\(926\) 5.82473 3.36291i 0.191413 0.110512i
\(927\) 6.33830 + 0.394031i 0.208177 + 0.0129417i
\(928\) 1.65831 2.87228i 0.0544368 0.0942873i
\(929\) −17.0584 29.5461i −0.559669 0.969375i −0.997524 0.0703291i \(-0.977595\pi\)
0.437855 0.899046i \(-0.355738\pi\)
\(930\) 0 0
\(931\) −9.00000 + 22.5167i −0.294963 + 0.737954i
\(932\) 0.510875i 0.0167343i
\(933\) 25.5383 24.0000i 0.836087 0.785725i
\(934\) −31.5475 18.2140i −1.03227 0.595980i
\(935\) 0 0
\(936\) 5.00000 + 3.31662i 0.163430 + 0.108407i
\(937\) 1.35053i 0.0441200i −0.999757 0.0220600i \(-0.992978\pi\)
0.999757 0.0220600i \(-0.00702248\pi\)
\(938\) 5.94215 2.05842i 0.194018 0.0672099i
\(939\) 5.25544 1.23472i 0.171505 0.0402935i
\(940\) 0 0
\(941\) 13.6753 23.6863i 0.445801 0.772150i −0.552307 0.833641i \(-0.686252\pi\)
0.998108 + 0.0614911i \(0.0195856\pi\)
\(942\) −13.2665 4.00000i −0.432246 0.130327i
\(943\) 8.76144 5.05842i 0.285312 0.164725i
\(944\) 13.1168 0.426917
\(945\) 0 0
\(946\) 1.02175 0.0332199
\(947\) −22.4155 + 12.9416i −0.728405 + 0.420545i −0.817838 0.575448i \(-0.804828\pi\)
0.0894334 + 0.995993i \(0.471494\pi\)
\(948\) −15.1186 4.55842i −0.491029 0.148051i
\(949\) 2.00000 3.46410i 0.0649227 0.112449i
\(950\) 0 0
\(951\) −1.88316 + 0.442430i −0.0610655 + 0.0143468i
\(952\) 3.31662 17.2337i 0.107492 0.558547i
\(953\) 48.0000i 1.55487i −0.628962 0.777436i \(-0.716520\pi\)
0.628962 0.777436i \(-0.283480\pi\)
\(954\) −10.9307 7.25061i −0.353895 0.234747i
\(955\) 0 0
\(956\) −20.4891 11.8294i −0.662666 0.382590i
\(957\) 3.93398 3.69702i 0.127168 0.119508i
\(958\) 2.74456i 0.0886728i
\(959\) 4.37228 22.7190i 0.141188 0.733636i
\(960\) 0 0
\(961\) 13.1753 + 22.8202i 0.425009 + 0.736136i
\(962\) 8.21782 14.2337i 0.264953 0.458913i
\(963\) −18.7302 1.16439i −0.603571 0.0375220i
\(964\) −16.6753 + 9.62747i −0.537074 + 0.310080i
\(965\) 0 0
\(966\) −5.56930 2.92048i −0.179189 0.0939649i
\(967\) 27.6751 0.889973 0.444986 0.895537i \(-0.353209\pi\)
0.444986 + 0.895537i \(0.353209\pi\)
\(968\) 8.76144 5.05842i 0.281603 0.162584i
\(969\) 11.4891 38.1051i 0.369084 1.22411i
\(970\) 0 0
\(971\) 17.1861 + 29.7673i 0.551530 + 0.955277i 0.998165 + 0.0605609i \(0.0192889\pi\)
−0.446635 + 0.894716i \(0.647378\pi\)
\(972\) −14.2525 6.31386i −0.457151 0.202517i
\(973\) −20.5446 + 7.11684i −0.658628 + 0.228156i
\(974\) 14.5012i 0.464649i
\(975\) 0 0
\(976\) 11.0584 + 6.38458i 0.353971 + 0.204366i
\(977\) 24.6535 + 14.2337i 0.788734 + 0.455376i 0.839517 0.543334i \(-0.182838\pi\)
−0.0507824 + 0.998710i \(0.516171\pi\)
\(978\) 4.10891 + 4.37228i 0.131389 + 0.139810i
\(979\) 1.28962i 0.0412164i
\(980\) 0 0
\(981\) −21.8030 + 10.8434i −0.696116 + 0.346202i
\(982\) 15.1186 + 26.1861i 0.482453 + 0.835633i
\(983\) 12.5205 21.6861i 0.399342 0.691680i −0.594303 0.804241i \(-0.702572\pi\)
0.993645 + 0.112561i \(0.0359053\pi\)
\(984\) −3.68614 + 12.2255i −0.117510 + 0.389736i
\(985\) 0 0
\(986\) −22.0000 −0.700623
\(987\) 32.9639 20.8614i 1.04925 0.664026i
\(988\) −6.92820 −0.220416
\(989\) −1.29211 + 0.746000i −0.0410867 + 0.0237214i
\(990\) 0 0
\(991\) −11.6753 + 20.2222i −0.370877 + 0.642378i −0.989701 0.143152i \(-0.954276\pi\)
0.618824 + 0.785530i \(0.287610\pi\)
\(992\) 3.78651 + 6.55842i 0.120222 + 0.208230i
\(993\) −9.60002 40.8614i −0.304647 1.29670i
\(994\) 14.7446 17.0256i 0.467669 0.540018i
\(995\) 0 0
\(996\) 14.9307 14.0313i 0.473097 0.444600i
\(997\) 33.3137 + 19.2337i 1.05506 + 0.609137i 0.924061 0.382246i \(-0.124849\pi\)
0.130996 + 0.991383i \(0.458183\pi\)
\(998\) 5.39853 + 3.11684i 0.170888 + 0.0986620i
\(999\) −14.8397 + 40.0395i −0.469506 + 1.26680i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.2.s.e.101.1 8
3.2 odd 2 1050.2.s.d.101.3 8
5.2 odd 4 210.2.t.a.59.2 4
5.3 odd 4 210.2.t.d.59.1 yes 4
5.4 even 2 inner 1050.2.s.e.101.4 8
7.5 odd 6 1050.2.s.d.551.3 8
15.2 even 4 210.2.t.c.59.1 yes 4
15.8 even 4 210.2.t.b.59.2 yes 4
15.14 odd 2 1050.2.s.d.101.2 8
21.5 even 6 inner 1050.2.s.e.551.1 8
35.3 even 12 1470.2.d.b.1469.3 4
35.12 even 12 210.2.t.b.89.2 yes 4
35.17 even 12 1470.2.d.c.1469.2 4
35.18 odd 12 1470.2.d.a.1469.2 4
35.19 odd 6 1050.2.s.d.551.2 8
35.32 odd 12 1470.2.d.d.1469.3 4
35.33 even 12 210.2.t.c.89.1 yes 4
105.17 odd 12 1470.2.d.a.1469.1 4
105.32 even 12 1470.2.d.b.1469.4 4
105.38 odd 12 1470.2.d.d.1469.4 4
105.47 odd 12 210.2.t.d.89.2 yes 4
105.53 even 12 1470.2.d.c.1469.1 4
105.68 odd 12 210.2.t.a.89.1 yes 4
105.89 even 6 inner 1050.2.s.e.551.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
210.2.t.a.59.2 4 5.2 odd 4
210.2.t.a.89.1 yes 4 105.68 odd 12
210.2.t.b.59.2 yes 4 15.8 even 4
210.2.t.b.89.2 yes 4 35.12 even 12
210.2.t.c.59.1 yes 4 15.2 even 4
210.2.t.c.89.1 yes 4 35.33 even 12
210.2.t.d.59.1 yes 4 5.3 odd 4
210.2.t.d.89.2 yes 4 105.47 odd 12
1050.2.s.d.101.2 8 15.14 odd 2
1050.2.s.d.101.3 8 3.2 odd 2
1050.2.s.d.551.2 8 35.19 odd 6
1050.2.s.d.551.3 8 7.5 odd 6
1050.2.s.e.101.1 8 1.1 even 1 trivial
1050.2.s.e.101.4 8 5.4 even 2 inner
1050.2.s.e.551.1 8 21.5 even 6 inner
1050.2.s.e.551.4 8 105.89 even 6 inner
1470.2.d.a.1469.1 4 105.17 odd 12
1470.2.d.a.1469.2 4 35.18 odd 12
1470.2.d.b.1469.3 4 35.3 even 12
1470.2.d.b.1469.4 4 105.32 even 12
1470.2.d.c.1469.1 4 105.53 even 12
1470.2.d.c.1469.2 4 35.17 even 12
1470.2.d.d.1469.3 4 35.32 odd 12
1470.2.d.d.1469.4 4 105.38 odd 12