# Properties

 Label 105.4.a.b Level $105$ Weight $4$ Character orbit 105.a Self dual yes Analytic conductor $6.195$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [105,4,Mod(1,105)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(105, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("105.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$105 = 3 \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 105.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$6.19520055060$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + 5 q^{2} - 3 q^{3} + 17 q^{4} + 5 q^{5} - 15 q^{6} + 7 q^{7} + 45 q^{8} + 9 q^{9}+O(q^{10})$$ q + 5 * q^2 - 3 * q^3 + 17 * q^4 + 5 * q^5 - 15 * q^6 + 7 * q^7 + 45 * q^8 + 9 * q^9 $$q + 5 q^{2} - 3 q^{3} + 17 q^{4} + 5 q^{5} - 15 q^{6} + 7 q^{7} + 45 q^{8} + 9 q^{9} + 25 q^{10} + 12 q^{11} - 51 q^{12} + 30 q^{13} + 35 q^{14} - 15 q^{15} + 89 q^{16} - 134 q^{17} + 45 q^{18} - 92 q^{19} + 85 q^{20} - 21 q^{21} + 60 q^{22} + 112 q^{23} - 135 q^{24} + 25 q^{25} + 150 q^{26} - 27 q^{27} + 119 q^{28} - 58 q^{29} - 75 q^{30} - 224 q^{31} + 85 q^{32} - 36 q^{33} - 670 q^{34} + 35 q^{35} + 153 q^{36} - 146 q^{37} - 460 q^{38} - 90 q^{39} + 225 q^{40} + 18 q^{41} - 105 q^{42} + 340 q^{43} + 204 q^{44} + 45 q^{45} + 560 q^{46} + 208 q^{47} - 267 q^{48} + 49 q^{49} + 125 q^{50} + 402 q^{51} + 510 q^{52} - 754 q^{53} - 135 q^{54} + 60 q^{55} + 315 q^{56} + 276 q^{57} - 290 q^{58} + 380 q^{59} - 255 q^{60} + 718 q^{61} - 1120 q^{62} + 63 q^{63} - 287 q^{64} + 150 q^{65} - 180 q^{66} + 412 q^{67} - 2278 q^{68} - 336 q^{69} + 175 q^{70} - 960 q^{71} + 405 q^{72} + 1066 q^{73} - 730 q^{74} - 75 q^{75} - 1564 q^{76} + 84 q^{77} - 450 q^{78} + 896 q^{79} + 445 q^{80} + 81 q^{81} + 90 q^{82} + 436 q^{83} - 357 q^{84} - 670 q^{85} + 1700 q^{86} + 174 q^{87} + 540 q^{88} - 1038 q^{89} + 225 q^{90} + 210 q^{91} + 1904 q^{92} + 672 q^{93} + 1040 q^{94} - 460 q^{95} - 255 q^{96} - 702 q^{97} + 245 q^{98} + 108 q^{99}+O(q^{100})$$ q + 5 * q^2 - 3 * q^3 + 17 * q^4 + 5 * q^5 - 15 * q^6 + 7 * q^7 + 45 * q^8 + 9 * q^9 + 25 * q^10 + 12 * q^11 - 51 * q^12 + 30 * q^13 + 35 * q^14 - 15 * q^15 + 89 * q^16 - 134 * q^17 + 45 * q^18 - 92 * q^19 + 85 * q^20 - 21 * q^21 + 60 * q^22 + 112 * q^23 - 135 * q^24 + 25 * q^25 + 150 * q^26 - 27 * q^27 + 119 * q^28 - 58 * q^29 - 75 * q^30 - 224 * q^31 + 85 * q^32 - 36 * q^33 - 670 * q^34 + 35 * q^35 + 153 * q^36 - 146 * q^37 - 460 * q^38 - 90 * q^39 + 225 * q^40 + 18 * q^41 - 105 * q^42 + 340 * q^43 + 204 * q^44 + 45 * q^45 + 560 * q^46 + 208 * q^47 - 267 * q^48 + 49 * q^49 + 125 * q^50 + 402 * q^51 + 510 * q^52 - 754 * q^53 - 135 * q^54 + 60 * q^55 + 315 * q^56 + 276 * q^57 - 290 * q^58 + 380 * q^59 - 255 * q^60 + 718 * q^61 - 1120 * q^62 + 63 * q^63 - 287 * q^64 + 150 * q^65 - 180 * q^66 + 412 * q^67 - 2278 * q^68 - 336 * q^69 + 175 * q^70 - 960 * q^71 + 405 * q^72 + 1066 * q^73 - 730 * q^74 - 75 * q^75 - 1564 * q^76 + 84 * q^77 - 450 * q^78 + 896 * q^79 + 445 * q^80 + 81 * q^81 + 90 * q^82 + 436 * q^83 - 357 * q^84 - 670 * q^85 + 1700 * q^86 + 174 * q^87 + 540 * q^88 - 1038 * q^89 + 225 * q^90 + 210 * q^91 + 1904 * q^92 + 672 * q^93 + 1040 * q^94 - 460 * q^95 - 255 * q^96 - 702 * q^97 + 245 * q^98 + 108 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
5.00000 −3.00000 17.0000 5.00000 −15.0000 7.00000 45.0000 9.00000 25.0000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$3$$ $$+1$$
$$5$$ $$-1$$
$$7$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 105.4.a.b 1
3.b odd 2 1 315.4.a.a 1
4.b odd 2 1 1680.4.a.u 1
5.b even 2 1 525.4.a.a 1
5.c odd 4 2 525.4.d.a 2
7.b odd 2 1 735.4.a.j 1
15.d odd 2 1 1575.4.a.l 1
21.c even 2 1 2205.4.a.b 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.4.a.b 1 1.a even 1 1 trivial
315.4.a.a 1 3.b odd 2 1
525.4.a.a 1 5.b even 2 1
525.4.d.a 2 5.c odd 4 2
735.4.a.j 1 7.b odd 2 1
1575.4.a.l 1 15.d odd 2 1
1680.4.a.u 1 4.b odd 2 1
2205.4.a.b 1 21.c even 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{2} - 5$$ acting on $$S_{4}^{\mathrm{new}}(\Gamma_0(105))$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 5$$
$3$ $$T + 3$$
$5$ $$T - 5$$
$7$ $$T - 7$$
$11$ $$T - 12$$
$13$ $$T - 30$$
$17$ $$T + 134$$
$19$ $$T + 92$$
$23$ $$T - 112$$
$29$ $$T + 58$$
$31$ $$T + 224$$
$37$ $$T + 146$$
$41$ $$T - 18$$
$43$ $$T - 340$$
$47$ $$T - 208$$
$53$ $$T + 754$$
$59$ $$T - 380$$
$61$ $$T - 718$$
$67$ $$T - 412$$
$71$ $$T + 960$$
$73$ $$T - 1066$$
$79$ $$T - 896$$
$83$ $$T - 436$$
$89$ $$T + 1038$$
$97$ $$T + 702$$