Properties

Label 105.4.a.b
Level $105$
Weight $4$
Character orbit 105.a
Self dual yes
Analytic conductor $6.195$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [105,4,Mod(1,105)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("105.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(105, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 105.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.19520055060\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 5 q^{2} - 3 q^{3} + 17 q^{4} + 5 q^{5} - 15 q^{6} + 7 q^{7} + 45 q^{8} + 9 q^{9} + 25 q^{10} + 12 q^{11} - 51 q^{12} + 30 q^{13} + 35 q^{14} - 15 q^{15} + 89 q^{16} - 134 q^{17} + 45 q^{18} - 92 q^{19}+ \cdots + 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
5.00000 −3.00000 17.0000 5.00000 −15.0000 7.00000 45.0000 9.00000 25.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 105.4.a.b 1
3.b odd 2 1 315.4.a.a 1
4.b odd 2 1 1680.4.a.u 1
5.b even 2 1 525.4.a.a 1
5.c odd 4 2 525.4.d.a 2
7.b odd 2 1 735.4.a.j 1
15.d odd 2 1 1575.4.a.l 1
21.c even 2 1 2205.4.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.4.a.b 1 1.a even 1 1 trivial
315.4.a.a 1 3.b odd 2 1
525.4.a.a 1 5.b even 2 1
525.4.d.a 2 5.c odd 4 2
735.4.a.j 1 7.b odd 2 1
1575.4.a.l 1 15.d odd 2 1
1680.4.a.u 1 4.b odd 2 1
2205.4.a.b 1 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} - 5 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(105))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 5 \) Copy content Toggle raw display
$3$ \( T + 3 \) Copy content Toggle raw display
$5$ \( T - 5 \) Copy content Toggle raw display
$7$ \( T - 7 \) Copy content Toggle raw display
$11$ \( T - 12 \) Copy content Toggle raw display
$13$ \( T - 30 \) Copy content Toggle raw display
$17$ \( T + 134 \) Copy content Toggle raw display
$19$ \( T + 92 \) Copy content Toggle raw display
$23$ \( T - 112 \) Copy content Toggle raw display
$29$ \( T + 58 \) Copy content Toggle raw display
$31$ \( T + 224 \) Copy content Toggle raw display
$37$ \( T + 146 \) Copy content Toggle raw display
$41$ \( T - 18 \) Copy content Toggle raw display
$43$ \( T - 340 \) Copy content Toggle raw display
$47$ \( T - 208 \) Copy content Toggle raw display
$53$ \( T + 754 \) Copy content Toggle raw display
$59$ \( T - 380 \) Copy content Toggle raw display
$61$ \( T - 718 \) Copy content Toggle raw display
$67$ \( T - 412 \) Copy content Toggle raw display
$71$ \( T + 960 \) Copy content Toggle raw display
$73$ \( T - 1066 \) Copy content Toggle raw display
$79$ \( T - 896 \) Copy content Toggle raw display
$83$ \( T - 436 \) Copy content Toggle raw display
$89$ \( T + 1038 \) Copy content Toggle raw display
$97$ \( T + 702 \) Copy content Toggle raw display
show more
show less