Properties

Label 105.3.r.a.19.4
Level $105$
Weight $3$
Character 105.19
Analytic conductor $2.861$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [105,3,Mod(19,105)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("105.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(105, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 105 = 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 105.r (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.86104277578\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.4
Character \(\chi\) \(=\) 105.19
Dual form 105.3.r.a.94.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.08943 - 1.20633i) q^{2} +(0.866025 + 1.50000i) q^{3} +(0.910488 + 1.57701i) q^{4} +(4.48539 + 2.20936i) q^{5} -4.17887i q^{6} +(-6.98737 + 0.420230i) q^{7} +5.25727i q^{8} +(-1.50000 + 2.59808i) q^{9} +(-6.70671 - 10.0272i) q^{10} +(6.92139 + 11.9882i) q^{11} +(-1.57701 + 2.73146i) q^{12} +20.5470 q^{13} +(15.1066 + 7.55107i) q^{14} +(0.570430 + 8.64145i) q^{15} +(9.98398 - 17.2928i) q^{16} +(6.03626 + 10.4551i) q^{17} +(6.26830 - 3.61900i) q^{18} +(-10.7587 - 6.21151i) q^{19} +(0.599716 + 9.08511i) q^{20} +(-6.68159 - 10.1171i) q^{21} -33.3981i q^{22} +(16.5713 + 9.56747i) q^{23} +(-7.88590 + 4.55293i) q^{24} +(15.2375 + 19.8197i) q^{25} +(-42.9315 - 24.7865i) q^{26} -5.19615 q^{27} +(-7.02463 - 10.6366i) q^{28} -1.74604 q^{29} +(9.23261 - 18.7439i) q^{30} +(-42.2614 + 24.3997i) q^{31} +(-23.5100 + 13.5735i) q^{32} +(-11.9882 + 20.7642i) q^{33} -29.1270i q^{34} +(-32.2696 - 13.5527i) q^{35} -5.46293 q^{36} +(-20.4416 - 11.8020i) q^{37} +(14.9863 + 25.9571i) q^{38} +(17.7942 + 30.8204i) q^{39} +(-11.6152 + 23.5809i) q^{40} -70.2426i q^{41} +(1.75609 + 29.1993i) q^{42} -45.3054i q^{43} +(-12.6037 + 21.8302i) q^{44} +(-12.4682 + 8.33936i) q^{45} +(-23.0832 - 39.9812i) q^{46} +(8.98236 - 15.5579i) q^{47} +34.5855 q^{48} +(48.6468 - 5.87261i) q^{49} +(-7.92857 - 59.7934i) q^{50} +(-10.4551 + 18.1088i) q^{51} +(18.7078 + 32.4028i) q^{52} +(-57.9138 + 33.4366i) q^{53} +(10.8570 + 6.26830i) q^{54} +(4.55895 + 69.0636i) q^{55} +(-2.20926 - 36.7345i) q^{56} -21.5173i q^{57} +(3.64823 + 2.10630i) q^{58} +(-30.7390 + 17.7472i) q^{59} +(-13.1083 + 8.76751i) q^{60} +(51.9882 + 30.0154i) q^{61} +117.737 q^{62} +(9.38927 - 18.7841i) q^{63} -14.3750 q^{64} +(92.1611 + 45.3955i) q^{65} +(50.0971 - 28.9236i) q^{66} +(57.3961 - 33.1377i) q^{67} +(-10.9919 + 19.0385i) q^{68} +33.1427i q^{69} +(51.0760 + 67.2454i) q^{70} +31.6354 q^{71} +(-13.6588 - 7.88590i) q^{72} +(-9.99028 - 17.3037i) q^{73} +(28.4743 + 49.3189i) q^{74} +(-16.5334 + 40.0206i) q^{75} -22.6220i q^{76} +(-53.4002 - 80.8575i) q^{77} -85.8630i q^{78} +(49.4531 - 85.6553i) q^{79} +(82.9879 - 55.5066i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(-84.7361 + 146.767i) q^{82} -92.2927 q^{83} +(9.87133 - 19.7485i) q^{84} +(3.97594 + 60.2316i) q^{85} +(-54.6535 + 94.6627i) q^{86} +(-1.51211 - 2.61905i) q^{87} +(-63.0251 + 36.3876i) q^{88} +(67.5949 + 39.0259i) q^{89} +(36.1115 - 2.38375i) q^{90} +(-143.569 + 8.63445i) q^{91} +34.8443i q^{92} +(-73.1990 - 42.2614i) q^{93} +(-37.5361 + 21.6715i) q^{94} +(-34.5334 - 51.6308i) q^{95} +(-40.7205 - 23.5100i) q^{96} +93.8717 q^{97} +(-108.729 - 46.4139i) q^{98} -41.5283 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 32 q^{4} - 6 q^{5} - 48 q^{9} + 78 q^{10} - 28 q^{11} + 60 q^{14} - 24 q^{15} - 40 q^{16} - 60 q^{19} + 12 q^{21} - 34 q^{25} - 96 q^{26} - 88 q^{29} + 84 q^{31} - 170 q^{35} - 192 q^{36} + 36 q^{39}+ \cdots + 168 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/105\mathbb{Z}\right)^\times\).

\(n\) \(22\) \(31\) \(71\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.08943 1.20633i −1.04472 0.603167i −0.123551 0.992338i \(-0.539428\pi\)
−0.921166 + 0.389171i \(0.872762\pi\)
\(3\) 0.866025 + 1.50000i 0.288675 + 0.500000i
\(4\) 0.910488 + 1.57701i 0.227622 + 0.394253i
\(5\) 4.48539 + 2.20936i 0.897078 + 0.441871i
\(6\) 4.17887i 0.696478i
\(7\) −6.98737 + 0.420230i −0.998196 + 0.0600329i
\(8\) 5.25727i 0.657158i
\(9\) −1.50000 + 2.59808i −0.166667 + 0.288675i
\(10\) −6.70671 10.0272i −0.670671 1.00272i
\(11\) 6.92139 + 11.9882i 0.629217 + 1.08984i 0.987709 + 0.156303i \(0.0499578\pi\)
−0.358492 + 0.933533i \(0.616709\pi\)
\(12\) −1.57701 + 2.73146i −0.131418 + 0.227622i
\(13\) 20.5470 1.58053 0.790267 0.612762i \(-0.209942\pi\)
0.790267 + 0.612762i \(0.209942\pi\)
\(14\) 15.1066 + 7.55107i 1.07904 + 0.539362i
\(15\) 0.570430 + 8.64145i 0.0380286 + 0.576096i
\(16\) 9.98398 17.2928i 0.623998 1.08080i
\(17\) 6.03626 + 10.4551i 0.355074 + 0.615007i 0.987131 0.159916i \(-0.0511222\pi\)
−0.632056 + 0.774922i \(0.717789\pi\)
\(18\) 6.26830 3.61900i 0.348239 0.201056i
\(19\) −10.7587 6.21151i −0.566245 0.326922i 0.189403 0.981899i \(-0.439345\pi\)
−0.755648 + 0.654978i \(0.772678\pi\)
\(20\) 0.599716 + 9.08511i 0.0299858 + 0.454255i
\(21\) −6.68159 10.1171i −0.318171 0.481768i
\(22\) 33.3981i 1.51809i
\(23\) 16.5713 + 9.56747i 0.720493 + 0.415977i 0.814934 0.579553i \(-0.196773\pi\)
−0.0944409 + 0.995530i \(0.530106\pi\)
\(24\) −7.88590 + 4.55293i −0.328579 + 0.189705i
\(25\) 15.2375 + 19.8197i 0.609500 + 0.792786i
\(26\) −42.9315 24.7865i −1.65121 0.953327i
\(27\) −5.19615 −0.192450
\(28\) −7.02463 10.6366i −0.250880 0.379877i
\(29\) −1.74604 −0.0602081 −0.0301041 0.999547i \(-0.509584\pi\)
−0.0301041 + 0.999547i \(0.509584\pi\)
\(30\) 9.23261 18.7439i 0.307754 0.624795i
\(31\) −42.2614 + 24.3997i −1.36327 + 0.787086i −0.990058 0.140660i \(-0.955078\pi\)
−0.373214 + 0.927745i \(0.621744\pi\)
\(32\) −23.5100 + 13.5735i −0.734688 + 0.424172i
\(33\) −11.9882 + 20.7642i −0.363279 + 0.629217i
\(34\) 29.1270i 0.856677i
\(35\) −32.2696 13.5527i −0.921987 0.387220i
\(36\) −5.46293 −0.151748
\(37\) −20.4416 11.8020i −0.552477 0.318973i 0.197643 0.980274i \(-0.436671\pi\)
−0.750120 + 0.661301i \(0.770005\pi\)
\(38\) 14.9863 + 25.9571i 0.394377 + 0.683081i
\(39\) 17.7942 + 30.8204i 0.456261 + 0.790267i
\(40\) −11.6152 + 23.5809i −0.290379 + 0.589522i
\(41\) 70.2426i 1.71323i −0.515953 0.856617i \(-0.672562\pi\)
0.515953 0.856617i \(-0.327438\pi\)
\(42\) 1.75609 + 29.1993i 0.0418116 + 0.695222i
\(43\) 45.3054i 1.05361i −0.849985 0.526807i \(-0.823389\pi\)
0.849985 0.526807i \(-0.176611\pi\)
\(44\) −12.6037 + 21.8302i −0.286447 + 0.496142i
\(45\) −12.4682 + 8.33936i −0.277070 + 0.185319i
\(46\) −23.0832 39.9812i −0.501808 0.869156i
\(47\) 8.98236 15.5579i 0.191114 0.331019i −0.754506 0.656294i \(-0.772123\pi\)
0.945620 + 0.325274i \(0.105457\pi\)
\(48\) 34.5855 0.720531
\(49\) 48.6468 5.87261i 0.992792 0.119849i
\(50\) −7.92857 59.7934i −0.158571 1.19587i
\(51\) −10.4551 + 18.1088i −0.205002 + 0.355074i
\(52\) 18.7078 + 32.4028i 0.359765 + 0.623130i
\(53\) −57.9138 + 33.4366i −1.09271 + 0.630879i −0.934298 0.356494i \(-0.883972\pi\)
−0.158416 + 0.987372i \(0.550639\pi\)
\(54\) 10.8570 + 6.26830i 0.201056 + 0.116080i
\(55\) 4.55895 + 69.0636i 0.0828900 + 1.25570i
\(56\) −2.20926 36.7345i −0.0394511 0.655973i
\(57\) 21.5173i 0.377497i
\(58\) 3.64823 + 2.10630i 0.0629004 + 0.0363156i
\(59\) −30.7390 + 17.7472i −0.521000 + 0.300799i −0.737344 0.675518i \(-0.763920\pi\)
0.216344 + 0.976317i \(0.430587\pi\)
\(60\) −13.1083 + 8.76751i −0.218472 + 0.146125i
\(61\) 51.9882 + 30.0154i 0.852265 + 0.492055i 0.861414 0.507903i \(-0.169579\pi\)
−0.00914943 + 0.999958i \(0.502912\pi\)
\(62\) 117.737 1.89898
\(63\) 9.38927 18.7841i 0.149036 0.298160i
\(64\) −14.3750 −0.224610
\(65\) 92.1611 + 45.3955i 1.41786 + 0.698393i
\(66\) 50.0971 28.9236i 0.759047 0.438236i
\(67\) 57.3961 33.1377i 0.856658 0.494592i −0.00623342 0.999981i \(-0.501984\pi\)
0.862892 + 0.505389i \(0.168651\pi\)
\(68\) −10.9919 + 19.0385i −0.161645 + 0.279978i
\(69\) 33.1427i 0.480329i
\(70\) 51.0760 + 67.2454i 0.729657 + 0.960648i
\(71\) 31.6354 0.445569 0.222785 0.974868i \(-0.428485\pi\)
0.222785 + 0.974868i \(0.428485\pi\)
\(72\) −13.6588 7.88590i −0.189705 0.109526i
\(73\) −9.99028 17.3037i −0.136853 0.237037i 0.789451 0.613814i \(-0.210366\pi\)
−0.926304 + 0.376777i \(0.877032\pi\)
\(74\) 28.4743 + 49.3189i 0.384788 + 0.666472i
\(75\) −16.5334 + 40.0206i −0.220446 + 0.533608i
\(76\) 22.6220i 0.297658i
\(77\) −53.4002 80.8575i −0.693509 1.05010i
\(78\) 85.8630i 1.10081i
\(79\) 49.4531 85.6553i 0.625989 1.08424i −0.362360 0.932038i \(-0.618029\pi\)
0.988349 0.152207i \(-0.0486379\pi\)
\(80\) 82.9879 55.5066i 1.03735 0.693833i
\(81\) −4.50000 7.79423i −0.0555556 0.0962250i
\(82\) −84.7361 + 146.767i −1.03337 + 1.78984i
\(83\) −92.2927 −1.11196 −0.555980 0.831196i \(-0.687657\pi\)
−0.555980 + 0.831196i \(0.687657\pi\)
\(84\) 9.87133 19.7485i 0.117516 0.235101i
\(85\) 3.97594 + 60.2316i 0.0467757 + 0.708606i
\(86\) −54.6535 + 94.6627i −0.635506 + 1.10073i
\(87\) −1.51211 2.61905i −0.0173806 0.0301041i
\(88\) −63.0251 + 36.3876i −0.716195 + 0.413495i
\(89\) 67.5949 + 39.0259i 0.759493 + 0.438494i 0.829114 0.559080i \(-0.188846\pi\)
−0.0696206 + 0.997574i \(0.522179\pi\)
\(90\) 36.1115 2.38375i 0.401238 0.0264861i
\(91\) −143.569 + 8.63445i −1.57768 + 0.0948841i
\(92\) 34.8443i 0.378742i
\(93\) −73.1990 42.2614i −0.787086 0.454424i
\(94\) −37.5361 + 21.6715i −0.399320 + 0.230548i
\(95\) −34.5334 51.6308i −0.363509 0.543482i
\(96\) −40.7205 23.5100i −0.424172 0.244896i
\(97\) 93.8717 0.967749 0.483875 0.875137i \(-0.339229\pi\)
0.483875 + 0.875137i \(0.339229\pi\)
\(98\) −108.729 46.4139i −1.10948 0.473611i
\(99\) −41.5283 −0.419478
\(100\) −17.3823 + 42.0753i −0.173823 + 0.420753i
\(101\) 37.2007 21.4778i 0.368324 0.212652i −0.304402 0.952544i \(-0.598457\pi\)
0.672726 + 0.739892i \(0.265123\pi\)
\(102\) 43.6905 25.2247i 0.428339 0.247301i
\(103\) 8.70809 15.0829i 0.0845445 0.146435i −0.820653 0.571428i \(-0.806390\pi\)
0.905197 + 0.424992i \(0.139723\pi\)
\(104\) 108.021i 1.03866i
\(105\) −7.61720 60.1413i −0.0725448 0.572774i
\(106\) 161.343 1.52210
\(107\) −22.8359 13.1843i −0.213419 0.123218i 0.389480 0.921035i \(-0.372655\pi\)
−0.602900 + 0.797817i \(0.705988\pi\)
\(108\) −4.73103 8.19439i −0.0438059 0.0758740i
\(109\) −93.8442 162.543i −0.860956 1.49122i −0.871007 0.491270i \(-0.836533\pi\)
0.0100510 0.999949i \(-0.496801\pi\)
\(110\) 73.7882 149.803i 0.670802 1.36185i
\(111\) 40.8833i 0.368318i
\(112\) −62.4948 + 125.027i −0.557990 + 1.11631i
\(113\) 17.2000i 0.152212i 0.997100 + 0.0761061i \(0.0242488\pi\)
−0.997100 + 0.0761061i \(0.975751\pi\)
\(114\) −25.9571 + 44.9590i −0.227694 + 0.394377i
\(115\) 53.1910 + 79.5259i 0.462531 + 0.691529i
\(116\) −1.58974 2.75352i −0.0137047 0.0237372i
\(117\) −30.8204 + 53.3825i −0.263422 + 0.456261i
\(118\) 85.6361 0.725729
\(119\) −46.5712 70.5172i −0.391355 0.592581i
\(120\) −45.4304 + 2.99890i −0.378587 + 0.0249908i
\(121\) −35.3113 + 61.1610i −0.291829 + 0.505462i
\(122\) −72.4172 125.430i −0.593584 1.02812i
\(123\) 105.364 60.8319i 0.856617 0.494568i
\(124\) −76.9571 44.4312i −0.620622 0.358316i
\(125\) 24.5574 + 122.564i 0.196460 + 0.980512i
\(126\) −42.2781 + 27.9215i −0.335541 + 0.221599i
\(127\) 76.1776i 0.599824i −0.953967 0.299912i \(-0.903043\pi\)
0.953967 0.299912i \(-0.0969573\pi\)
\(128\) 124.076 + 71.6351i 0.969341 + 0.559649i
\(129\) 67.9581 39.2357i 0.526807 0.304152i
\(130\) −137.802 206.028i −1.06002 1.58483i
\(131\) 78.3306 + 45.2242i 0.597943 + 0.345223i 0.768232 0.640172i \(-0.221137\pi\)
−0.170289 + 0.985394i \(0.554470\pi\)
\(132\) −43.6605 −0.330761
\(133\) 77.7850 + 38.8811i 0.584850 + 0.292339i
\(134\) −159.900 −1.19329
\(135\) −23.3068 11.4802i −0.172643 0.0850382i
\(136\) −54.9653 + 31.7342i −0.404157 + 0.233340i
\(137\) 83.3371 48.1147i 0.608300 0.351202i −0.164000 0.986460i \(-0.552440\pi\)
0.772300 + 0.635258i \(0.219106\pi\)
\(138\) 39.9812 69.2495i 0.289719 0.501808i
\(139\) 33.5627i 0.241459i −0.992685 0.120729i \(-0.961477\pi\)
0.992685 0.120729i \(-0.0385233\pi\)
\(140\) −8.00828 63.2290i −0.0572020 0.451636i
\(141\) 31.1158 0.220679
\(142\) −66.1001 38.1629i −0.465493 0.268753i
\(143\) 142.213 + 246.321i 0.994500 + 1.72252i
\(144\) 29.9519 + 51.8783i 0.207999 + 0.360266i
\(145\) −7.83166 3.85762i −0.0540114 0.0266042i
\(146\) 48.2065i 0.330182i
\(147\) 50.9383 + 67.8844i 0.346519 + 0.461799i
\(148\) 42.9823i 0.290421i
\(149\) 126.505 219.113i 0.849028 1.47056i −0.0330491 0.999454i \(-0.510522\pi\)
0.882077 0.471106i \(-0.156145\pi\)
\(150\) 82.8237 63.6754i 0.552158 0.424503i
\(151\) 62.8703 + 108.895i 0.416360 + 0.721156i 0.995570 0.0940220i \(-0.0299724\pi\)
−0.579210 + 0.815178i \(0.696639\pi\)
\(152\) 32.6556 56.5611i 0.214839 0.372113i
\(153\) −36.2176 −0.236716
\(154\) 14.0349 + 233.365i 0.0911356 + 1.51536i
\(155\) −243.467 + 16.0714i −1.57075 + 0.103687i
\(156\) −32.4028 + 56.1233i −0.207710 + 0.359765i
\(157\) −4.83207 8.36938i −0.0307775 0.0533082i 0.850226 0.526417i \(-0.176465\pi\)
−0.881004 + 0.473109i \(0.843132\pi\)
\(158\) −206.658 + 119.314i −1.30796 + 0.755153i
\(159\) −100.310 57.9138i −0.630879 0.364238i
\(160\) −135.440 + 8.94053i −0.846502 + 0.0558783i
\(161\) −119.811 59.8877i −0.744166 0.371973i
\(162\) 21.7140i 0.134037i
\(163\) 6.51524 + 3.76157i 0.0399708 + 0.0230771i 0.519852 0.854256i \(-0.325987\pi\)
−0.479881 + 0.877333i \(0.659320\pi\)
\(164\) 110.773 63.9550i 0.675447 0.389970i
\(165\) −99.6472 + 66.6493i −0.603923 + 0.403935i
\(166\) 192.839 + 111.336i 1.16168 + 0.670698i
\(167\) −254.798 −1.52574 −0.762869 0.646553i \(-0.776210\pi\)
−0.762869 + 0.646553i \(0.776210\pi\)
\(168\) 53.1884 35.1269i 0.316598 0.209089i
\(169\) 253.177 1.49809
\(170\) 64.3520 130.646i 0.378541 0.768507i
\(171\) 32.2760 18.6345i 0.188748 0.108974i
\(172\) 71.4472 41.2501i 0.415391 0.239826i
\(173\) −16.4662 + 28.5203i −0.0951804 + 0.164857i −0.909684 0.415301i \(-0.863676\pi\)
0.814503 + 0.580159i \(0.197009\pi\)
\(174\) 7.29645i 0.0419336i
\(175\) −114.799 132.084i −0.655994 0.754766i
\(176\) 276.412 1.57052
\(177\) −53.2415 30.7390i −0.300799 0.173667i
\(178\) −94.1567 163.084i −0.528970 0.916203i
\(179\) 48.2811 + 83.6253i 0.269727 + 0.467180i 0.968791 0.247878i \(-0.0797333\pi\)
−0.699064 + 0.715059i \(0.746400\pi\)
\(180\) −24.5034 12.0696i −0.136130 0.0670531i
\(181\) 144.036i 0.795781i −0.917433 0.397891i \(-0.869742\pi\)
0.917433 0.397891i \(-0.130258\pi\)
\(182\) 310.394 + 155.151i 1.70546 + 0.852481i
\(183\) 103.976i 0.568177i
\(184\) −50.2987 + 87.1200i −0.273363 + 0.473478i
\(185\) −65.6140 98.0994i −0.354670 0.530267i
\(186\) 101.963 + 176.605i 0.548188 + 0.949489i
\(187\) −83.5587 + 144.728i −0.446838 + 0.773946i
\(188\) 32.7133 0.174007
\(189\) 36.3075 2.18358i 0.192103 0.0115533i
\(190\) 9.87113 + 149.538i 0.0519533 + 0.787041i
\(191\) −119.933 + 207.730i −0.627923 + 1.08759i 0.360045 + 0.932935i \(0.382761\pi\)
−0.987968 + 0.154659i \(0.950572\pi\)
\(192\) −12.4491 21.5625i −0.0648392 0.112305i
\(193\) 148.839 85.9324i 0.771188 0.445246i −0.0621101 0.998069i \(-0.519783\pi\)
0.833298 + 0.552824i \(0.186450\pi\)
\(194\) −196.139 113.241i −1.01102 0.583715i
\(195\) 11.7206 + 177.555i 0.0601056 + 0.910541i
\(196\) 53.5535 + 71.3696i 0.273232 + 0.364131i
\(197\) 129.725i 0.658503i −0.944242 0.329252i \(-0.893204\pi\)
0.944242 0.329252i \(-0.106796\pi\)
\(198\) 86.7707 + 50.0971i 0.438236 + 0.253016i
\(199\) −170.323 + 98.3362i −0.855896 + 0.494152i −0.862636 0.505826i \(-0.831188\pi\)
0.00673987 + 0.999977i \(0.497855\pi\)
\(200\) −104.197 + 80.1075i −0.520986 + 0.400538i
\(201\) 99.4130 + 57.3961i 0.494592 + 0.285553i
\(202\) −103.638 −0.513058
\(203\) 12.2002 0.733737i 0.0600995 0.00361447i
\(204\) −38.0770 −0.186652
\(205\) 155.191 315.066i 0.757029 1.53691i
\(206\) −36.3899 + 21.0097i −0.176650 + 0.101989i
\(207\) −49.7140 + 28.7024i −0.240164 + 0.138659i
\(208\) 205.140 355.313i 0.986251 1.70824i
\(209\) 171.969i 0.822819i
\(210\) −56.6349 + 134.850i −0.269690 + 0.642144i
\(211\) 164.720 0.780663 0.390332 0.920674i \(-0.372360\pi\)
0.390332 + 0.920674i \(0.372360\pi\)
\(212\) −105.460 60.8872i −0.497451 0.287204i
\(213\) 27.3971 + 47.4531i 0.128625 + 0.222785i
\(214\) 31.8094 + 55.0955i 0.148642 + 0.257455i
\(215\) 100.096 203.213i 0.465562 0.945175i
\(216\) 27.3176i 0.126470i
\(217\) 285.043 188.249i 1.31356 0.867507i
\(218\) 452.830i 2.07720i
\(219\) 17.3037 29.9708i 0.0790122 0.136853i
\(220\) −104.763 + 70.0711i −0.476196 + 0.318505i
\(221\) 124.027 + 214.821i 0.561207 + 0.972040i
\(222\) −49.3189 + 85.4229i −0.222157 + 0.384788i
\(223\) −89.1764 −0.399894 −0.199947 0.979807i \(-0.564077\pi\)
−0.199947 + 0.979807i \(0.564077\pi\)
\(224\) 158.569 104.723i 0.707898 0.467512i
\(225\) −74.3492 + 9.85867i −0.330441 + 0.0438163i
\(226\) 20.7489 35.9382i 0.0918095 0.159019i
\(227\) 38.5909 + 66.8415i 0.170004 + 0.294456i 0.938421 0.345494i \(-0.112289\pi\)
−0.768417 + 0.639950i \(0.778955\pi\)
\(228\) 33.9331 19.5913i 0.148829 0.0859266i
\(229\) 45.0755 + 26.0243i 0.196836 + 0.113643i 0.595179 0.803593i \(-0.297081\pi\)
−0.398343 + 0.917237i \(0.630415\pi\)
\(230\) −15.2043 230.330i −0.0661057 1.00144i
\(231\) 75.0403 150.125i 0.324850 0.649891i
\(232\) 9.17937i 0.0395663i
\(233\) −18.0433 10.4173i −0.0774389 0.0447094i 0.460781 0.887514i \(-0.347570\pi\)
−0.538219 + 0.842805i \(0.680903\pi\)
\(234\) 128.794 74.3595i 0.550404 0.317776i
\(235\) 74.6624 49.9381i 0.317712 0.212502i
\(236\) −55.9749 32.3172i −0.237182 0.136937i
\(237\) 171.311 0.722830
\(238\) 12.2401 + 203.521i 0.0514288 + 0.855132i
\(239\) −302.275 −1.26475 −0.632375 0.774662i \(-0.717920\pi\)
−0.632375 + 0.774662i \(0.717920\pi\)
\(240\) 155.130 + 76.4117i 0.646373 + 0.318382i
\(241\) −314.222 + 181.416i −1.30383 + 0.752764i −0.981058 0.193714i \(-0.937947\pi\)
−0.322768 + 0.946478i \(0.604613\pi\)
\(242\) 147.561 85.1945i 0.609757 0.352043i
\(243\) 7.79423 13.5000i 0.0320750 0.0555556i
\(244\) 109.315i 0.448011i
\(245\) 231.175 + 81.1372i 0.943570 + 0.331172i
\(246\) −293.534 −1.19323
\(247\) −221.058 127.628i −0.894970 0.516711i
\(248\) −128.275 222.180i −0.517240 0.895885i
\(249\) −79.9278 138.439i −0.320995 0.555980i
\(250\) 96.5421 285.714i 0.386168 1.14286i
\(251\) 57.4428i 0.228856i 0.993432 + 0.114428i \(0.0365035\pi\)
−0.993432 + 0.114428i \(0.963497\pi\)
\(252\) 38.1715 2.29569i 0.151474 0.00910987i
\(253\) 264.881i 1.04696i
\(254\) −91.8957 + 159.168i −0.361794 + 0.626646i
\(255\) −86.9041 + 58.1260i −0.340800 + 0.227945i
\(256\) −144.082 249.557i −0.562820 0.974832i
\(257\) −178.172 + 308.602i −0.693275 + 1.20079i 0.277484 + 0.960730i \(0.410500\pi\)
−0.970759 + 0.240057i \(0.922834\pi\)
\(258\) −189.325 −0.733819
\(259\) 147.793 + 73.8747i 0.570629 + 0.285231i
\(260\) 12.3223 + 186.671i 0.0473936 + 0.717966i
\(261\) 2.61905 4.53633i 0.0100347 0.0173806i
\(262\) −109.111 188.986i −0.416454 0.721320i
\(263\) 326.440 188.470i 1.24121 0.716616i 0.271873 0.962333i \(-0.412357\pi\)
0.969342 + 0.245717i \(0.0790235\pi\)
\(264\) −109.163 63.0251i −0.413495 0.238732i
\(265\) −333.640 + 22.0238i −1.25902 + 0.0831088i
\(266\) −115.623 175.074i −0.434673 0.658174i
\(267\) 135.190i 0.506329i
\(268\) 104.517 + 60.3429i 0.389989 + 0.225160i
\(269\) −93.7498 + 54.1265i −0.348512 + 0.201214i −0.664030 0.747706i \(-0.731155\pi\)
0.315518 + 0.948920i \(0.397822\pi\)
\(270\) 34.8491 + 52.1028i 0.129071 + 0.192973i
\(271\) −211.425 122.066i −0.780166 0.450429i 0.0563230 0.998413i \(-0.482062\pi\)
−0.836489 + 0.547983i \(0.815396\pi\)
\(272\) 241.064 0.886263
\(273\) −137.286 207.876i −0.502880 0.761451i
\(274\) −232.170 −0.847335
\(275\) −132.137 + 319.850i −0.480500 + 1.16309i
\(276\) −52.2664 + 30.1760i −0.189371 + 0.109333i
\(277\) 146.489 84.5753i 0.528840 0.305326i −0.211704 0.977334i \(-0.567901\pi\)
0.740544 + 0.672008i \(0.234568\pi\)
\(278\) −40.4879 + 70.1271i −0.145640 + 0.252256i
\(279\) 146.398i 0.524724i
\(280\) 71.2501 169.650i 0.254465 0.605891i
\(281\) 110.103 0.391825 0.195913 0.980621i \(-0.437233\pi\)
0.195913 + 0.980621i \(0.437233\pi\)
\(282\) −65.0144 37.5361i −0.230548 0.133107i
\(283\) −241.547 418.372i −0.853523 1.47834i −0.878009 0.478645i \(-0.841128\pi\)
0.0244860 0.999700i \(-0.492205\pi\)
\(284\) 28.8037 + 49.8894i 0.101421 + 0.175667i
\(285\) 47.5394 96.5136i 0.166805 0.338644i
\(286\) 686.228i 2.39940i
\(287\) 29.5181 + 490.811i 0.102850 + 1.71014i
\(288\) 81.4410i 0.282781i
\(289\) 71.6270 124.062i 0.247844 0.429279i
\(290\) 11.7101 + 17.5078i 0.0403798 + 0.0603718i
\(291\) 81.2953 + 140.808i 0.279365 + 0.483875i
\(292\) 18.1921 31.5096i 0.0623016 0.107910i
\(293\) −526.016 −1.79528 −0.897638 0.440733i \(-0.854719\pi\)
−0.897638 + 0.440733i \(0.854719\pi\)
\(294\) −24.5409 203.289i −0.0834723 0.691458i
\(295\) −177.086 + 11.6896i −0.600292 + 0.0396258i
\(296\) 62.0462 107.467i 0.209616 0.363065i
\(297\) −35.9646 62.2925i −0.121093 0.209739i
\(298\) −528.648 + 305.215i −1.77399 + 1.02421i
\(299\) 340.491 + 196.582i 1.13876 + 0.657466i
\(300\) −78.1664 + 10.3648i −0.260555 + 0.0345494i
\(301\) 19.0387 + 316.566i 0.0632515 + 1.05171i
\(302\) 303.371i 1.00454i
\(303\) 64.4335 + 37.2007i 0.212652 + 0.122775i
\(304\) −214.828 + 124.031i −0.706672 + 0.407997i
\(305\) 166.873 + 249.491i 0.547123 + 0.818004i
\(306\) 75.6742 + 43.6905i 0.247301 + 0.142780i
\(307\) −129.052 −0.420366 −0.210183 0.977662i \(-0.567406\pi\)
−0.210183 + 0.977662i \(0.567406\pi\)
\(308\) 78.8930 157.832i 0.256146 0.512443i
\(309\) 30.1657 0.0976236
\(310\) 528.095 + 260.122i 1.70353 + 0.839104i
\(311\) 200.865 115.970i 0.645869 0.372893i −0.141003 0.990009i \(-0.545033\pi\)
0.786872 + 0.617116i \(0.211699\pi\)
\(312\) −162.031 + 93.5487i −0.519331 + 0.299836i
\(313\) 92.1115 159.542i 0.294286 0.509718i −0.680533 0.732718i \(-0.738252\pi\)
0.974819 + 0.223000i \(0.0715849\pi\)
\(314\) 23.3164i 0.0742559i
\(315\) 83.6153 63.5097i 0.265445 0.201618i
\(316\) 180.106 0.569956
\(317\) −247.246 142.747i −0.779954 0.450307i 0.0564597 0.998405i \(-0.482019\pi\)
−0.836414 + 0.548098i \(0.815352\pi\)
\(318\) 139.727 + 242.014i 0.439393 + 0.761051i
\(319\) −12.0850 20.9318i −0.0378840 0.0656170i
\(320\) −64.4776 31.7595i −0.201493 0.0992486i
\(321\) 45.6718i 0.142280i
\(322\) 178.092 + 269.663i 0.553081 + 0.837464i
\(323\) 149.977i 0.464326i
\(324\) 8.19439 14.1931i 0.0252913 0.0438059i
\(325\) 313.084 + 407.234i 0.963335 + 1.25303i
\(326\) −9.07544 15.7191i −0.0278388 0.0482181i
\(327\) 162.543 281.533i 0.497073 0.860956i
\(328\) 369.284 1.12587
\(329\) −56.2252 + 112.484i −0.170897 + 0.341895i
\(330\) 288.608 19.0512i 0.874568 0.0577310i
\(331\) −18.1747 + 31.4795i −0.0549085 + 0.0951043i −0.892173 0.451694i \(-0.850820\pi\)
0.837265 + 0.546798i \(0.184153\pi\)
\(332\) −84.0314 145.547i −0.253107 0.438394i
\(333\) 61.3249 35.4060i 0.184159 0.106324i
\(334\) 532.384 + 307.372i 1.59396 + 0.920276i
\(335\) 330.657 21.8270i 0.987036 0.0651551i
\(336\) −241.662 + 14.5339i −0.719232 + 0.0432556i
\(337\) 524.246i 1.55563i 0.628496 + 0.777813i \(0.283671\pi\)
−0.628496 + 0.777813i \(0.716329\pi\)
\(338\) −528.997 305.417i −1.56508 0.903599i
\(339\) −25.8000 + 14.8956i −0.0761061 + 0.0439399i
\(340\) −91.3658 + 61.1102i −0.268723 + 0.179736i
\(341\) −585.016 337.759i −1.71559 0.990496i
\(342\) −89.9180 −0.262918
\(343\) −337.446 + 61.4770i −0.983807 + 0.179233i
\(344\) 238.183 0.692391
\(345\) −73.2240 + 148.658i −0.212244 + 0.430893i
\(346\) 68.8101 39.7275i 0.198873 0.114819i
\(347\) 368.677 212.856i 1.06247 0.613417i 0.136355 0.990660i \(-0.456461\pi\)
0.926114 + 0.377243i \(0.123128\pi\)
\(348\) 2.75352 4.76923i 0.00791241 0.0137047i
\(349\) 516.742i 1.48064i 0.672257 + 0.740318i \(0.265325\pi\)
−0.672257 + 0.740318i \(0.734675\pi\)
\(350\) 80.5269 + 414.467i 0.230077 + 1.18419i
\(351\) −106.765 −0.304174
\(352\) −325.444 187.895i −0.924556 0.533793i
\(353\) 76.6693 + 132.795i 0.217193 + 0.376190i 0.953949 0.299969i \(-0.0969764\pi\)
−0.736755 + 0.676159i \(0.763643\pi\)
\(354\) 74.1630 + 128.454i 0.209500 + 0.362865i
\(355\) 141.897 + 69.8939i 0.399710 + 0.196884i
\(356\) 142.131i 0.399243i
\(357\) 65.4439 130.926i 0.183316 0.366741i
\(358\) 232.973i 0.650762i
\(359\) 86.2580 149.403i 0.240273 0.416165i −0.720519 0.693435i \(-0.756096\pi\)
0.960792 + 0.277270i \(0.0894297\pi\)
\(360\) −43.8422 65.5484i −0.121784 0.182079i
\(361\) −103.334 178.980i −0.286244 0.495790i
\(362\) −173.756 + 300.954i −0.479989 + 0.831366i
\(363\) −122.322 −0.336975
\(364\) −144.335 218.549i −0.396524 0.600409i
\(365\) −6.58035 99.6859i −0.0180284 0.273112i
\(366\) 125.430 217.252i 0.342706 0.593584i
\(367\) 337.212 + 584.068i 0.918834 + 1.59147i 0.801189 + 0.598411i \(0.204201\pi\)
0.117645 + 0.993056i \(0.462465\pi\)
\(368\) 330.896 191.043i 0.899174 0.519138i
\(369\) 182.496 + 105.364i 0.494568 + 0.285539i
\(370\) 18.7553 + 284.125i 0.0506901 + 0.767905i
\(371\) 390.615 257.971i 1.05287 0.695340i
\(372\) 153.914i 0.413748i
\(373\) 523.373 + 302.169i 1.40314 + 0.810106i 0.994714 0.102684i \(-0.0327429\pi\)
0.408430 + 0.912789i \(0.366076\pi\)
\(374\) 349.181 201.600i 0.933638 0.539036i
\(375\) −162.579 + 142.980i −0.433543 + 0.381279i
\(376\) 81.7920 + 47.2226i 0.217532 + 0.125592i
\(377\) −35.8757 −0.0951611
\(378\) −78.4962 39.2365i −0.207662 0.103800i
\(379\) 335.031 0.883987 0.441994 0.897018i \(-0.354271\pi\)
0.441994 + 0.897018i \(0.354271\pi\)
\(380\) 49.9801 101.469i 0.131527 0.267023i
\(381\) 114.266 65.9718i 0.299912 0.173154i
\(382\) 501.185 289.359i 1.31200 0.757485i
\(383\) 146.747 254.173i 0.383150 0.663636i −0.608360 0.793661i \(-0.708172\pi\)
0.991511 + 0.130025i \(0.0415057\pi\)
\(384\) 248.151i 0.646227i
\(385\) −60.8777 480.657i −0.158124 1.24846i
\(386\) −414.653 −1.07423
\(387\) 117.707 + 67.9581i 0.304152 + 0.175602i
\(388\) 85.4691 + 148.037i 0.220281 + 0.381538i
\(389\) −256.067 443.521i −0.658270 1.14016i −0.981063 0.193688i \(-0.937955\pi\)
0.322793 0.946470i \(-0.395378\pi\)
\(390\) 189.702 385.129i 0.486415 0.987511i
\(391\) 231.007i 0.590811i
\(392\) 30.8739 + 255.749i 0.0787599 + 0.652421i
\(393\) 156.661i 0.398629i
\(394\) −156.492 + 271.052i −0.397188 + 0.687949i
\(395\) 411.060 274.938i 1.04066 0.696046i
\(396\) −37.8111 65.4907i −0.0954825 0.165381i
\(397\) −232.830 + 403.273i −0.586473 + 1.01580i 0.408217 + 0.912885i \(0.366151\pi\)
−0.994690 + 0.102917i \(0.967183\pi\)
\(398\) 474.506 1.19223
\(399\) 9.04223 + 150.350i 0.0226622 + 0.376816i
\(400\) 494.867 65.6192i 1.23717 0.164048i
\(401\) −75.8880 + 131.442i −0.189247 + 0.327785i −0.944999 0.327072i \(-0.893938\pi\)
0.755752 + 0.654857i \(0.227271\pi\)
\(402\) −138.478 239.851i −0.344472 0.596644i
\(403\) −868.344 + 501.339i −2.15470 + 1.24402i
\(404\) 67.7416 + 39.1106i 0.167677 + 0.0968084i
\(405\) −2.96404 44.9023i −0.00731861 0.110870i
\(406\) −26.3767 13.1844i −0.0649671 0.0324740i
\(407\) 326.745i 0.802813i
\(408\) −95.2027 54.9653i −0.233340 0.134719i
\(409\) 314.952 181.838i 0.770054 0.444591i −0.0628396 0.998024i \(-0.520016\pi\)
0.832894 + 0.553432i \(0.186682\pi\)
\(410\) −704.336 + 471.096i −1.71789 + 1.14902i
\(411\) 144.344 + 83.3371i 0.351202 + 0.202767i
\(412\) 31.7144 0.0769768
\(413\) 207.327 136.923i 0.502002 0.331534i
\(414\) 138.499 0.334538
\(415\) −413.969 203.907i −0.997516 0.491343i
\(416\) −483.059 + 278.894i −1.16120 + 0.670419i
\(417\) 50.3441 29.0662i 0.120729 0.0697031i
\(418\) −207.453 + 359.318i −0.496298 + 0.859613i
\(419\) 28.2349i 0.0673863i 0.999432 + 0.0336932i \(0.0107269\pi\)
−0.999432 + 0.0336932i \(0.989273\pi\)
\(420\) 87.9082 66.7704i 0.209305 0.158977i
\(421\) −767.555 −1.82317 −0.911585 0.411111i \(-0.865141\pi\)
−0.911585 + 0.411111i \(0.865141\pi\)
\(422\) −344.171 198.707i −0.815572 0.470871i
\(423\) 26.9471 + 46.6737i 0.0637047 + 0.110340i
\(424\) −175.785 304.468i −0.414587 0.718086i
\(425\) −115.239 + 278.946i −0.271151 + 0.656344i
\(426\) 132.200i 0.310329i
\(427\) −375.874 187.882i −0.880267 0.440004i
\(428\) 48.0166i 0.112188i
\(429\) −246.321 + 426.640i −0.574175 + 0.994500i
\(430\) −454.286 + 303.850i −1.05648 + 0.706628i
\(431\) −376.304 651.777i −0.873095 1.51224i −0.858779 0.512347i \(-0.828776\pi\)
−0.0143160 0.999898i \(-0.504557\pi\)
\(432\) −51.8783 + 89.8558i −0.120089 + 0.207999i
\(433\) 240.850 0.556235 0.278117 0.960547i \(-0.410290\pi\)
0.278117 + 0.960547i \(0.410290\pi\)
\(434\) −822.670 + 49.4765i −1.89555 + 0.114001i
\(435\) −0.995990 15.0883i −0.00228963 0.0346857i
\(436\) 170.888 295.987i 0.391945 0.678869i
\(437\) −118.857 205.866i −0.271984 0.471090i
\(438\) −72.3098 + 41.7481i −0.165091 + 0.0953152i
\(439\) −620.395 358.185i −1.41320 0.815912i −0.417513 0.908671i \(-0.637098\pi\)
−0.995689 + 0.0927587i \(0.970431\pi\)
\(440\) −363.086 + 23.9676i −0.825195 + 0.0544718i
\(441\) −57.7127 + 135.197i −0.130868 + 0.306569i
\(442\) 598.472i 1.35401i
\(443\) 369.423 + 213.287i 0.833913 + 0.481460i 0.855190 0.518314i \(-0.173440\pi\)
−0.0212777 + 0.999774i \(0.506773\pi\)
\(444\) 64.4734 37.2238i 0.145210 0.0838373i
\(445\) 216.967 + 324.388i 0.487567 + 0.728961i
\(446\) 186.328 + 107.577i 0.417776 + 0.241203i
\(447\) 438.227 0.980373
\(448\) 100.444 6.04082i 0.224205 0.0134840i
\(449\) 262.992 0.585727 0.292864 0.956154i \(-0.405392\pi\)
0.292864 + 0.956154i \(0.405392\pi\)
\(450\) 167.241 + 69.0910i 0.371646 + 0.153536i
\(451\) 842.082 486.176i 1.86714 1.07800i
\(452\) −27.1246 + 15.6604i −0.0600101 + 0.0346468i
\(453\) −108.895 + 188.611i −0.240385 + 0.416360i
\(454\) 186.214i 0.410164i
\(455\) −663.041 278.467i −1.45723 0.612015i
\(456\) 113.122 0.248075
\(457\) 57.8418 + 33.3950i 0.126569 + 0.0730744i 0.561948 0.827173i \(-0.310052\pi\)
−0.435379 + 0.900247i \(0.643386\pi\)
\(458\) −62.7881 108.752i −0.137092 0.237450i
\(459\) −31.3653 54.3264i −0.0683341 0.118358i
\(460\) −76.9834 + 156.290i −0.167355 + 0.339761i
\(461\) 237.618i 0.515441i 0.966219 + 0.257721i \(0.0829714\pi\)
−0.966219 + 0.257721i \(0.917029\pi\)
\(462\) −337.893 + 223.152i −0.731369 + 0.483013i
\(463\) 21.0733i 0.0455146i 0.999741 + 0.0227573i \(0.00724450\pi\)
−0.999741 + 0.0227573i \(0.992755\pi\)
\(464\) −17.4324 + 30.1938i −0.0375698 + 0.0650728i
\(465\) −234.955 351.282i −0.505281 0.755445i
\(466\) 25.1335 + 43.5324i 0.0539345 + 0.0934172i
\(467\) −283.926 + 491.774i −0.607978 + 1.05305i 0.383595 + 0.923502i \(0.374686\pi\)
−0.991573 + 0.129548i \(0.958647\pi\)
\(468\) −112.247 −0.239843
\(469\) −387.123 + 255.665i −0.825422 + 0.545128i
\(470\) −216.244 + 14.2745i −0.460094 + 0.0303712i
\(471\) 8.36938 14.4962i 0.0177694 0.0307775i
\(472\) −93.3015 161.603i −0.197673 0.342379i
\(473\) 543.131 313.577i 1.14827 0.662953i
\(474\) −357.942 206.658i −0.755153 0.435988i
\(475\) −40.8249 307.881i −0.0859471 0.648170i
\(476\) 68.8039 137.648i 0.144546 0.289177i
\(477\) 200.619i 0.420586i
\(478\) 631.584 + 364.645i 1.32131 + 0.762857i
\(479\) −140.065 + 80.8663i −0.292410 + 0.168823i −0.639028 0.769183i \(-0.720663\pi\)
0.346618 + 0.938006i \(0.387330\pi\)
\(480\) −130.706 195.418i −0.272303 0.407120i
\(481\) −420.014 242.495i −0.873209 0.504147i
\(482\) 875.394 1.81617
\(483\) −13.9276 231.580i −0.0288355 0.479463i
\(484\) −128.602 −0.265707
\(485\) 421.051 + 207.396i 0.868147 + 0.427621i
\(486\) −32.5710 + 18.8049i −0.0670186 + 0.0386932i
\(487\) 248.735 143.607i 0.510750 0.294882i −0.222392 0.974957i \(-0.571386\pi\)
0.733142 + 0.680076i \(0.238053\pi\)
\(488\) −157.799 + 273.316i −0.323358 + 0.560073i
\(489\) 13.0305i 0.0266472i
\(490\) −385.146 448.405i −0.786012 0.915112i
\(491\) 865.837 1.76342 0.881708 0.471796i \(-0.156394\pi\)
0.881708 + 0.471796i \(0.156394\pi\)
\(492\) 191.865 + 110.773i 0.389970 + 0.225149i
\(493\) −10.5395 18.2550i −0.0213784 0.0370284i
\(494\) 307.923 + 533.339i 0.623327 + 1.07963i
\(495\) −186.271 91.7509i −0.376305 0.185355i
\(496\) 974.422i 1.96456i
\(497\) −221.048 + 13.2942i −0.444765 + 0.0267488i
\(498\) 385.679i 0.774456i
\(499\) 109.612 189.853i 0.219663 0.380467i −0.735042 0.678022i \(-0.762838\pi\)
0.954705 + 0.297554i \(0.0961709\pi\)
\(500\) −170.926 + 150.320i −0.341851 + 0.300641i
\(501\) −220.662 382.197i −0.440443 0.762869i
\(502\) 69.2953 120.023i 0.138038 0.239089i
\(503\) −52.3860 −0.104147 −0.0520735 0.998643i \(-0.516583\pi\)
−0.0520735 + 0.998643i \(0.516583\pi\)
\(504\) 98.7529 + 49.3619i 0.195938 + 0.0979403i
\(505\) 214.312 14.1469i 0.424380 0.0280137i
\(506\) 319.535 553.451i 0.631492 1.09378i
\(507\) 219.258 + 379.766i 0.432461 + 0.749045i
\(508\) 120.133 69.3588i 0.236482 0.136533i
\(509\) 169.522 + 97.8739i 0.333050 + 0.192287i 0.657194 0.753721i \(-0.271743\pi\)
−0.324144 + 0.946008i \(0.605076\pi\)
\(510\) 251.700 16.6149i 0.493529 0.0325783i
\(511\) 77.0774 + 116.709i 0.150836 + 0.228393i
\(512\) 122.163i 0.238599i
\(513\) 55.9036 + 32.2760i 0.108974 + 0.0629161i
\(514\) 744.556 429.869i 1.44855 0.836322i
\(515\) 72.3826 48.4132i 0.140549 0.0940063i
\(516\) 123.750 + 71.4472i 0.239826 + 0.138464i
\(517\) 248.682 0.481009
\(518\) −219.686 332.644i −0.424104 0.642170i
\(519\) −57.0406 −0.109905
\(520\) −238.656 + 484.516i −0.458955 + 0.931761i
\(521\) −283.053 + 163.420i −0.543287 + 0.313667i −0.746410 0.665486i \(-0.768224\pi\)
0.203123 + 0.979153i \(0.434891\pi\)
\(522\) −10.9447 + 6.31891i −0.0209668 + 0.0121052i
\(523\) 342.951 594.009i 0.655739 1.13577i −0.325970 0.945380i \(-0.605691\pi\)
0.981708 0.190392i \(-0.0609760\pi\)
\(524\) 164.704i 0.314321i
\(525\) 98.7075 286.587i 0.188014 0.545879i
\(526\) −909.432 −1.72896
\(527\) −510.202 294.565i −0.968126 0.558948i
\(528\) 239.380 + 414.618i 0.453371 + 0.785261i
\(529\) −81.4269 141.036i −0.153926 0.266608i
\(530\) 723.686 + 356.464i 1.36544 + 0.672573i
\(531\) 106.483i 0.200533i
\(532\) 9.50647 + 158.069i 0.0178693 + 0.297122i
\(533\) 1443.27i 2.70783i
\(534\) 163.084 282.470i 0.305401 0.528970i
\(535\) −73.2991 109.589i −0.137008 0.204840i
\(536\) 174.213 + 301.747i 0.325025 + 0.562960i
\(537\) −83.6253 + 144.843i −0.155727 + 0.269727i
\(538\) 261.179 0.485462
\(539\) 407.106 + 542.541i 0.755298 + 1.00657i
\(540\) −3.11622 47.2076i −0.00577077 0.0874215i
\(541\) −90.5573 + 156.850i −0.167389 + 0.289926i −0.937501 0.347983i \(-0.886867\pi\)
0.770112 + 0.637908i \(0.220200\pi\)
\(542\) 294.506 + 510.099i 0.543368 + 0.941142i
\(543\) 216.055 124.739i 0.397891 0.229722i
\(544\) −283.825 163.867i −0.521737 0.301225i
\(545\) −61.8129 936.404i −0.113418 1.71817i
\(546\) 36.0822 + 599.957i 0.0660847 + 1.09882i
\(547\) 417.257i 0.762810i −0.924408 0.381405i \(-0.875440\pi\)
0.924408 0.381405i \(-0.124560\pi\)
\(548\) 151.755 + 87.6158i 0.276925 + 0.159883i
\(549\) −155.964 + 90.0461i −0.284088 + 0.164018i
\(550\) 661.938 508.903i 1.20352 0.925278i
\(551\) 18.7850 + 10.8455i 0.0340926 + 0.0196834i
\(552\) −174.240 −0.315652
\(553\) −309.553 + 619.288i −0.559770 + 1.11987i
\(554\) −408.105 −0.736651
\(555\) 90.3258 183.378i 0.162749 0.330410i
\(556\) 52.9288 30.5585i 0.0951957 0.0549613i
\(557\) −736.087 + 424.980i −1.32152 + 0.762980i −0.983971 0.178327i \(-0.942931\pi\)
−0.337550 + 0.941308i \(0.609598\pi\)
\(558\) −176.605 + 305.889i −0.316496 + 0.548188i
\(559\) 930.889i 1.66527i
\(560\) −556.542 + 422.720i −0.993825 + 0.754856i
\(561\) −289.456 −0.515964
\(562\) −230.053 132.821i −0.409347 0.236336i
\(563\) 497.281 + 861.316i 0.883270 + 1.52987i 0.847683 + 0.530503i \(0.177997\pi\)
0.0355872 + 0.999367i \(0.488670\pi\)
\(564\) 28.3306 + 49.0700i 0.0502315 + 0.0870035i
\(565\) −38.0009 + 77.1487i −0.0672582 + 0.136546i
\(566\) 1165.55i 2.05927i
\(567\) 34.7186 + 52.5702i 0.0612320 + 0.0927163i
\(568\) 166.316i 0.292809i
\(569\) −358.617 + 621.142i −0.630258 + 1.09164i 0.357241 + 0.934012i \(0.383717\pi\)
−0.987499 + 0.157626i \(0.949616\pi\)
\(570\) −215.758 + 144.310i −0.378523 + 0.253176i
\(571\) 496.542 + 860.037i 0.869601 + 1.50619i 0.862404 + 0.506220i \(0.168958\pi\)
0.00719702 + 0.999974i \(0.497709\pi\)
\(572\) −258.967 + 448.545i −0.452740 + 0.784169i
\(573\) −415.461 −0.725063
\(574\) 530.407 1061.13i 0.924054 1.84865i
\(575\) 62.8817 + 474.223i 0.109360 + 0.824735i
\(576\) 21.5625 37.3474i 0.0374350 0.0648392i
\(577\) −354.285 613.639i −0.614011 1.06350i −0.990557 0.137101i \(-0.956222\pi\)
0.376546 0.926398i \(-0.377112\pi\)
\(578\) −299.320 + 172.812i −0.517854 + 0.298983i
\(579\) 257.797 + 148.839i 0.445246 + 0.257063i
\(580\) −1.04713 15.8629i −0.00180539 0.0273499i
\(581\) 644.884 38.7842i 1.10995 0.0667542i
\(582\) 392.277i 0.674016i
\(583\) −801.688 462.855i −1.37511 0.793919i
\(584\) 90.9700 52.5216i 0.155771 0.0899342i
\(585\) −256.183 + 171.348i −0.437919 + 0.292903i
\(586\) 1099.08 + 634.551i 1.87556 + 1.08285i
\(587\) 51.3529 0.0874837 0.0437419 0.999043i \(-0.486072\pi\)
0.0437419 + 0.999043i \(0.486072\pi\)
\(588\) −60.6758 + 142.138i −0.103190 + 0.241732i
\(589\) 606.235 1.02926
\(590\) 384.111 + 189.201i 0.651036 + 0.320679i
\(591\) 194.588 112.345i 0.329252 0.190094i
\(592\) −408.178 + 235.662i −0.689490 + 0.398077i
\(593\) 3.14448 5.44641i 0.00530267 0.00918450i −0.863362 0.504585i \(-0.831645\pi\)
0.868665 + 0.495401i \(0.164979\pi\)
\(594\) 173.541i 0.292157i
\(595\) −53.0925 419.190i −0.0892311 0.704520i
\(596\) 460.726 0.773030
\(597\) −295.009 170.323i −0.494152 0.285299i
\(598\) −474.288 821.492i −0.793124 1.37373i
\(599\) −83.2393 144.175i −0.138964 0.240692i 0.788141 0.615495i \(-0.211044\pi\)
−0.927105 + 0.374803i \(0.877711\pi\)
\(600\) −210.399 86.9207i −0.350665 0.144868i
\(601\) 31.0015i 0.0515833i 0.999667 + 0.0257916i \(0.00821064\pi\)
−0.999667 + 0.0257916i \(0.991789\pi\)
\(602\) 342.105 684.411i 0.568280 1.13689i
\(603\) 198.826i 0.329728i
\(604\) −114.485 + 198.294i −0.189545 + 0.328302i
\(605\) −293.511 + 196.316i −0.485143 + 0.324489i
\(606\) −89.7530 155.457i −0.148107 0.256529i
\(607\) 16.7490 29.0101i 0.0275930 0.0477925i −0.851899 0.523706i \(-0.824549\pi\)
0.879492 + 0.475913i \(0.157882\pi\)
\(608\) 337.248 0.554684
\(609\) 11.6663 + 17.6649i 0.0191565 + 0.0290064i
\(610\) −47.6994 722.599i −0.0781958 1.18459i
\(611\) 184.560 319.667i 0.302062 0.523187i
\(612\) −32.9757 57.1155i −0.0538818 0.0933261i
\(613\) −835.234 + 482.223i −1.36254 + 0.786660i −0.989961 0.141342i \(-0.954858\pi\)
−0.372575 + 0.928002i \(0.621525\pi\)
\(614\) 269.646 + 155.680i 0.439163 + 0.253551i
\(615\) 606.998 40.0684i 0.986988 0.0651519i
\(616\) 425.089 280.739i 0.690080 0.455745i
\(617\) 691.561i 1.12084i 0.828207 + 0.560422i \(0.189361\pi\)
−0.828207 + 0.560422i \(0.810639\pi\)
\(618\) −63.0292 36.3899i −0.101989 0.0588834i
\(619\) −618.233 + 356.937i −0.998761 + 0.576635i −0.907882 0.419227i \(-0.862301\pi\)
−0.0908798 + 0.995862i \(0.528968\pi\)
\(620\) −247.018 369.317i −0.398417 0.595672i
\(621\) −86.1073 49.7140i −0.138659 0.0800548i
\(622\) −559.593 −0.899667
\(623\) −488.711 244.283i −0.784447 0.392108i
\(624\) 710.627 1.13882
\(625\) −160.638 + 604.004i −0.257020 + 0.966406i
\(626\) −384.922 + 222.235i −0.614891 + 0.355007i
\(627\) 257.954 148.930i 0.411410 0.237527i
\(628\) 8.79908 15.2404i 0.0140113 0.0242682i
\(629\) 284.960i 0.453036i
\(630\) −251.323 + 31.8313i −0.398925 + 0.0505258i
\(631\) −208.740 −0.330809 −0.165404 0.986226i \(-0.552893\pi\)
−0.165404 + 0.986226i \(0.552893\pi\)
\(632\) 450.313 + 259.988i 0.712520 + 0.411374i
\(633\) 142.652 + 247.080i 0.225358 + 0.390332i
\(634\) 344.402 + 596.522i 0.543221 + 0.940886i
\(635\) 168.304 341.687i 0.265045 0.538089i
\(636\) 210.919i 0.331634i
\(637\) 999.544 120.664i 1.56914 0.189426i
\(638\) 58.3142i 0.0914016i
\(639\) −47.4531 + 82.1912i −0.0742615 + 0.128625i
\(640\) 398.261 + 595.439i 0.622282 + 0.930373i
\(641\) 11.3505 + 19.6597i 0.0177076 + 0.0306704i 0.874743 0.484586i \(-0.161030\pi\)
−0.857036 + 0.515257i \(0.827697\pi\)
\(642\) −55.0955 + 95.4281i −0.0858185 + 0.148642i
\(643\) 589.246 0.916401 0.458200 0.888849i \(-0.348494\pi\)
0.458200 + 0.888849i \(0.348494\pi\)
\(644\) −14.6426 243.470i −0.0227370 0.378059i
\(645\) 391.504 25.8436i 0.606984 0.0400675i
\(646\) −180.923 + 313.368i −0.280066 + 0.485089i
\(647\) −115.870 200.693i −0.179088 0.310190i 0.762480 0.647011i \(-0.223981\pi\)
−0.941568 + 0.336822i \(0.890648\pi\)
\(648\) 40.9763 23.6577i 0.0632351 0.0365088i
\(649\) −425.513 245.670i −0.655644 0.378536i
\(650\) −162.908 1228.57i −0.250628 1.89011i
\(651\) 529.228 + 264.536i 0.812946 + 0.406353i
\(652\) 13.6995i 0.0210115i
\(653\) 317.714 + 183.432i 0.486545 + 0.280907i 0.723140 0.690701i \(-0.242698\pi\)
−0.236595 + 0.971608i \(0.576031\pi\)
\(654\) −679.245 + 392.163i −1.03860 + 0.599637i
\(655\) 251.427 + 375.908i 0.383858 + 0.573906i
\(656\) −1214.69 701.300i −1.85166 1.06906i
\(657\) 59.9417 0.0912355
\(658\) 253.172 167.200i 0.384759 0.254104i
\(659\) −16.7125 −0.0253603 −0.0126802 0.999920i \(-0.504036\pi\)
−0.0126802 + 0.999920i \(0.504036\pi\)
\(660\) −195.834 96.4615i −0.296719 0.146154i
\(661\) 144.634 83.5046i 0.218811 0.126331i −0.386589 0.922252i \(-0.626347\pi\)
0.605400 + 0.795922i \(0.293013\pi\)
\(662\) 75.9497 43.8496i 0.114728 0.0662380i
\(663\) −214.821 + 372.080i −0.324013 + 0.561207i
\(664\) 485.207i 0.730734i
\(665\) 262.994 + 346.252i 0.395480 + 0.520679i
\(666\) −170.846 −0.256525
\(667\) −28.9342 16.7052i −0.0433796 0.0250452i
\(668\) −231.991 401.820i −0.347292 0.601527i
\(669\) −77.2290 133.765i −0.115439 0.199947i
\(670\) −717.216 353.277i −1.07047 0.527279i
\(671\) 830.993i 1.23844i
\(672\) 294.409 + 147.161i 0.438109 + 0.218990i
\(673\) 999.203i 1.48470i −0.670012 0.742350i \(-0.733711\pi\)
0.670012 0.742350i \(-0.266289\pi\)
\(674\) 632.416 1095.38i 0.938302 1.62519i
\(675\) −79.1763 102.986i −0.117298 0.152572i
\(676\) 230.515 + 399.263i 0.340998 + 0.590626i
\(677\) 448.288 776.458i 0.662169 1.14691i −0.317876 0.948132i \(-0.602969\pi\)
0.980045 0.198778i \(-0.0636972\pi\)
\(678\) 71.8764 0.106012
\(679\) −655.917 + 39.4477i −0.966004 + 0.0580968i
\(680\) −316.653 + 20.9026i −0.465667 + 0.0307391i
\(681\) −66.8415 + 115.773i −0.0981519 + 0.170004i
\(682\) 814.901 + 1411.45i 1.19487 + 2.06958i
\(683\) −41.3172 + 23.8545i −0.0604938 + 0.0349261i −0.529942 0.848034i \(-0.677786\pi\)
0.469448 + 0.882960i \(0.344453\pi\)
\(684\) 58.7738 + 33.9331i 0.0859266 + 0.0496097i
\(685\) 480.102 31.6920i 0.700879 0.0462657i
\(686\) 779.232 + 278.620i 1.13591 + 0.406152i
\(687\) 90.1509i 0.131224i
\(688\) −783.456 452.328i −1.13874 0.657454i
\(689\) −1189.95 + 687.020i −1.72707 + 0.997126i
\(690\) 332.328 222.278i 0.481635 0.322142i
\(691\) 366.434 + 211.560i 0.530295 + 0.306166i 0.741136 0.671354i \(-0.234287\pi\)
−0.210842 + 0.977520i \(0.567621\pi\)
\(692\) −59.9692 −0.0866607
\(693\) 290.174 17.4515i 0.418722 0.0251825i
\(694\) −1027.10 −1.47997
\(695\) 74.1520 150.542i 0.106694 0.216607i
\(696\) 13.7691 7.94957i 0.0197831 0.0114218i
\(697\) 734.394 424.003i 1.05365 0.608325i
\(698\) 623.364 1079.70i 0.893072 1.54685i
\(699\) 36.0865i 0.0516259i
\(700\) 103.775 301.300i 0.148250 0.430429i
\(701\) −1051.65 −1.50021 −0.750105 0.661319i \(-0.769997\pi\)
−0.750105 + 0.661319i \(0.769997\pi\)
\(702\) 223.079 + 128.794i 0.317776 + 0.183468i
\(703\) 146.616 + 253.947i 0.208558 + 0.361233i
\(704\) −99.4951 172.331i −0.141328 0.244788i
\(705\) 139.567 + 68.7459i 0.197967 + 0.0975119i
\(706\) 369.955i 0.524016i
\(707\) −250.909 + 165.706i −0.354893 + 0.234380i
\(708\) 111.950i 0.158121i
\(709\) 91.8143 159.027i 0.129498 0.224298i −0.793984 0.607939i \(-0.791997\pi\)
0.923482 + 0.383641i \(0.125330\pi\)
\(710\) −212.169 317.214i −0.298830 0.446781i
\(711\) 148.359 + 256.966i 0.208663 + 0.361415i
\(712\) −205.170 + 355.364i −0.288160 + 0.499107i
\(713\) −933.772 −1.30964
\(714\) −294.682 + 194.615i −0.412720 + 0.272570i
\(715\) 93.6725 + 1419.05i 0.131010 + 1.98468i
\(716\) −87.9187 + 152.280i −0.122791 + 0.212681i
\(717\) −261.778 453.413i −0.365102 0.632375i
\(718\) −360.461 + 208.112i −0.502034 + 0.289850i
\(719\) −271.719 156.877i −0.377913 0.218188i 0.298997 0.954254i \(-0.403348\pi\)
−0.676910 + 0.736066i \(0.736681\pi\)
\(720\) 19.7286 + 298.869i 0.0274008 + 0.415096i
\(721\) −54.5084 + 109.049i −0.0756011 + 0.151247i
\(722\) 498.623i 0.690613i
\(723\) −544.248 314.222i −0.752764 0.434609i
\(724\) 227.147 131.143i 0.313739 0.181137i
\(725\) −26.6052 34.6058i −0.0366968 0.0477322i
\(726\) 255.583 + 147.561i 0.352043 + 0.203252i
\(727\) 54.2935 0.0746816 0.0373408 0.999303i \(-0.488111\pi\)
0.0373408 + 0.999303i \(0.488111\pi\)
\(728\) −45.3936 754.782i −0.0623539 1.03679i
\(729\) 27.0000 0.0370370
\(730\) −106.505 + 216.225i −0.145898 + 0.296199i
\(731\) 473.674 273.476i 0.647980 0.374112i
\(732\) −163.972 + 94.6692i −0.224005 + 0.129330i
\(733\) −451.910 + 782.731i −0.616521 + 1.06785i 0.373595 + 0.927592i \(0.378125\pi\)
−0.990116 + 0.140254i \(0.955208\pi\)
\(734\) 1627.16i 2.21684i
\(735\) 78.4975 + 417.029i 0.106799 + 0.567386i
\(736\) −519.457 −0.705783
\(737\) 794.522 + 458.717i 1.07805 + 0.622412i
\(738\) −254.208 440.302i −0.344456 0.596615i
\(739\) 529.386 + 916.924i 0.716355 + 1.24076i 0.962435 + 0.271513i \(0.0875241\pi\)
−0.246080 + 0.969250i \(0.579143\pi\)
\(740\) 94.9632 192.792i 0.128329 0.260530i
\(741\) 442.115i 0.596647i
\(742\) −1127.36 + 67.8011i −1.51936 + 0.0913762i
\(743\) 893.251i 1.20222i 0.799165 + 0.601111i \(0.205275\pi\)
−0.799165 + 0.601111i \(0.794725\pi\)
\(744\) 222.180 384.826i 0.298628 0.517240i
\(745\) 1051.52 703.314i 1.41144 0.944046i
\(746\) −729.035 1262.73i −0.977259 1.69266i
\(747\) 138.439 239.783i 0.185327 0.320995i
\(748\) −304.317 −0.406841
\(749\) 165.103 + 82.5273i 0.220432 + 0.110183i
\(750\) 512.179 102.622i 0.682905 0.136830i
\(751\) 671.400 1162.90i 0.894008 1.54847i 0.0589799 0.998259i \(-0.481215\pi\)
0.835028 0.550208i \(-0.185451\pi\)
\(752\) −179.359 310.659i −0.238510 0.413111i
\(753\) −86.1642 + 49.7469i −0.114428 + 0.0660650i
\(754\) 74.9599 + 43.2781i 0.0994163 + 0.0573981i
\(755\) 41.4111 + 627.338i 0.0548492 + 0.830911i
\(756\) 36.5010 + 55.2692i 0.0482818 + 0.0731074i
\(757\) 518.848i 0.685400i −0.939445 0.342700i \(-0.888658\pi\)
0.939445 0.342700i \(-0.111342\pi\)
\(758\) −700.025 404.160i −0.923516 0.533192i
\(759\) −397.321 + 229.394i −0.523480 + 0.302231i
\(760\) 271.437 181.551i 0.357154 0.238883i
\(761\) 119.379 + 68.9233i 0.156871 + 0.0905694i 0.576381 0.817181i \(-0.304465\pi\)
−0.419510 + 0.907751i \(0.637798\pi\)
\(762\) −318.336 −0.417764
\(763\) 724.030 + 1096.31i 0.948926 + 1.43684i
\(764\) −436.791 −0.571716
\(765\) −162.450 80.0175i −0.212353 0.104598i
\(766\) −613.235 + 354.051i −0.800567 + 0.462208i
\(767\) −631.592 + 364.650i −0.823458 + 0.475424i
\(768\) 249.557 432.246i 0.324944 0.562820i
\(769\) 1287.39i 1.67411i 0.547116 + 0.837057i \(0.315726\pi\)
−0.547116 + 0.837057i \(0.684274\pi\)
\(770\) −452.634 + 1077.74i −0.587836 + 1.39966i
\(771\) −617.205 −0.800525
\(772\) 271.033 + 156.481i 0.351079 + 0.202695i
\(773\) −258.628 447.957i −0.334577 0.579504i 0.648827 0.760936i \(-0.275260\pi\)
−0.983403 + 0.181432i \(0.941927\pi\)
\(774\) −163.961 283.988i −0.211835 0.366910i
\(775\) −1127.55 465.818i −1.45490 0.601055i
\(776\) 493.508i 0.635964i
\(777\) 17.1804 + 285.667i 0.0221112 + 0.367654i
\(778\) 1235.61i 1.58819i
\(779\) −436.313 + 755.716i −0.560093 + 0.970110i
\(780\) −269.335 + 180.146i −0.345302 + 0.230956i
\(781\) 218.961 + 379.252i 0.280360 + 0.485597i
\(782\) 278.672 482.674i 0.356358 0.617230i
\(783\) 9.07267 0.0115871
\(784\) 384.135 899.869i 0.489968 1.14779i
\(785\) −3.18276 48.2157i −0.00405447 0.0614213i
\(786\) 188.986 327.333i 0.240440 0.416454i
\(787\) −479.057 829.751i −0.608712 1.05432i −0.991453 0.130465i \(-0.958353\pi\)
0.382740 0.923856i \(-0.374980\pi\)
\(788\) 204.578 118.113i 0.259617 0.149890i
\(789\) 565.410 + 326.440i 0.716616 + 0.413738i
\(790\) −1190.55 + 78.5892i −1.50703 + 0.0994801i
\(791\) −7.22795 120.183i −0.00913774 0.151938i
\(792\) 218.326i 0.275664i
\(793\) 1068.20 + 616.725i 1.34703 + 0.777711i
\(794\) 972.965 561.742i 1.22540 0.707483i
\(795\) −321.976 481.386i −0.405001 0.605517i
\(796\) −310.155 179.068i −0.389642 0.224960i
\(797\) −305.949 −0.383876 −0.191938 0.981407i \(-0.561477\pi\)
−0.191938 + 0.981407i \(0.561477\pi\)
\(798\) 162.479 325.053i 0.203607 0.407335i
\(799\) 216.880 0.271439
\(800\) −627.256 259.134i −0.784070 0.323918i
\(801\) −202.785 + 117.078i −0.253164 + 0.146165i
\(802\) 317.126 183.093i 0.395419 0.228295i
\(803\) 138.293 239.531i 0.172221 0.298295i
\(804\) 209.034i 0.259992i
\(805\) −405.085 533.325i −0.503211 0.662515i
\(806\) 2419.13 3.00140
\(807\) −162.379 93.7498i −0.201214 0.116171i
\(808\) 112.915 + 195.574i 0.139746 + 0.242047i
\(809\) 321.894 + 557.536i 0.397891 + 0.689167i 0.993466 0.114133i \(-0.0364089\pi\)
−0.595575 + 0.803300i \(0.703076\pi\)
\(810\) −47.9740 + 97.3959i −0.0592272 + 0.120242i
\(811\) 338.901i 0.417881i −0.977928 0.208940i \(-0.932999\pi\)
0.977928 0.208940i \(-0.0670015\pi\)
\(812\) 12.2653 + 18.5718i 0.0151050 + 0.0228717i
\(813\) 422.850i 0.520111i
\(814\) −394.164 + 682.711i −0.484230 + 0.838712i
\(815\) 20.9127 + 31.2666i 0.0256598 + 0.0383639i
\(816\) 208.767 + 361.595i 0.255842 + 0.443132i
\(817\) −281.415 + 487.426i −0.344450 + 0.596604i
\(818\) −877.429 −1.07265
\(819\) 192.921 385.956i 0.235557 0.471252i
\(820\) 638.162 42.1256i 0.778246 0.0513727i
\(821\) −554.149 + 959.815i −0.674969 + 1.16908i 0.301509 + 0.953463i \(0.402510\pi\)
−0.976478 + 0.215617i \(0.930824\pi\)
\(822\) −201.065 348.255i −0.244605 0.423668i
\(823\) 953.672 550.603i 1.15877 0.669019i 0.207765 0.978179i \(-0.433381\pi\)
0.951010 + 0.309160i \(0.100048\pi\)
\(824\) 79.2945 + 45.7807i 0.0962312 + 0.0555591i
\(825\) −594.209 + 78.7918i −0.720253 + 0.0955053i
\(826\) −598.371 + 35.9869i −0.724420 + 0.0435676i
\(827\) 174.811i 0.211379i −0.994399 0.105690i \(-0.966295\pi\)
0.994399 0.105690i \(-0.0337050\pi\)
\(828\) −90.5281 52.2664i −0.109333 0.0631237i
\(829\) −221.752 + 128.029i −0.267493 + 0.154437i −0.627748 0.778417i \(-0.716023\pi\)
0.360255 + 0.932854i \(0.382690\pi\)
\(830\) 618.980 + 925.436i 0.745759 + 1.11498i
\(831\) 253.726 + 146.489i 0.305326 + 0.176280i
\(832\) −295.363 −0.355003
\(833\) 355.044 + 473.159i 0.426223 + 0.568018i
\(834\) −140.254 −0.168171
\(835\) −1142.87 562.940i −1.36871 0.674180i
\(836\) 271.197 156.576i 0.324399 0.187292i
\(837\) 219.597 126.784i 0.262362 0.151475i
\(838\) 34.0607 58.9949i 0.0406452 0.0703996i
\(839\) 488.850i 0.582658i −0.956623 0.291329i \(-0.905903\pi\)
0.956623 0.291329i \(-0.0940974\pi\)
\(840\) 316.179 40.0457i 0.376403 0.0476734i
\(841\) −837.951 −0.996375
\(842\) 1603.75 + 925.928i 1.90470 + 1.09968i
\(843\) 95.3520 + 165.154i 0.113110 + 0.195913i
\(844\) 149.976 + 259.765i 0.177696 + 0.307779i
\(845\) 1135.60 + 559.359i 1.34390 + 0.661963i
\(846\) 130.029i 0.153698i
\(847\) 221.032 442.193i 0.260958 0.522070i
\(848\) 1335.32i 1.57467i
\(849\) 418.372 724.641i 0.492782 0.853523i
\(850\) 577.288 443.823i 0.679162 0.522144i
\(851\) −225.830 391.150i −0.265371 0.459635i
\(852\) −49.8894 + 86.4110i −0.0585556 + 0.101421i
\(853\) 155.926 0.182797 0.0913985 0.995814i \(-0.470866\pi\)
0.0913985 + 0.995814i \(0.470866\pi\)
\(854\) 558.716 + 845.996i 0.654234 + 0.990628i
\(855\) 185.941 12.2741i 0.217475 0.0143557i
\(856\) 69.3134 120.054i 0.0809736 0.140250i
\(857\) −597.245 1034.46i −0.696902 1.20707i −0.969535 0.244951i \(-0.921228\pi\)
0.272634 0.962118i \(-0.412105\pi\)
\(858\) 1029.34 594.291i 1.19970 0.692647i
\(859\) 1002.34 + 578.702i 1.16687 + 0.673693i 0.952941 0.303156i \(-0.0980403\pi\)
0.213930 + 0.976849i \(0.431374\pi\)
\(860\) 411.605 27.1704i 0.478610 0.0315935i
\(861\) −710.654 + 469.332i −0.825382 + 0.545101i
\(862\) 1815.79i 2.10649i
\(863\) 694.291 + 400.849i 0.804509 + 0.464483i 0.845045 0.534695i \(-0.179573\pi\)
−0.0405365 + 0.999178i \(0.512907\pi\)
\(864\) 122.162 70.5300i 0.141391 0.0816320i
\(865\) −136.869 + 91.5451i −0.158230 + 0.105832i
\(866\) −503.239 290.545i −0.581108 0.335503i
\(867\) 248.123 0.286186
\(868\) 556.399 + 278.118i 0.641013 + 0.320412i
\(869\) 1369.14 1.57553
\(870\) −16.1205 + 32.7274i −0.0185293 + 0.0376178i
\(871\) 1179.32 680.878i 1.35398 0.781720i
\(872\) 854.531 493.364i 0.979967 0.565784i
\(873\) −140.808 + 243.886i −0.161292 + 0.279365i
\(874\) 573.525i 0.656207i
\(875\) −223.097 846.081i −0.254968 0.966949i
\(876\) 63.0192 0.0719397
\(877\) 1079.03 + 622.980i 1.23037 + 0.710353i 0.967107 0.254371i \(-0.0818684\pi\)
0.263262 + 0.964724i \(0.415202\pi\)
\(878\) 864.183 + 1496.81i 0.984264 + 1.70479i
\(879\) −455.543 789.024i −0.518252 0.897638i
\(880\) 1239.82 + 610.692i 1.40888 + 0.693969i
\(881\) 791.060i 0.897911i 0.893554 + 0.448956i \(0.148204\pi\)
−0.893554 + 0.448956i \(0.851796\pi\)
\(882\) 283.680 212.864i 0.321632 0.241343i
\(883\) 343.428i 0.388933i −0.980909 0.194467i \(-0.937702\pi\)
0.980909 0.194467i \(-0.0622976\pi\)
\(884\) −225.850 + 391.183i −0.255486 + 0.442515i
\(885\) −170.896 255.506i −0.193102 0.288707i
\(886\) −514.590 891.297i −0.580802 1.00598i
\(887\) 754.185 1306.29i 0.850265 1.47270i −0.0307048 0.999528i \(-0.509775\pi\)
0.880969 0.473173i \(-0.156891\pi\)
\(888\) 214.934 0.242043
\(889\) 32.0121 + 532.282i 0.0360092 + 0.598742i
\(890\) −62.0187 939.522i −0.0696839 1.05564i
\(891\) 62.2925 107.894i 0.0699130 0.121093i
\(892\) −81.1940 140.632i −0.0910247 0.157659i
\(893\) −193.276 + 111.588i −0.216435 + 0.124959i
\(894\) −915.645 528.648i −1.02421 0.591329i
\(895\) 31.8016 + 481.762i 0.0355325 + 0.538282i
\(896\) −897.066 448.401i −1.00119 0.500448i
\(897\) 680.981i 0.759177i
\(898\) −549.503 317.256i −0.611919 0.353292i
\(899\) 73.7900 42.6027i 0.0820801 0.0473890i
\(900\) −83.2413 108.273i −0.0924904 0.120304i
\(901\) −699.166 403.664i −0.775989 0.448018i
\(902\) −2345.97 −2.60085
\(903\) −458.361 + 302.712i −0.507598 + 0.335230i
\(904\) −90.4249 −0.100027
\(905\) 318.228 646.060i 0.351633 0.713878i
\(906\) 455.056 262.727i 0.502269 0.289985i
\(907\) −935.921 + 540.354i −1.03189 + 0.595760i −0.917524 0.397679i \(-0.869816\pi\)
−0.114362 + 0.993439i \(0.536482\pi\)
\(908\) −70.2732 + 121.717i −0.0773934 + 0.134049i
\(909\) 128.867i 0.141768i
\(910\) 1049.46 + 1381.69i 1.15325 + 1.51834i
\(911\) 315.550 0.346377 0.173189 0.984889i \(-0.444593\pi\)
0.173189 + 0.984889i \(0.444593\pi\)
\(912\) −372.094 214.828i −0.407997 0.235557i
\(913\) −638.794 1106.42i −0.699665 1.21185i
\(914\) −80.5711 139.553i −0.0881522 0.152684i
\(915\) −229.721 + 466.375i −0.251061 + 0.509699i
\(916\) 94.7794i 0.103471i
\(917\) −566.329 283.081i −0.617589 0.308704i
\(918\) 151.348i 0.164868i
\(919\) −252.321 + 437.032i −0.274560 + 0.475552i −0.970024 0.243009i \(-0.921866\pi\)
0.695464 + 0.718561i \(0.255199\pi\)
\(920\) −418.089 + 279.639i −0.454444 + 0.303956i
\(921\) −111.763 193.579i −0.121349 0.210183i
\(922\) 286.647 496.488i 0.310897 0.538490i
\(923\) 650.011 0.704237
\(924\) 305.072 18.3474i 0.330164 0.0198565i
\(925\) −77.5680 584.979i −0.0838573 0.632410i
\(926\) 25.4214 44.0312i 0.0274529 0.0475499i
\(927\) 26.1243 + 45.2486i 0.0281815 + 0.0488118i
\(928\) 41.0493 23.6998i 0.0442342 0.0255386i
\(929\) 41.7500 + 24.1044i 0.0449408 + 0.0259466i 0.522302 0.852761i \(-0.325073\pi\)
−0.477361 + 0.878707i \(0.658407\pi\)
\(930\) 67.1604 + 1017.41i 0.0722155 + 1.09399i
\(931\) −559.852 238.989i −0.601345 0.256701i
\(932\) 37.9392i 0.0407073i
\(933\) 347.909 + 200.865i 0.372893 + 0.215290i
\(934\) 1186.49 685.020i 1.27033 0.733426i
\(935\) −694.549 + 464.550i −0.742833 + 0.496845i
\(936\) −280.646 162.031i −0.299836 0.173110i
\(937\) −730.647 −0.779773 −0.389887 0.920863i \(-0.627486\pi\)
−0.389887 + 0.920863i \(0.627486\pi\)
\(938\) 1117.28 67.1950i 1.19113 0.0716365i
\(939\) 319.084 0.339812
\(940\) 146.732 + 72.2754i 0.156098 + 0.0768887i
\(941\) −293.174 + 169.264i −0.311556 + 0.179877i −0.647622 0.761961i \(-0.724237\pi\)
0.336067 + 0.941838i \(0.390903\pi\)
\(942\) −34.9745 + 20.1926i −0.0371280 + 0.0214358i
\(943\) 672.044 1164.01i 0.712666 1.23437i
\(944\) 708.749i 0.750793i
\(945\) 167.678 + 70.4219i 0.177437 + 0.0745205i
\(946\) −1513.11 −1.59949
\(947\) −1605.75 927.082i −1.69562 0.978967i −0.949820 0.312798i \(-0.898734\pi\)
−0.745801 0.666169i \(-0.767933\pi\)
\(948\) 155.976 + 270.159i 0.164532 + 0.284978i
\(949\) −205.270 355.538i −0.216301 0.374645i
\(950\) −286.107 + 692.545i −0.301165 + 0.728995i
\(951\) 494.491i 0.519970i
\(952\) 370.728 244.837i 0.389420 0.257182i
\(953\) 434.419i 0.455843i 0.973679 + 0.227922i \(0.0731930\pi\)
−0.973679 + 0.227922i \(0.926807\pi\)
\(954\) −242.014 + 419.181i −0.253684 + 0.439393i
\(955\) −996.898 + 666.777i −1.04387 + 0.698196i
\(956\) −275.218 476.692i −0.287885 0.498632i
\(957\) 20.9318 36.2550i 0.0218723 0.0378840i
\(958\) 390.207 0.407315
\(959\) −562.089 + 371.216i −0.586119 + 0.387087i
\(960\) −8.19994 124.221i −0.00854160 0.129397i
\(961\) 710.186 1230.08i 0.739007 1.28000i
\(962\) 585.060 + 1013.35i 0.608171 + 1.05338i
\(963\) 68.5077 39.5529i 0.0711398 0.0410726i
\(964\) −572.191 330.354i −0.593559 0.342691i
\(965\) 857.458 56.6016i 0.888558 0.0586545i
\(966\) −250.263 + 500.673i −0.259071 + 0.518295i
\(967\) 1051.59i 1.08747i 0.839256 + 0.543737i \(0.182991\pi\)
−0.839256 + 0.543737i \(0.817009\pi\)
\(968\) −321.539 185.641i −0.332169 0.191778i
\(969\) 224.966 129.884i 0.232163 0.134039i
\(970\) −629.570 941.269i −0.649041 0.970381i
\(971\) 255.709 + 147.634i 0.263346 + 0.152043i 0.625860 0.779935i \(-0.284748\pi\)
−0.362514 + 0.931978i \(0.618081\pi\)
\(972\) 28.3862 0.0292039
\(973\) 14.1041 + 234.515i 0.0144955 + 0.241023i
\(974\) −692.954 −0.711452
\(975\) −339.712 + 822.301i −0.348422 + 0.843385i
\(976\) 1038.10 599.346i 1.06362 0.614084i
\(977\) −1131.35 + 653.187i −1.15799 + 0.668564i −0.950821 0.309742i \(-0.899757\pi\)
−0.207166 + 0.978306i \(0.566424\pi\)
\(978\) 15.7191 27.2263i 0.0160727 0.0278388i
\(979\) 1080.45i 1.10363i
\(980\) 82.5276 + 438.440i 0.0842118 + 0.447387i
\(981\) 563.065 0.573971
\(982\) −1809.11 1044.49i −1.84227 1.06363i
\(983\) −307.982 533.440i −0.313308 0.542665i 0.665769 0.746158i \(-0.268104\pi\)
−0.979076 + 0.203493i \(0.934770\pi\)
\(984\) 319.809 + 553.926i 0.325009 + 0.562933i
\(985\) 286.609 581.868i 0.290974 0.590729i
\(986\) 50.8568i 0.0515789i
\(987\) −217.418 + 13.0758i −0.220281 + 0.0132480i
\(988\) 464.814i 0.470459i
\(989\) 433.458 750.772i 0.438280 0.759122i
\(990\) 278.518 + 416.413i 0.281332 + 0.420619i
\(991\) −276.419 478.771i −0.278929 0.483119i 0.692190 0.721715i \(-0.256646\pi\)
−0.971119 + 0.238596i \(0.923313\pi\)
\(992\) 662.378 1147.27i 0.667719 1.15652i
\(993\) −62.9590 −0.0634029
\(994\) 477.903 + 238.881i 0.480788 + 0.240323i
\(995\) −981.226 + 64.7716i −0.986157 + 0.0650971i
\(996\) 145.547 252.094i 0.146131 0.253107i
\(997\) 458.012 + 793.300i 0.459390 + 0.795687i 0.998929 0.0462737i \(-0.0147346\pi\)
−0.539539 + 0.841961i \(0.681401\pi\)
\(998\) −458.053 + 264.457i −0.458971 + 0.264987i
\(999\) 106.218 + 61.3249i 0.106324 + 0.0613863i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 105.3.r.a.19.4 32
3.2 odd 2 315.3.bi.e.19.13 32
5.2 odd 4 525.3.o.q.376.7 16
5.3 odd 4 525.3.o.p.376.2 16
5.4 even 2 inner 105.3.r.a.19.13 yes 32
7.2 even 3 735.3.e.a.244.32 32
7.3 odd 6 inner 105.3.r.a.94.13 yes 32
7.5 odd 6 735.3.e.a.244.8 32
15.14 odd 2 315.3.bi.e.19.4 32
21.17 even 6 315.3.bi.e.199.4 32
35.3 even 12 525.3.o.p.451.2 16
35.9 even 6 735.3.e.a.244.7 32
35.17 even 12 525.3.o.q.451.7 16
35.19 odd 6 735.3.e.a.244.31 32
35.24 odd 6 inner 105.3.r.a.94.4 yes 32
105.59 even 6 315.3.bi.e.199.13 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.3.r.a.19.4 32 1.1 even 1 trivial
105.3.r.a.19.13 yes 32 5.4 even 2 inner
105.3.r.a.94.4 yes 32 35.24 odd 6 inner
105.3.r.a.94.13 yes 32 7.3 odd 6 inner
315.3.bi.e.19.4 32 15.14 odd 2
315.3.bi.e.19.13 32 3.2 odd 2
315.3.bi.e.199.4 32 21.17 even 6
315.3.bi.e.199.13 32 105.59 even 6
525.3.o.p.376.2 16 5.3 odd 4
525.3.o.p.451.2 16 35.3 even 12
525.3.o.q.376.7 16 5.2 odd 4
525.3.o.q.451.7 16 35.17 even 12
735.3.e.a.244.7 32 35.9 even 6
735.3.e.a.244.8 32 7.5 odd 6
735.3.e.a.244.31 32 35.19 odd 6
735.3.e.a.244.32 32 7.2 even 3