Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [105,3,Mod(19,105)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(105, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 3, 5]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("105.19");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 105 = 3 \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 105.r (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.86104277578\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 | −3.26825 | − | 1.88692i | 0.866025 | + | 1.50000i | 5.12097 | + | 8.86977i | −3.80462 | + | 3.24421i | − | 6.53650i | −1.16497 | − | 6.90238i | − | 23.5561i | −1.50000 | + | 2.59808i | 18.5560 | − | 3.42385i | ||
19.2 | −2.95153 | − | 1.70407i | −0.866025 | − | 1.50000i | 3.80769 | + | 6.59511i | −3.57204 | − | 3.49865i | 5.90306i | −5.14807 | + | 4.74314i | − | 12.3217i | −1.50000 | + | 2.59808i | 4.58104 | + | 16.4134i | |||
19.3 | −2.53945 | − | 1.46615i | −0.866025 | − | 1.50000i | 2.29920 | + | 3.98234i | 1.01132 | + | 4.89665i | 5.07890i | 6.93149 | + | 0.976973i | − | 1.75471i | −1.50000 | + | 2.59808i | 4.61104 | − | 13.9176i | |||
19.4 | −2.08943 | − | 1.20633i | 0.866025 | + | 1.50000i | 0.910488 | + | 1.57701i | 4.48539 | + | 2.20936i | − | 4.17887i | −6.98737 | + | 0.420230i | 5.25727i | −1.50000 | + | 2.59808i | −6.70671 | − | 10.0272i | |||
19.5 | −1.71634 | − | 0.990928i | −0.866025 | − | 1.50000i | −0.0361245 | − | 0.0625695i | 4.45717 | − | 2.26576i | 3.43267i | −2.11222 | − | 6.67372i | 8.07061i | −1.50000 | + | 2.59808i | −9.89520 | − | 0.527928i | ||||
19.6 | −1.32532 | − | 0.765175i | 0.866025 | + | 1.50000i | −0.829016 | − | 1.43590i | −3.72620 | + | 3.33398i | − | 2.65064i | 6.34933 | + | 2.94719i | 8.65876i | −1.50000 | + | 2.59808i | 7.48949 | − | 1.56739i | |||
19.7 | −0.952353 | − | 0.549841i | 0.866025 | + | 1.50000i | −1.39535 | − | 2.41681i | −2.62055 | − | 4.25825i | − | 1.90471i | −6.08554 | + | 3.45923i | 7.46761i | −1.50000 | + | 2.59808i | 0.154330 | + | 5.49625i | |||
19.8 | −0.428040 | − | 0.247129i | −0.866025 | − | 1.50000i | −1.87785 | − | 3.25254i | −2.75389 | + | 4.17326i | 0.856079i | −5.82770 | + | 3.87787i | 3.83332i | −1.50000 | + | 2.59808i | 2.21011 | − | 1.10575i | ||||
19.9 | 0.428040 | + | 0.247129i | 0.866025 | + | 1.50000i | −1.87785 | − | 3.25254i | 2.23720 | − | 4.47157i | 0.856079i | 5.82770 | − | 3.87787i | − | 3.83332i | −1.50000 | + | 2.59808i | 2.06266 | − | 1.36113i | |||
19.10 | 0.952353 | + | 0.549841i | −0.866025 | − | 1.50000i | −1.39535 | − | 2.41681i | −4.99803 | − | 0.140341i | − | 1.90471i | 6.08554 | − | 3.45923i | − | 7.46761i | −1.50000 | + | 2.59808i | −4.68273 | − | 2.88178i | ||
19.11 | 1.32532 | + | 0.765175i | −0.866025 | − | 1.50000i | −0.829016 | − | 1.43590i | 1.02421 | − | 4.89398i | − | 2.65064i | −6.34933 | − | 2.94719i | − | 8.65876i | −1.50000 | + | 2.59808i | 5.10215 | − | 5.70239i | ||
19.12 | 1.71634 | + | 0.990928i | 0.866025 | + | 1.50000i | −0.0361245 | − | 0.0625695i | 0.266380 | + | 4.99290i | 3.43267i | 2.11222 | + | 6.67372i | − | 8.07061i | −1.50000 | + | 2.59808i | −4.49040 | + | 8.83346i | |||
19.13 | 2.08943 | + | 1.20633i | −0.866025 | − | 1.50000i | 0.910488 | + | 1.57701i | 4.15605 | + | 2.77979i | − | 4.17887i | 6.98737 | − | 0.420230i | − | 5.25727i | −1.50000 | + | 2.59808i | 5.33045 | + | 10.8218i | ||
19.14 | 2.53945 | + | 1.46615i | 0.866025 | + | 1.50000i | 2.29920 | + | 3.98234i | 4.74629 | − | 1.57250i | 5.07890i | −6.93149 | − | 0.976973i | 1.75471i | −1.50000 | + | 2.59808i | 14.3585 | + | 2.96550i | ||||
19.15 | 2.95153 | + | 1.70407i | 0.866025 | + | 1.50000i | 3.80769 | + | 6.59511i | −4.81594 | − | 1.34415i | 5.90306i | 5.14807 | − | 4.74314i | 12.3217i | −1.50000 | + | 2.59808i | −11.9239 | − | 12.1740i | ||||
19.16 | 3.26825 | + | 1.88692i | −0.866025 | − | 1.50000i | 5.12097 | + | 8.86977i | 0.907258 | − | 4.91700i | − | 6.53650i | 1.16497 | + | 6.90238i | 23.5561i | −1.50000 | + | 2.59808i | 12.2431 | − | 14.3580i | |||
94.1 | −3.26825 | + | 1.88692i | 0.866025 | − | 1.50000i | 5.12097 | − | 8.86977i | −3.80462 | − | 3.24421i | 6.53650i | −1.16497 | + | 6.90238i | 23.5561i | −1.50000 | − | 2.59808i | 18.5560 | + | 3.42385i | ||||
94.2 | −2.95153 | + | 1.70407i | −0.866025 | + | 1.50000i | 3.80769 | − | 6.59511i | −3.57204 | + | 3.49865i | − | 5.90306i | −5.14807 | − | 4.74314i | 12.3217i | −1.50000 | − | 2.59808i | 4.58104 | − | 16.4134i | |||
94.3 | −2.53945 | + | 1.46615i | −0.866025 | + | 1.50000i | 2.29920 | − | 3.98234i | 1.01132 | − | 4.89665i | − | 5.07890i | 6.93149 | − | 0.976973i | 1.75471i | −1.50000 | − | 2.59808i | 4.61104 | + | 13.9176i | |||
94.4 | −2.08943 | + | 1.20633i | 0.866025 | − | 1.50000i | 0.910488 | − | 1.57701i | 4.48539 | − | 2.20936i | 4.17887i | −6.98737 | − | 0.420230i | − | 5.25727i | −1.50000 | − | 2.59808i | −6.70671 | + | 10.0272i | |||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
7.d | odd | 6 | 1 | inner |
35.i | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 105.3.r.a | ✓ | 32 |
3.b | odd | 2 | 1 | 315.3.bi.e | 32 | ||
5.b | even | 2 | 1 | inner | 105.3.r.a | ✓ | 32 |
5.c | odd | 4 | 1 | 525.3.o.p | 16 | ||
5.c | odd | 4 | 1 | 525.3.o.q | 16 | ||
7.c | even | 3 | 1 | 735.3.e.a | 32 | ||
7.d | odd | 6 | 1 | inner | 105.3.r.a | ✓ | 32 |
7.d | odd | 6 | 1 | 735.3.e.a | 32 | ||
15.d | odd | 2 | 1 | 315.3.bi.e | 32 | ||
21.g | even | 6 | 1 | 315.3.bi.e | 32 | ||
35.i | odd | 6 | 1 | inner | 105.3.r.a | ✓ | 32 |
35.i | odd | 6 | 1 | 735.3.e.a | 32 | ||
35.j | even | 6 | 1 | 735.3.e.a | 32 | ||
35.k | even | 12 | 1 | 525.3.o.p | 16 | ||
35.k | even | 12 | 1 | 525.3.o.q | 16 | ||
105.p | even | 6 | 1 | 315.3.bi.e | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
105.3.r.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
105.3.r.a | ✓ | 32 | 5.b | even | 2 | 1 | inner |
105.3.r.a | ✓ | 32 | 7.d | odd | 6 | 1 | inner |
105.3.r.a | ✓ | 32 | 35.i | odd | 6 | 1 | inner |
315.3.bi.e | 32 | 3.b | odd | 2 | 1 | ||
315.3.bi.e | 32 | 15.d | odd | 2 | 1 | ||
315.3.bi.e | 32 | 21.g | even | 6 | 1 | ||
315.3.bi.e | 32 | 105.p | even | 6 | 1 | ||
525.3.o.p | 16 | 5.c | odd | 4 | 1 | ||
525.3.o.p | 16 | 35.k | even | 12 | 1 | ||
525.3.o.q | 16 | 5.c | odd | 4 | 1 | ||
525.3.o.q | 16 | 35.k | even | 12 | 1 | ||
735.3.e.a | 32 | 7.c | even | 3 | 1 | ||
735.3.e.a | 32 | 7.d | odd | 6 | 1 | ||
735.3.e.a | 32 | 35.i | odd | 6 | 1 | ||
735.3.e.a | 32 | 35.j | even | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(105, [\chi])\).