Properties

Label 1045.4.a.d.1.7
Level $1045$
Weight $4$
Character 1045.1
Self dual yes
Analytic conductor $61.657$
Analytic rank $1$
Dimension $22$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1045,4,Mod(1,1045)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1045.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1045, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1045 = 5 \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1045.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [22,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.6569959560\)
Analytic rank: \(1\)
Dimension: \(22\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Character \(\chi\) \(=\) 1045.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.86531 q^{2} -5.40234 q^{3} +0.209982 q^{4} +5.00000 q^{5} +15.4794 q^{6} -24.6494 q^{7} +22.3208 q^{8} +2.18531 q^{9} -14.3265 q^{10} -11.0000 q^{11} -1.13439 q^{12} +15.7098 q^{13} +70.6279 q^{14} -27.0117 q^{15} -65.6358 q^{16} -2.85422 q^{17} -6.26159 q^{18} -19.0000 q^{19} +1.04991 q^{20} +133.164 q^{21} +31.5184 q^{22} -124.821 q^{23} -120.585 q^{24} +25.0000 q^{25} -45.0134 q^{26} +134.057 q^{27} -5.17592 q^{28} +78.4342 q^{29} +77.3968 q^{30} -36.4439 q^{31} +9.50027 q^{32} +59.4258 q^{33} +8.17823 q^{34} -123.247 q^{35} +0.458876 q^{36} +35.0684 q^{37} +54.4408 q^{38} -84.8697 q^{39} +111.604 q^{40} +283.204 q^{41} -381.556 q^{42} -184.609 q^{43} -2.30980 q^{44} +10.9266 q^{45} +357.652 q^{46} +241.399 q^{47} +354.587 q^{48} +264.590 q^{49} -71.6327 q^{50} +15.4195 q^{51} +3.29878 q^{52} +181.351 q^{53} -384.116 q^{54} -55.0000 q^{55} -550.193 q^{56} +102.645 q^{57} -224.738 q^{58} +893.693 q^{59} -5.67197 q^{60} -225.438 q^{61} +104.423 q^{62} -53.8665 q^{63} +497.865 q^{64} +78.5490 q^{65} -170.273 q^{66} -374.295 q^{67} -0.599336 q^{68} +674.329 q^{69} +353.140 q^{70} +194.109 q^{71} +48.7779 q^{72} -19.3282 q^{73} -100.482 q^{74} -135.059 q^{75} -3.98966 q^{76} +271.143 q^{77} +243.178 q^{78} +782.604 q^{79} -328.179 q^{80} -783.228 q^{81} -811.467 q^{82} -42.2123 q^{83} +27.9621 q^{84} -14.2711 q^{85} +528.963 q^{86} -423.728 q^{87} -245.529 q^{88} +1127.29 q^{89} -31.3079 q^{90} -387.236 q^{91} -26.2103 q^{92} +196.882 q^{93} -691.683 q^{94} -95.0000 q^{95} -51.3237 q^{96} +862.657 q^{97} -758.133 q^{98} -24.0384 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 4 q^{2} - 21 q^{3} + 74 q^{4} + 110 q^{5} - 9 q^{6} - 41 q^{7} - 78 q^{8} + 209 q^{9} - 20 q^{10} - 242 q^{11} - 196 q^{12} - q^{13} - 63 q^{14} - 105 q^{15} + 6 q^{16} + 187 q^{17} - 361 q^{18}+ \cdots - 2299 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.86531 −1.01304 −0.506519 0.862229i \(-0.669068\pi\)
−0.506519 + 0.862229i \(0.669068\pi\)
\(3\) −5.40234 −1.03968 −0.519841 0.854263i \(-0.674009\pi\)
−0.519841 + 0.854263i \(0.674009\pi\)
\(4\) 0.209982 0.0262478
\(5\) 5.00000 0.447214
\(6\) 15.4794 1.05324
\(7\) −24.6494 −1.33094 −0.665470 0.746425i \(-0.731769\pi\)
−0.665470 + 0.746425i \(0.731769\pi\)
\(8\) 22.3208 0.986449
\(9\) 2.18531 0.0809374
\(10\) −14.3265 −0.453045
\(11\) −11.0000 −0.301511
\(12\) −1.13439 −0.0272893
\(13\) 15.7098 0.335163 0.167581 0.985858i \(-0.446404\pi\)
0.167581 + 0.985858i \(0.446404\pi\)
\(14\) 70.6279 1.34829
\(15\) −27.0117 −0.464960
\(16\) −65.6358 −1.02556
\(17\) −2.85422 −0.0407206 −0.0203603 0.999793i \(-0.506481\pi\)
−0.0203603 + 0.999793i \(0.506481\pi\)
\(18\) −6.26159 −0.0819928
\(19\) −19.0000 −0.229416
\(20\) 1.04991 0.0117384
\(21\) 133.164 1.38375
\(22\) 31.5184 0.305443
\(23\) −124.821 −1.13161 −0.565806 0.824538i \(-0.691435\pi\)
−0.565806 + 0.824538i \(0.691435\pi\)
\(24\) −120.585 −1.02559
\(25\) 25.0000 0.200000
\(26\) −45.0134 −0.339533
\(27\) 134.057 0.955532
\(28\) −5.17592 −0.0349342
\(29\) 78.4342 0.502237 0.251118 0.967956i \(-0.419202\pi\)
0.251118 + 0.967956i \(0.419202\pi\)
\(30\) 77.3968 0.471022
\(31\) −36.4439 −0.211146 −0.105573 0.994412i \(-0.533668\pi\)
−0.105573 + 0.994412i \(0.533668\pi\)
\(32\) 9.50027 0.0524821
\(33\) 59.4258 0.313476
\(34\) 8.17823 0.0412516
\(35\) −123.247 −0.595214
\(36\) 0.458876 0.00212443
\(37\) 35.0684 0.155816 0.0779081 0.996961i \(-0.475176\pi\)
0.0779081 + 0.996961i \(0.475176\pi\)
\(38\) 54.4408 0.232407
\(39\) −84.8697 −0.348462
\(40\) 111.604 0.441153
\(41\) 283.204 1.07876 0.539379 0.842063i \(-0.318659\pi\)
0.539379 + 0.842063i \(0.318659\pi\)
\(42\) −381.556 −1.40180
\(43\) −184.609 −0.654713 −0.327357 0.944901i \(-0.606158\pi\)
−0.327357 + 0.944901i \(0.606158\pi\)
\(44\) −2.30980 −0.00791399
\(45\) 10.9266 0.0361963
\(46\) 357.652 1.14637
\(47\) 241.399 0.749185 0.374592 0.927190i \(-0.377783\pi\)
0.374592 + 0.927190i \(0.377783\pi\)
\(48\) 354.587 1.06625
\(49\) 264.590 0.771401
\(50\) −71.6327 −0.202608
\(51\) 15.4195 0.0423365
\(52\) 3.29878 0.00879727
\(53\) 181.351 0.470009 0.235005 0.971994i \(-0.424489\pi\)
0.235005 + 0.971994i \(0.424489\pi\)
\(54\) −384.116 −0.967991
\(55\) −55.0000 −0.134840
\(56\) −550.193 −1.31290
\(57\) 102.645 0.238519
\(58\) −224.738 −0.508785
\(59\) 893.693 1.97202 0.986008 0.166697i \(-0.0533102\pi\)
0.986008 + 0.166697i \(0.0533102\pi\)
\(60\) −5.67197 −0.0122041
\(61\) −225.438 −0.473187 −0.236593 0.971609i \(-0.576031\pi\)
−0.236593 + 0.971609i \(0.576031\pi\)
\(62\) 104.423 0.213899
\(63\) −53.8665 −0.107723
\(64\) 497.865 0.972392
\(65\) 78.5490 0.149889
\(66\) −170.273 −0.317563
\(67\) −374.295 −0.682498 −0.341249 0.939973i \(-0.610850\pi\)
−0.341249 + 0.939973i \(0.610850\pi\)
\(68\) −0.599336 −0.00106883
\(69\) 674.329 1.17652
\(70\) 353.140 0.602975
\(71\) 194.109 0.324457 0.162229 0.986753i \(-0.448132\pi\)
0.162229 + 0.986753i \(0.448132\pi\)
\(72\) 48.7779 0.0798407
\(73\) −19.3282 −0.0309889 −0.0154945 0.999880i \(-0.504932\pi\)
−0.0154945 + 0.999880i \(0.504932\pi\)
\(74\) −100.482 −0.157848
\(75\) −135.059 −0.207936
\(76\) −3.98966 −0.00602165
\(77\) 271.143 0.401293
\(78\) 243.178 0.353006
\(79\) 782.604 1.11455 0.557277 0.830326i \(-0.311846\pi\)
0.557277 + 0.830326i \(0.311846\pi\)
\(80\) −328.179 −0.458644
\(81\) −783.228 −1.07439
\(82\) −811.467 −1.09282
\(83\) −42.2123 −0.0558241 −0.0279120 0.999610i \(-0.508886\pi\)
−0.0279120 + 0.999610i \(0.508886\pi\)
\(84\) 27.9621 0.0363204
\(85\) −14.2711 −0.0182108
\(86\) 528.963 0.663250
\(87\) −423.728 −0.522166
\(88\) −245.529 −0.297426
\(89\) 1127.29 1.34262 0.671308 0.741178i \(-0.265733\pi\)
0.671308 + 0.741178i \(0.265733\pi\)
\(90\) −31.3079 −0.0366683
\(91\) −387.236 −0.446081
\(92\) −26.2103 −0.0297023
\(93\) 196.882 0.219524
\(94\) −691.683 −0.758953
\(95\) −95.0000 −0.102598
\(96\) −51.3237 −0.0545646
\(97\) 862.657 0.902985 0.451492 0.892275i \(-0.350892\pi\)
0.451492 + 0.892275i \(0.350892\pi\)
\(98\) −758.133 −0.781459
\(99\) −24.0384 −0.0244036
\(100\) 5.24955 0.00524955
\(101\) 1479.27 1.45735 0.728677 0.684858i \(-0.240136\pi\)
0.728677 + 0.684858i \(0.240136\pi\)
\(102\) −44.1816 −0.0428885
\(103\) −1042.75 −0.997530 −0.498765 0.866737i \(-0.666213\pi\)
−0.498765 + 0.866737i \(0.666213\pi\)
\(104\) 350.655 0.330621
\(105\) 665.821 0.618833
\(106\) −519.627 −0.476138
\(107\) 992.678 0.896877 0.448438 0.893814i \(-0.351980\pi\)
0.448438 + 0.893814i \(0.351980\pi\)
\(108\) 28.1497 0.0250806
\(109\) 612.648 0.538358 0.269179 0.963090i \(-0.413248\pi\)
0.269179 + 0.963090i \(0.413248\pi\)
\(110\) 157.592 0.136598
\(111\) −189.451 −0.161999
\(112\) 1617.88 1.36496
\(113\) 157.386 0.131024 0.0655118 0.997852i \(-0.479132\pi\)
0.0655118 + 0.997852i \(0.479132\pi\)
\(114\) −294.108 −0.241629
\(115\) −624.107 −0.506072
\(116\) 16.4698 0.0131826
\(117\) 34.3308 0.0271272
\(118\) −2560.71 −1.99773
\(119\) 70.3548 0.0541967
\(120\) −602.923 −0.458659
\(121\) 121.000 0.0909091
\(122\) 645.949 0.479356
\(123\) −1529.97 −1.12157
\(124\) −7.65256 −0.00554210
\(125\) 125.000 0.0894427
\(126\) 154.344 0.109127
\(127\) −1846.15 −1.28991 −0.644956 0.764219i \(-0.723125\pi\)
−0.644956 + 0.764219i \(0.723125\pi\)
\(128\) −1502.54 −1.03755
\(129\) 997.324 0.680693
\(130\) −225.067 −0.151844
\(131\) −1708.88 −1.13973 −0.569867 0.821737i \(-0.693005\pi\)
−0.569867 + 0.821737i \(0.693005\pi\)
\(132\) 12.4783 0.00822803
\(133\) 468.338 0.305339
\(134\) 1072.47 0.691397
\(135\) 670.287 0.427327
\(136\) −63.7085 −0.0401688
\(137\) −776.404 −0.484180 −0.242090 0.970254i \(-0.577833\pi\)
−0.242090 + 0.970254i \(0.577833\pi\)
\(138\) −1932.16 −1.19186
\(139\) −364.291 −0.222293 −0.111147 0.993804i \(-0.535452\pi\)
−0.111147 + 0.993804i \(0.535452\pi\)
\(140\) −25.8796 −0.0156230
\(141\) −1304.12 −0.778914
\(142\) −556.181 −0.328688
\(143\) −172.808 −0.101055
\(144\) −143.435 −0.0830061
\(145\) 392.171 0.224607
\(146\) 55.3811 0.0313930
\(147\) −1429.41 −0.802011
\(148\) 7.36372 0.00408983
\(149\) −513.164 −0.282148 −0.141074 0.989999i \(-0.545056\pi\)
−0.141074 + 0.989999i \(0.545056\pi\)
\(150\) 386.984 0.210648
\(151\) −625.414 −0.337056 −0.168528 0.985697i \(-0.553901\pi\)
−0.168528 + 0.985697i \(0.553901\pi\)
\(152\) −424.095 −0.226307
\(153\) −6.23737 −0.00329582
\(154\) −776.907 −0.406526
\(155\) −182.220 −0.0944273
\(156\) −17.8211 −0.00914636
\(157\) −1848.81 −0.939815 −0.469908 0.882716i \(-0.655713\pi\)
−0.469908 + 0.882716i \(0.655713\pi\)
\(158\) −2242.40 −1.12909
\(159\) −979.721 −0.488660
\(160\) 47.5013 0.0234707
\(161\) 3076.77 1.50611
\(162\) 2244.19 1.08840
\(163\) −2250.84 −1.08159 −0.540796 0.841154i \(-0.681877\pi\)
−0.540796 + 0.841154i \(0.681877\pi\)
\(164\) 59.4678 0.0283150
\(165\) 297.129 0.140191
\(166\) 120.951 0.0565520
\(167\) −779.737 −0.361305 −0.180652 0.983547i \(-0.557821\pi\)
−0.180652 + 0.983547i \(0.557821\pi\)
\(168\) 2972.33 1.36500
\(169\) −1950.20 −0.887666
\(170\) 40.8911 0.0184483
\(171\) −41.5209 −0.0185683
\(172\) −38.7647 −0.0171848
\(173\) −1282.63 −0.563678 −0.281839 0.959462i \(-0.590944\pi\)
−0.281839 + 0.959462i \(0.590944\pi\)
\(174\) 1214.11 0.528975
\(175\) −616.234 −0.266188
\(176\) 721.993 0.309218
\(177\) −4828.04 −2.05027
\(178\) −3230.04 −1.36012
\(179\) −1170.32 −0.488681 −0.244341 0.969689i \(-0.578572\pi\)
−0.244341 + 0.969689i \(0.578572\pi\)
\(180\) 2.29438 0.000950072 0
\(181\) 1134.03 0.465701 0.232850 0.972513i \(-0.425195\pi\)
0.232850 + 0.972513i \(0.425195\pi\)
\(182\) 1109.55 0.451898
\(183\) 1217.89 0.491963
\(184\) −2786.11 −1.11628
\(185\) 175.342 0.0696832
\(186\) −564.129 −0.222387
\(187\) 31.3965 0.0122777
\(188\) 50.6895 0.0196644
\(189\) −3304.43 −1.27176
\(190\) 272.204 0.103936
\(191\) −3388.15 −1.28355 −0.641775 0.766893i \(-0.721802\pi\)
−0.641775 + 0.766893i \(0.721802\pi\)
\(192\) −2689.64 −1.01098
\(193\) −3992.67 −1.48911 −0.744555 0.667561i \(-0.767338\pi\)
−0.744555 + 0.667561i \(0.767338\pi\)
\(194\) −2471.78 −0.914759
\(195\) −424.349 −0.155837
\(196\) 55.5592 0.0202475
\(197\) 3282.00 1.18697 0.593485 0.804845i \(-0.297752\pi\)
0.593485 + 0.804845i \(0.297752\pi\)
\(198\) 68.8774 0.0247218
\(199\) −639.257 −0.227717 −0.113859 0.993497i \(-0.536321\pi\)
−0.113859 + 0.993497i \(0.536321\pi\)
\(200\) 558.020 0.197290
\(201\) 2022.07 0.709580
\(202\) −4238.56 −1.47636
\(203\) −1933.35 −0.668447
\(204\) 3.23782 0.00111124
\(205\) 1416.02 0.482435
\(206\) 2987.81 1.01054
\(207\) −272.774 −0.0915898
\(208\) −1031.12 −0.343729
\(209\) 209.000 0.0691714
\(210\) −1907.78 −0.626902
\(211\) 1636.22 0.533849 0.266924 0.963717i \(-0.413993\pi\)
0.266924 + 0.963717i \(0.413993\pi\)
\(212\) 38.0805 0.0123367
\(213\) −1048.64 −0.337332
\(214\) −2844.33 −0.908571
\(215\) −923.047 −0.292797
\(216\) 2992.27 0.942584
\(217\) 898.319 0.281022
\(218\) −1755.43 −0.545378
\(219\) 104.417 0.0322186
\(220\) −11.5490 −0.00353925
\(221\) −44.8393 −0.0136480
\(222\) 542.836 0.164112
\(223\) −1451.71 −0.435934 −0.217967 0.975956i \(-0.569943\pi\)
−0.217967 + 0.975956i \(0.569943\pi\)
\(224\) −234.175 −0.0698505
\(225\) 54.6328 0.0161875
\(226\) −450.960 −0.132732
\(227\) 3007.04 0.879226 0.439613 0.898187i \(-0.355116\pi\)
0.439613 + 0.898187i \(0.355116\pi\)
\(228\) 21.5535 0.00626059
\(229\) 5945.81 1.71577 0.857883 0.513845i \(-0.171779\pi\)
0.857883 + 0.513845i \(0.171779\pi\)
\(230\) 1788.26 0.512671
\(231\) −1464.81 −0.417217
\(232\) 1750.71 0.495431
\(233\) −6162.43 −1.73268 −0.866340 0.499455i \(-0.833533\pi\)
−0.866340 + 0.499455i \(0.833533\pi\)
\(234\) −98.3683 −0.0274809
\(235\) 1207.00 0.335046
\(236\) 187.660 0.0517610
\(237\) −4227.89 −1.15878
\(238\) −201.588 −0.0549034
\(239\) −1029.81 −0.278714 −0.139357 0.990242i \(-0.544504\pi\)
−0.139357 + 0.990242i \(0.544504\pi\)
\(240\) 1772.93 0.476843
\(241\) −2891.72 −0.772913 −0.386456 0.922308i \(-0.626301\pi\)
−0.386456 + 0.922308i \(0.626301\pi\)
\(242\) −346.702 −0.0920944
\(243\) 611.714 0.161487
\(244\) −47.3379 −0.0124201
\(245\) 1322.95 0.344981
\(246\) 4383.83 1.13619
\(247\) −298.486 −0.0768916
\(248\) −813.457 −0.208285
\(249\) 228.045 0.0580393
\(250\) −358.163 −0.0906090
\(251\) 4386.15 1.10299 0.551497 0.834177i \(-0.314057\pi\)
0.551497 + 0.834177i \(0.314057\pi\)
\(252\) −11.3110 −0.00282748
\(253\) 1373.04 0.341194
\(254\) 5289.77 1.30673
\(255\) 77.0975 0.0189335
\(256\) 322.312 0.0786895
\(257\) −2376.80 −0.576890 −0.288445 0.957497i \(-0.593138\pi\)
−0.288445 + 0.957497i \(0.593138\pi\)
\(258\) −2857.64 −0.689569
\(259\) −864.412 −0.207382
\(260\) 16.4939 0.00393426
\(261\) 171.403 0.0406498
\(262\) 4896.45 1.15459
\(263\) −4766.85 −1.11763 −0.558814 0.829293i \(-0.688744\pi\)
−0.558814 + 0.829293i \(0.688744\pi\)
\(264\) 1326.43 0.309228
\(265\) 906.756 0.210195
\(266\) −1341.93 −0.309320
\(267\) −6090.02 −1.39589
\(268\) −78.5951 −0.0179140
\(269\) −2775.89 −0.629179 −0.314590 0.949228i \(-0.601867\pi\)
−0.314590 + 0.949228i \(0.601867\pi\)
\(270\) −1920.58 −0.432899
\(271\) 5280.64 1.18368 0.591838 0.806057i \(-0.298403\pi\)
0.591838 + 0.806057i \(0.298403\pi\)
\(272\) 187.339 0.0417614
\(273\) 2091.98 0.463783
\(274\) 2224.64 0.490493
\(275\) −275.000 −0.0603023
\(276\) 141.597 0.0308809
\(277\) −2656.63 −0.576251 −0.288126 0.957593i \(-0.593032\pi\)
−0.288126 + 0.957593i \(0.593032\pi\)
\(278\) 1043.81 0.225192
\(279\) −79.6413 −0.0170896
\(280\) −2750.96 −0.587149
\(281\) 6754.91 1.43404 0.717018 0.697055i \(-0.245507\pi\)
0.717018 + 0.697055i \(0.245507\pi\)
\(282\) 3736.71 0.789070
\(283\) 927.744 0.194872 0.0974358 0.995242i \(-0.468936\pi\)
0.0974358 + 0.995242i \(0.468936\pi\)
\(284\) 40.7593 0.00851627
\(285\) 513.223 0.106669
\(286\) 495.147 0.102373
\(287\) −6980.80 −1.43576
\(288\) 20.7610 0.00424776
\(289\) −4904.85 −0.998342
\(290\) −1123.69 −0.227536
\(291\) −4660.37 −0.938817
\(292\) −4.05857 −0.000813390 0
\(293\) 219.315 0.0437288 0.0218644 0.999761i \(-0.493040\pi\)
0.0218644 + 0.999761i \(0.493040\pi\)
\(294\) 4095.69 0.812468
\(295\) 4468.47 0.881912
\(296\) 782.753 0.153705
\(297\) −1474.63 −0.288104
\(298\) 1470.37 0.285827
\(299\) −1960.92 −0.379274
\(300\) −28.3599 −0.00545786
\(301\) 4550.50 0.871384
\(302\) 1792.00 0.341451
\(303\) −7991.52 −1.51518
\(304\) 1247.08 0.235279
\(305\) −1127.19 −0.211615
\(306\) 17.8720 0.00333880
\(307\) 1264.66 0.235107 0.117553 0.993067i \(-0.462495\pi\)
0.117553 + 0.993067i \(0.462495\pi\)
\(308\) 56.9351 0.0105331
\(309\) 5633.31 1.03711
\(310\) 522.115 0.0956585
\(311\) −2868.32 −0.522983 −0.261491 0.965206i \(-0.584214\pi\)
−0.261491 + 0.965206i \(0.584214\pi\)
\(312\) −1894.36 −0.343740
\(313\) 6070.20 1.09619 0.548096 0.836415i \(-0.315353\pi\)
0.548096 + 0.836415i \(0.315353\pi\)
\(314\) 5297.40 0.952069
\(315\) −269.332 −0.0481751
\(316\) 164.333 0.0292546
\(317\) 976.721 0.173054 0.0865270 0.996250i \(-0.472423\pi\)
0.0865270 + 0.996250i \(0.472423\pi\)
\(318\) 2807.20 0.495032
\(319\) −862.776 −0.151430
\(320\) 2489.32 0.434867
\(321\) −5362.79 −0.932466
\(322\) −8815.89 −1.52575
\(323\) 54.2302 0.00934196
\(324\) −164.464 −0.0282002
\(325\) 392.745 0.0670325
\(326\) 6449.35 1.09569
\(327\) −3309.74 −0.559721
\(328\) 6321.35 1.06414
\(329\) −5950.33 −0.997120
\(330\) −851.365 −0.142019
\(331\) −4617.48 −0.766767 −0.383383 0.923589i \(-0.625241\pi\)
−0.383383 + 0.923589i \(0.625241\pi\)
\(332\) −8.86382 −0.00146526
\(333\) 76.6353 0.0126114
\(334\) 2234.19 0.366016
\(335\) −1871.47 −0.305222
\(336\) −8740.34 −1.41912
\(337\) 253.846 0.0410322 0.0205161 0.999790i \(-0.493469\pi\)
0.0205161 + 0.999790i \(0.493469\pi\)
\(338\) 5587.93 0.899240
\(339\) −850.256 −0.136223
\(340\) −2.99668 −0.000477993 0
\(341\) 400.883 0.0636628
\(342\) 118.970 0.0188104
\(343\) 1932.74 0.304252
\(344\) −4120.63 −0.645841
\(345\) 3371.64 0.526154
\(346\) 3675.12 0.571028
\(347\) −10223.5 −1.58164 −0.790818 0.612051i \(-0.790345\pi\)
−0.790818 + 0.612051i \(0.790345\pi\)
\(348\) −88.9753 −0.0137057
\(349\) −579.251 −0.0888440 −0.0444220 0.999013i \(-0.514145\pi\)
−0.0444220 + 0.999013i \(0.514145\pi\)
\(350\) 1765.70 0.269659
\(351\) 2106.02 0.320259
\(352\) −104.503 −0.0158239
\(353\) 4122.14 0.621528 0.310764 0.950487i \(-0.399415\pi\)
0.310764 + 0.950487i \(0.399415\pi\)
\(354\) 13833.8 2.07700
\(355\) 970.543 0.145102
\(356\) 236.711 0.0352407
\(357\) −380.081 −0.0563473
\(358\) 3353.33 0.495053
\(359\) 10583.6 1.55594 0.777971 0.628300i \(-0.216249\pi\)
0.777971 + 0.628300i \(0.216249\pi\)
\(360\) 243.889 0.0357058
\(361\) 361.000 0.0526316
\(362\) −3249.35 −0.471773
\(363\) −653.684 −0.0945165
\(364\) −81.3127 −0.0117086
\(365\) −96.6409 −0.0138587
\(366\) −3489.64 −0.498378
\(367\) 7227.69 1.02802 0.514009 0.857785i \(-0.328160\pi\)
0.514009 + 0.857785i \(0.328160\pi\)
\(368\) 8192.75 1.16053
\(369\) 618.890 0.0873119
\(370\) −502.408 −0.0705918
\(371\) −4470.19 −0.625554
\(372\) 41.3418 0.00576202
\(373\) 10193.5 1.41502 0.707509 0.706704i \(-0.249819\pi\)
0.707509 + 0.706704i \(0.249819\pi\)
\(374\) −89.9605 −0.0124378
\(375\) −675.293 −0.0929919
\(376\) 5388.22 0.739033
\(377\) 1232.19 0.168331
\(378\) 9468.20 1.28834
\(379\) 4698.54 0.636801 0.318401 0.947956i \(-0.396854\pi\)
0.318401 + 0.947956i \(0.396854\pi\)
\(380\) −19.9483 −0.00269296
\(381\) 9973.51 1.34110
\(382\) 9708.09 1.30029
\(383\) −10690.1 −1.42621 −0.713104 0.701058i \(-0.752711\pi\)
−0.713104 + 0.701058i \(0.752711\pi\)
\(384\) 8117.22 1.07872
\(385\) 1355.71 0.179464
\(386\) 11440.2 1.50853
\(387\) −403.429 −0.0529908
\(388\) 181.142 0.0237013
\(389\) −900.057 −0.117313 −0.0586564 0.998278i \(-0.518682\pi\)
−0.0586564 + 0.998278i \(0.518682\pi\)
\(390\) 1215.89 0.157869
\(391\) 356.268 0.0460800
\(392\) 5905.87 0.760947
\(393\) 9231.93 1.18496
\(394\) −9403.94 −1.20245
\(395\) 3913.02 0.498444
\(396\) −5.04764 −0.000640539 0
\(397\) 12280.1 1.55244 0.776222 0.630459i \(-0.217133\pi\)
0.776222 + 0.630459i \(0.217133\pi\)
\(398\) 1831.67 0.230686
\(399\) −2530.12 −0.317455
\(400\) −1640.89 −0.205112
\(401\) 214.314 0.0266891 0.0133445 0.999911i \(-0.495752\pi\)
0.0133445 + 0.999911i \(0.495752\pi\)
\(402\) −5793.84 −0.718833
\(403\) −572.527 −0.0707682
\(404\) 310.620 0.0382523
\(405\) −3916.14 −0.480480
\(406\) 5539.65 0.677163
\(407\) −385.752 −0.0469804
\(408\) 344.175 0.0417628
\(409\) −3725.68 −0.450423 −0.225212 0.974310i \(-0.572307\pi\)
−0.225212 + 0.974310i \(0.572307\pi\)
\(410\) −4057.34 −0.488726
\(411\) 4194.40 0.503393
\(412\) −218.959 −0.0261829
\(413\) −22029.0 −2.62464
\(414\) 781.581 0.0927840
\(415\) −211.061 −0.0249653
\(416\) 149.247 0.0175900
\(417\) 1968.03 0.231114
\(418\) −598.849 −0.0700734
\(419\) −1154.92 −0.134658 −0.0673288 0.997731i \(-0.521448\pi\)
−0.0673288 + 0.997731i \(0.521448\pi\)
\(420\) 139.810 0.0162430
\(421\) −13171.3 −1.52478 −0.762390 0.647118i \(-0.775974\pi\)
−0.762390 + 0.647118i \(0.775974\pi\)
\(422\) −4688.27 −0.540809
\(423\) 527.532 0.0606371
\(424\) 4047.90 0.463640
\(425\) −71.3556 −0.00814413
\(426\) 3004.68 0.341730
\(427\) 5556.90 0.629783
\(428\) 208.444 0.0235410
\(429\) 933.567 0.105065
\(430\) 2644.81 0.296615
\(431\) −12741.0 −1.42393 −0.711964 0.702216i \(-0.752194\pi\)
−0.711964 + 0.702216i \(0.752194\pi\)
\(432\) −8798.96 −0.979955
\(433\) 2297.04 0.254939 0.127470 0.991842i \(-0.459314\pi\)
0.127470 + 0.991842i \(0.459314\pi\)
\(434\) −2573.96 −0.284687
\(435\) −2118.64 −0.233520
\(436\) 128.645 0.0141307
\(437\) 2371.61 0.259610
\(438\) −299.188 −0.0326387
\(439\) −6341.99 −0.689492 −0.344746 0.938696i \(-0.612035\pi\)
−0.344746 + 0.938696i \(0.612035\pi\)
\(440\) −1227.64 −0.133013
\(441\) 578.212 0.0624352
\(442\) 128.478 0.0138260
\(443\) −3358.12 −0.360156 −0.180078 0.983652i \(-0.557635\pi\)
−0.180078 + 0.983652i \(0.557635\pi\)
\(444\) −39.7814 −0.00425212
\(445\) 5636.47 0.600436
\(446\) 4159.58 0.441619
\(447\) 2772.29 0.293344
\(448\) −12272.0 −1.29420
\(449\) −4885.02 −0.513449 −0.256724 0.966485i \(-0.582643\pi\)
−0.256724 + 0.966485i \(0.582643\pi\)
\(450\) −156.540 −0.0163986
\(451\) −3115.25 −0.325258
\(452\) 33.0483 0.00343908
\(453\) 3378.70 0.350431
\(454\) −8616.10 −0.890690
\(455\) −1936.18 −0.199494
\(456\) 2291.11 0.235287
\(457\) −10150.7 −1.03902 −0.519509 0.854465i \(-0.673885\pi\)
−0.519509 + 0.854465i \(0.673885\pi\)
\(458\) −17036.6 −1.73814
\(459\) −382.630 −0.0389099
\(460\) −131.051 −0.0132833
\(461\) −6286.30 −0.635103 −0.317551 0.948241i \(-0.602861\pi\)
−0.317551 + 0.948241i \(0.602861\pi\)
\(462\) 4197.12 0.422657
\(463\) −14797.5 −1.48531 −0.742654 0.669675i \(-0.766433\pi\)
−0.742654 + 0.669675i \(0.766433\pi\)
\(464\) −5148.09 −0.515073
\(465\) 984.412 0.0981743
\(466\) 17657.3 1.75527
\(467\) −5866.50 −0.581305 −0.290652 0.956829i \(-0.593872\pi\)
−0.290652 + 0.956829i \(0.593872\pi\)
\(468\) 7.20885 0.000712028 0
\(469\) 9226.12 0.908364
\(470\) −3458.41 −0.339414
\(471\) 9987.90 0.977109
\(472\) 19947.9 1.94529
\(473\) 2030.70 0.197404
\(474\) 12114.2 1.17389
\(475\) −475.000 −0.0458831
\(476\) 14.7732 0.00142254
\(477\) 396.309 0.0380414
\(478\) 2950.72 0.282349
\(479\) 8325.91 0.794197 0.397099 0.917776i \(-0.370017\pi\)
0.397099 + 0.917776i \(0.370017\pi\)
\(480\) −256.619 −0.0244020
\(481\) 550.917 0.0522238
\(482\) 8285.66 0.782991
\(483\) −16621.8 −1.56587
\(484\) 25.4078 0.00238616
\(485\) 4313.28 0.403827
\(486\) −1752.75 −0.163593
\(487\) 4987.16 0.464044 0.232022 0.972710i \(-0.425466\pi\)
0.232022 + 0.972710i \(0.425466\pi\)
\(488\) −5031.95 −0.466774
\(489\) 12159.8 1.12451
\(490\) −3790.66 −0.349479
\(491\) 17441.5 1.60311 0.801553 0.597923i \(-0.204007\pi\)
0.801553 + 0.597923i \(0.204007\pi\)
\(492\) −321.266 −0.0294386
\(493\) −223.869 −0.0204514
\(494\) 855.255 0.0778942
\(495\) −120.192 −0.0109136
\(496\) 2392.02 0.216542
\(497\) −4784.65 −0.431833
\(498\) −653.419 −0.0587960
\(499\) −6307.04 −0.565815 −0.282908 0.959147i \(-0.591299\pi\)
−0.282908 + 0.959147i \(0.591299\pi\)
\(500\) 26.2478 0.00234767
\(501\) 4212.41 0.375642
\(502\) −12567.7 −1.11738
\(503\) −16431.8 −1.45658 −0.728290 0.685269i \(-0.759684\pi\)
−0.728290 + 0.685269i \(0.759684\pi\)
\(504\) −1202.34 −0.106263
\(505\) 7396.34 0.651748
\(506\) −3934.17 −0.345643
\(507\) 10535.7 0.922890
\(508\) −387.657 −0.0338573
\(509\) 1049.12 0.0913582 0.0456791 0.998956i \(-0.485455\pi\)
0.0456791 + 0.998956i \(0.485455\pi\)
\(510\) −220.908 −0.0191803
\(511\) 476.427 0.0412444
\(512\) 11096.8 0.957838
\(513\) −2547.09 −0.219214
\(514\) 6810.26 0.584412
\(515\) −5213.77 −0.446109
\(516\) 209.420 0.0178667
\(517\) −2655.39 −0.225888
\(518\) 2476.81 0.210086
\(519\) 6929.19 0.586046
\(520\) 1753.28 0.147858
\(521\) 919.399 0.0773121 0.0386561 0.999253i \(-0.487692\pi\)
0.0386561 + 0.999253i \(0.487692\pi\)
\(522\) −491.122 −0.0411798
\(523\) −2325.98 −0.194471 −0.0972353 0.995261i \(-0.531000\pi\)
−0.0972353 + 0.995261i \(0.531000\pi\)
\(524\) −358.833 −0.0299154
\(525\) 3329.11 0.276751
\(526\) 13658.5 1.13220
\(527\) 104.019 0.00859799
\(528\) −3900.46 −0.321488
\(529\) 3413.41 0.280546
\(530\) −2598.13 −0.212935
\(531\) 1953.00 0.159610
\(532\) 98.3425 0.00801445
\(533\) 4449.09 0.361560
\(534\) 17449.8 1.41409
\(535\) 4963.39 0.401095
\(536\) −8354.55 −0.673249
\(537\) 6322.48 0.508073
\(538\) 7953.78 0.637383
\(539\) −2910.50 −0.232586
\(540\) 140.748 0.0112164
\(541\) 12146.9 0.965315 0.482658 0.875809i \(-0.339672\pi\)
0.482658 + 0.875809i \(0.339672\pi\)
\(542\) −15130.6 −1.19911
\(543\) −6126.42 −0.484180
\(544\) −27.1159 −0.00213710
\(545\) 3063.24 0.240761
\(546\) −5994.18 −0.469830
\(547\) 24387.9 1.90631 0.953153 0.302489i \(-0.0978174\pi\)
0.953153 + 0.302489i \(0.0978174\pi\)
\(548\) −163.031 −0.0127086
\(549\) −492.652 −0.0382985
\(550\) 787.959 0.0610885
\(551\) −1490.25 −0.115221
\(552\) 15051.5 1.16057
\(553\) −19290.7 −1.48341
\(554\) 7612.07 0.583765
\(555\) −947.257 −0.0724483
\(556\) −76.4946 −0.00583470
\(557\) 22481.2 1.71016 0.855081 0.518495i \(-0.173508\pi\)
0.855081 + 0.518495i \(0.173508\pi\)
\(558\) 228.197 0.0173124
\(559\) −2900.18 −0.219436
\(560\) 8089.39 0.610427
\(561\) −169.614 −0.0127649
\(562\) −19354.9 −1.45273
\(563\) −3671.71 −0.274856 −0.137428 0.990512i \(-0.543884\pi\)
−0.137428 + 0.990512i \(0.543884\pi\)
\(564\) −273.842 −0.0204447
\(565\) 786.932 0.0585956
\(566\) −2658.27 −0.197412
\(567\) 19306.1 1.42994
\(568\) 4332.66 0.320060
\(569\) −20719.3 −1.52654 −0.763268 0.646082i \(-0.776407\pi\)
−0.763268 + 0.646082i \(0.776407\pi\)
\(570\) −1470.54 −0.108060
\(571\) −25461.0 −1.86604 −0.933020 0.359825i \(-0.882836\pi\)
−0.933020 + 0.359825i \(0.882836\pi\)
\(572\) −36.2865 −0.00265248
\(573\) 18304.0 1.33448
\(574\) 20002.1 1.45448
\(575\) −3120.54 −0.226322
\(576\) 1087.99 0.0787030
\(577\) 2249.96 0.162335 0.0811675 0.996700i \(-0.474135\pi\)
0.0811675 + 0.996700i \(0.474135\pi\)
\(578\) 14053.9 1.01136
\(579\) 21569.7 1.54820
\(580\) 82.3488 0.00589543
\(581\) 1040.51 0.0742985
\(582\) 13353.4 0.951058
\(583\) −1994.86 −0.141713
\(584\) −431.420 −0.0305690
\(585\) 171.654 0.0121317
\(586\) −628.405 −0.0442990
\(587\) 20807.9 1.46309 0.731545 0.681793i \(-0.238800\pi\)
0.731545 + 0.681793i \(0.238800\pi\)
\(588\) −300.150 −0.0210510
\(589\) 692.434 0.0484402
\(590\) −12803.5 −0.893412
\(591\) −17730.5 −1.23407
\(592\) −2301.74 −0.159799
\(593\) −4305.09 −0.298126 −0.149063 0.988828i \(-0.547626\pi\)
−0.149063 + 0.988828i \(0.547626\pi\)
\(594\) 4225.27 0.291860
\(595\) 351.774 0.0242375
\(596\) −107.755 −0.00740575
\(597\) 3453.48 0.236753
\(598\) 5618.64 0.384220
\(599\) 12864.0 0.877478 0.438739 0.898614i \(-0.355425\pi\)
0.438739 + 0.898614i \(0.355425\pi\)
\(600\) −3014.61 −0.205119
\(601\) 11768.5 0.798745 0.399373 0.916789i \(-0.369228\pi\)
0.399373 + 0.916789i \(0.369228\pi\)
\(602\) −13038.6 −0.882746
\(603\) −817.950 −0.0552396
\(604\) −131.326 −0.00884697
\(605\) 605.000 0.0406558
\(606\) 22898.1 1.53494
\(607\) −3220.98 −0.215380 −0.107690 0.994185i \(-0.534345\pi\)
−0.107690 + 0.994185i \(0.534345\pi\)
\(608\) −180.505 −0.0120402
\(609\) 10444.6 0.694972
\(610\) 3229.75 0.214375
\(611\) 3792.33 0.251099
\(612\) −1.30973 −8.65080e−5 0
\(613\) −1679.94 −0.110689 −0.0553444 0.998467i \(-0.517626\pi\)
−0.0553444 + 0.998467i \(0.517626\pi\)
\(614\) −3623.63 −0.238172
\(615\) −7649.84 −0.501579
\(616\) 6052.12 0.395855
\(617\) −9030.96 −0.589259 −0.294629 0.955612i \(-0.595196\pi\)
−0.294629 + 0.955612i \(0.595196\pi\)
\(618\) −16141.2 −1.05064
\(619\) 5124.00 0.332716 0.166358 0.986065i \(-0.446799\pi\)
0.166358 + 0.986065i \(0.446799\pi\)
\(620\) −38.2628 −0.00247850
\(621\) −16733.3 −1.08129
\(622\) 8218.62 0.529802
\(623\) −27787.0 −1.78694
\(624\) 5570.49 0.357369
\(625\) 625.000 0.0400000
\(626\) −17393.0 −1.11049
\(627\) −1129.09 −0.0719163
\(628\) −388.217 −0.0246680
\(629\) −100.093 −0.00634494
\(630\) 771.720 0.0488033
\(631\) 4464.55 0.281666 0.140833 0.990033i \(-0.455022\pi\)
0.140833 + 0.990033i \(0.455022\pi\)
\(632\) 17468.3 1.09945
\(633\) −8839.42 −0.555032
\(634\) −2798.61 −0.175310
\(635\) −9230.73 −0.576867
\(636\) −205.724 −0.0128262
\(637\) 4156.66 0.258545
\(638\) 2472.12 0.153405
\(639\) 424.188 0.0262607
\(640\) −7512.69 −0.464008
\(641\) 226.866 0.0139792 0.00698961 0.999976i \(-0.497775\pi\)
0.00698961 + 0.999976i \(0.497775\pi\)
\(642\) 15366.0 0.944624
\(643\) 1961.31 0.120290 0.0601450 0.998190i \(-0.480844\pi\)
0.0601450 + 0.998190i \(0.480844\pi\)
\(644\) 646.066 0.0395319
\(645\) 4986.62 0.304415
\(646\) −155.386 −0.00946376
\(647\) −9631.33 −0.585234 −0.292617 0.956230i \(-0.594526\pi\)
−0.292617 + 0.956230i \(0.594526\pi\)
\(648\) −17482.3 −1.05983
\(649\) −9830.63 −0.594585
\(650\) −1125.34 −0.0679066
\(651\) −4853.03 −0.292174
\(652\) −472.636 −0.0283893
\(653\) −25646.6 −1.53695 −0.768475 0.639880i \(-0.778984\pi\)
−0.768475 + 0.639880i \(0.778984\pi\)
\(654\) 9483.41 0.567019
\(655\) −8544.38 −0.509704
\(656\) −18588.3 −1.10633
\(657\) −42.2381 −0.00250816
\(658\) 17049.5 1.01012
\(659\) −3861.23 −0.228243 −0.114122 0.993467i \(-0.536405\pi\)
−0.114122 + 0.993467i \(0.536405\pi\)
\(660\) 62.3917 0.00367969
\(661\) 10936.0 0.643514 0.321757 0.946822i \(-0.395727\pi\)
0.321757 + 0.946822i \(0.395727\pi\)
\(662\) 13230.5 0.776764
\(663\) 242.237 0.0141896
\(664\) −942.211 −0.0550676
\(665\) 2341.69 0.136552
\(666\) −219.584 −0.0127758
\(667\) −9790.27 −0.568337
\(668\) −163.731 −0.00948344
\(669\) 7842.61 0.453233
\(670\) 5362.34 0.309202
\(671\) 2479.82 0.142671
\(672\) 1265.10 0.0726222
\(673\) −9654.32 −0.552967 −0.276483 0.961019i \(-0.589169\pi\)
−0.276483 + 0.961019i \(0.589169\pi\)
\(674\) −727.346 −0.0415672
\(675\) 3351.44 0.191106
\(676\) −409.507 −0.0232992
\(677\) 17353.5 0.985153 0.492577 0.870269i \(-0.336055\pi\)
0.492577 + 0.870269i \(0.336055\pi\)
\(678\) 2436.24 0.137999
\(679\) −21263.9 −1.20182
\(680\) −318.543 −0.0179640
\(681\) −16245.1 −0.914115
\(682\) −1148.65 −0.0644929
\(683\) −21838.7 −1.22348 −0.611739 0.791059i \(-0.709530\pi\)
−0.611739 + 0.791059i \(0.709530\pi\)
\(684\) −8.71864 −0.000487377 0
\(685\) −3882.02 −0.216532
\(686\) −5537.90 −0.308219
\(687\) −32121.3 −1.78385
\(688\) 12117.0 0.671447
\(689\) 2848.99 0.157530
\(690\) −9660.79 −0.533014
\(691\) −1641.38 −0.0903634 −0.0451817 0.998979i \(-0.514387\pi\)
−0.0451817 + 0.998979i \(0.514387\pi\)
\(692\) −269.329 −0.0147953
\(693\) 592.531 0.0324797
\(694\) 29293.5 1.60226
\(695\) −1821.46 −0.0994126
\(696\) −9457.95 −0.515090
\(697\) −808.329 −0.0439277
\(698\) 1659.73 0.0900025
\(699\) 33291.6 1.80143
\(700\) −129.398 −0.00698684
\(701\) 22238.3 1.19819 0.599094 0.800679i \(-0.295528\pi\)
0.599094 + 0.800679i \(0.295528\pi\)
\(702\) −6034.38 −0.324435
\(703\) −666.299 −0.0357467
\(704\) −5476.51 −0.293187
\(705\) −6520.61 −0.348341
\(706\) −11811.2 −0.629632
\(707\) −36463.0 −1.93965
\(708\) −1013.80 −0.0538149
\(709\) 12132.4 0.642656 0.321328 0.946968i \(-0.395871\pi\)
0.321328 + 0.946968i \(0.395871\pi\)
\(710\) −2780.90 −0.146994
\(711\) 1710.23 0.0902092
\(712\) 25162.1 1.32442
\(713\) 4548.98 0.238935
\(714\) 1089.05 0.0570820
\(715\) −864.039 −0.0451933
\(716\) −245.746 −0.0128268
\(717\) 5563.38 0.289774
\(718\) −30325.4 −1.57623
\(719\) −15636.8 −0.811064 −0.405532 0.914081i \(-0.632914\pi\)
−0.405532 + 0.914081i \(0.632914\pi\)
\(720\) −717.173 −0.0371215
\(721\) 25703.2 1.32765
\(722\) −1034.38 −0.0533178
\(723\) 15622.1 0.803583
\(724\) 238.126 0.0122236
\(725\) 1960.85 0.100447
\(726\) 1873.00 0.0957489
\(727\) −13738.4 −0.700865 −0.350433 0.936588i \(-0.613965\pi\)
−0.350433 + 0.936588i \(0.613965\pi\)
\(728\) −8643.42 −0.440037
\(729\) 17842.5 0.906491
\(730\) 276.906 0.0140394
\(731\) 526.917 0.0266604
\(732\) 255.736 0.0129129
\(733\) −4300.29 −0.216691 −0.108346 0.994113i \(-0.534555\pi\)
−0.108346 + 0.994113i \(0.534555\pi\)
\(734\) −20709.5 −1.04142
\(735\) −7147.04 −0.358670
\(736\) −1185.84 −0.0593893
\(737\) 4117.24 0.205781
\(738\) −1773.31 −0.0884504
\(739\) 21800.8 1.08519 0.542594 0.839995i \(-0.317442\pi\)
0.542594 + 0.839995i \(0.317442\pi\)
\(740\) 36.8186 0.00182903
\(741\) 1612.53 0.0799428
\(742\) 12808.5 0.633711
\(743\) −10460.3 −0.516487 −0.258244 0.966080i \(-0.583144\pi\)
−0.258244 + 0.966080i \(0.583144\pi\)
\(744\) 4394.57 0.216550
\(745\) −2565.82 −0.126180
\(746\) −29207.6 −1.43347
\(747\) −92.2470 −0.00451826
\(748\) 6.59269 0.000322263 0
\(749\) −24468.9 −1.19369
\(750\) 1934.92 0.0942044
\(751\) −27336.4 −1.32825 −0.664126 0.747620i \(-0.731196\pi\)
−0.664126 + 0.747620i \(0.731196\pi\)
\(752\) −15844.4 −0.768333
\(753\) −23695.5 −1.14676
\(754\) −3530.59 −0.170526
\(755\) −3127.07 −0.150736
\(756\) −693.871 −0.0333807
\(757\) −19433.5 −0.933055 −0.466528 0.884507i \(-0.654495\pi\)
−0.466528 + 0.884507i \(0.654495\pi\)
\(758\) −13462.8 −0.645104
\(759\) −7417.61 −0.354733
\(760\) −2120.48 −0.101208
\(761\) −34363.5 −1.63690 −0.818448 0.574581i \(-0.805165\pi\)
−0.818448 + 0.574581i \(0.805165\pi\)
\(762\) −28577.2 −1.35858
\(763\) −15101.4 −0.716523
\(764\) −711.451 −0.0336903
\(765\) −31.1868 −0.00147394
\(766\) 30630.4 1.44480
\(767\) 14039.7 0.660946
\(768\) −1741.24 −0.0818120
\(769\) 29604.2 1.38824 0.694119 0.719861i \(-0.255794\pi\)
0.694119 + 0.719861i \(0.255794\pi\)
\(770\) −3884.54 −0.181804
\(771\) 12840.3 0.599782
\(772\) −838.388 −0.0390858
\(773\) −14030.2 −0.652824 −0.326412 0.945228i \(-0.605840\pi\)
−0.326412 + 0.945228i \(0.605840\pi\)
\(774\) 1155.95 0.0536818
\(775\) −911.098 −0.0422292
\(776\) 19255.2 0.890748
\(777\) 4669.85 0.215611
\(778\) 2578.94 0.118842
\(779\) −5380.88 −0.247484
\(780\) −89.1056 −0.00409037
\(781\) −2135.19 −0.0978275
\(782\) −1020.82 −0.0466808
\(783\) 10514.7 0.479903
\(784\) −17366.6 −0.791117
\(785\) −9244.04 −0.420298
\(786\) −26452.3 −1.20041
\(787\) 5177.93 0.234528 0.117264 0.993101i \(-0.462588\pi\)
0.117264 + 0.993101i \(0.462588\pi\)
\(788\) 689.161 0.0311553
\(789\) 25752.1 1.16198
\(790\) −11212.0 −0.504943
\(791\) −3879.47 −0.174385
\(792\) −536.557 −0.0240729
\(793\) −3541.59 −0.158595
\(794\) −35186.2 −1.57269
\(795\) −4898.61 −0.218535
\(796\) −134.232 −0.00597706
\(797\) −14756.6 −0.655839 −0.327920 0.944706i \(-0.606348\pi\)
−0.327920 + 0.944706i \(0.606348\pi\)
\(798\) 7249.57 0.321594
\(799\) −689.007 −0.0305073
\(800\) 237.507 0.0104964
\(801\) 2463.49 0.108668
\(802\) −614.075 −0.0270371
\(803\) 212.610 0.00934351
\(804\) 424.598 0.0186249
\(805\) 15383.8 0.673552
\(806\) 1640.46 0.0716909
\(807\) 14996.3 0.654146
\(808\) 33018.4 1.43760
\(809\) 18484.2 0.803300 0.401650 0.915793i \(-0.368437\pi\)
0.401650 + 0.915793i \(0.368437\pi\)
\(810\) 11220.9 0.486745
\(811\) 13100.5 0.567225 0.283613 0.958939i \(-0.408467\pi\)
0.283613 + 0.958939i \(0.408467\pi\)
\(812\) −405.969 −0.0175452
\(813\) −28527.8 −1.23065
\(814\) 1105.30 0.0475929
\(815\) −11254.2 −0.483702
\(816\) −1012.07 −0.0434186
\(817\) 3507.58 0.150202
\(818\) 10675.2 0.456296
\(819\) −846.232 −0.0361047
\(820\) 297.339 0.0126628
\(821\) −9049.11 −0.384672 −0.192336 0.981329i \(-0.561606\pi\)
−0.192336 + 0.981329i \(0.561606\pi\)
\(822\) −12018.2 −0.509957
\(823\) −17347.8 −0.734760 −0.367380 0.930071i \(-0.619745\pi\)
−0.367380 + 0.930071i \(0.619745\pi\)
\(824\) −23275.1 −0.984012
\(825\) 1485.64 0.0626951
\(826\) 63119.7 2.65886
\(827\) −24928.7 −1.04819 −0.524097 0.851659i \(-0.675597\pi\)
−0.524097 + 0.851659i \(0.675597\pi\)
\(828\) −57.2776 −0.00240403
\(829\) −15992.3 −0.670008 −0.335004 0.942217i \(-0.608738\pi\)
−0.335004 + 0.942217i \(0.608738\pi\)
\(830\) 604.756 0.0252908
\(831\) 14352.0 0.599118
\(832\) 7821.36 0.325910
\(833\) −755.200 −0.0314119
\(834\) −5639.00 −0.234128
\(835\) −3898.69 −0.161580
\(836\) 43.8862 0.00181559
\(837\) −4885.58 −0.201757
\(838\) 3309.20 0.136413
\(839\) −44443.3 −1.82879 −0.914394 0.404825i \(-0.867332\pi\)
−0.914394 + 0.404825i \(0.867332\pi\)
\(840\) 14861.7 0.610447
\(841\) −18237.1 −0.747758
\(842\) 37739.9 1.54466
\(843\) −36492.3 −1.49094
\(844\) 343.577 0.0140123
\(845\) −9751.01 −0.396976
\(846\) −1511.54 −0.0614278
\(847\) −2982.57 −0.120995
\(848\) −11903.1 −0.482022
\(849\) −5011.99 −0.202604
\(850\) 204.456 0.00825032
\(851\) −4377.28 −0.176324
\(852\) −220.196 −0.00885421
\(853\) −1727.71 −0.0693501 −0.0346751 0.999399i \(-0.511040\pi\)
−0.0346751 + 0.999399i \(0.511040\pi\)
\(854\) −15922.2 −0.637995
\(855\) −207.605 −0.00830401
\(856\) 22157.4 0.884723
\(857\) 18972.0 0.756211 0.378105 0.925763i \(-0.376576\pi\)
0.378105 + 0.925763i \(0.376576\pi\)
\(858\) −2674.96 −0.106435
\(859\) 6078.00 0.241419 0.120709 0.992688i \(-0.461483\pi\)
0.120709 + 0.992688i \(0.461483\pi\)
\(860\) −193.823 −0.00768526
\(861\) 37712.7 1.49274
\(862\) 36506.9 1.44249
\(863\) −10.0005 −0.000394463 0 −0.000197231 1.00000i \(-0.500063\pi\)
−0.000197231 1.00000i \(0.500063\pi\)
\(864\) 1273.58 0.0501483
\(865\) −6413.13 −0.252085
\(866\) −6581.72 −0.258263
\(867\) 26497.7 1.03796
\(868\) 188.631 0.00737620
\(869\) −8608.64 −0.336051
\(870\) 6070.56 0.236565
\(871\) −5880.09 −0.228748
\(872\) 13674.8 0.531063
\(873\) 1885.17 0.0730853
\(874\) −6795.39 −0.262995
\(875\) −3081.17 −0.119043
\(876\) 21.9258 0.000845666 0
\(877\) −6962.23 −0.268070 −0.134035 0.990977i \(-0.542794\pi\)
−0.134035 + 0.990977i \(0.542794\pi\)
\(878\) 18171.8 0.698482
\(879\) −1184.82 −0.0454640
\(880\) 3609.97 0.138286
\(881\) −11580.3 −0.442851 −0.221425 0.975177i \(-0.571071\pi\)
−0.221425 + 0.975177i \(0.571071\pi\)
\(882\) −1656.76 −0.0632493
\(883\) −22409.0 −0.854046 −0.427023 0.904241i \(-0.640438\pi\)
−0.427023 + 0.904241i \(0.640438\pi\)
\(884\) −9.41544 −0.000358230 0
\(885\) −24140.2 −0.916908
\(886\) 9622.04 0.364852
\(887\) 38324.7 1.45075 0.725376 0.688353i \(-0.241666\pi\)
0.725376 + 0.688353i \(0.241666\pi\)
\(888\) −4228.70 −0.159804
\(889\) 45506.3 1.71680
\(890\) −16150.2 −0.608265
\(891\) 8615.51 0.323940
\(892\) −304.832 −0.0114423
\(893\) −4586.58 −0.171875
\(894\) −7943.46 −0.297169
\(895\) −5851.61 −0.218545
\(896\) 37036.6 1.38092
\(897\) 10593.6 0.394324
\(898\) 13997.1 0.520143
\(899\) −2858.45 −0.106045
\(900\) 11.4719 0.000424885 0
\(901\) −517.617 −0.0191391
\(902\) 8926.14 0.329499
\(903\) −24583.4 −0.905962
\(904\) 3512.99 0.129248
\(905\) 5670.15 0.208268
\(906\) −9681.02 −0.355000
\(907\) −28746.8 −1.05240 −0.526198 0.850362i \(-0.676383\pi\)
−0.526198 + 0.850362i \(0.676383\pi\)
\(908\) 631.425 0.0230777
\(909\) 3232.66 0.117954
\(910\) 5547.76 0.202095
\(911\) −22477.0 −0.817450 −0.408725 0.912658i \(-0.634026\pi\)
−0.408725 + 0.912658i \(0.634026\pi\)
\(912\) −6737.15 −0.244616
\(913\) 464.335 0.0168316
\(914\) 29085.0 1.05257
\(915\) 6089.47 0.220013
\(916\) 1248.51 0.0450350
\(917\) 42122.7 1.51692
\(918\) 1096.35 0.0394172
\(919\) −11936.1 −0.428439 −0.214219 0.976786i \(-0.568721\pi\)
−0.214219 + 0.976786i \(0.568721\pi\)
\(920\) −13930.6 −0.499215
\(921\) −6832.11 −0.244436
\(922\) 18012.2 0.643384
\(923\) 3049.41 0.108746
\(924\) −307.583 −0.0109510
\(925\) 876.709 0.0311633
\(926\) 42399.4 1.50468
\(927\) −2278.74 −0.0807375
\(928\) 745.146 0.0263584
\(929\) −38488.9 −1.35929 −0.679645 0.733541i \(-0.737866\pi\)
−0.679645 + 0.733541i \(0.737866\pi\)
\(930\) −2820.64 −0.0994543
\(931\) −5027.22 −0.176971
\(932\) −1294.00 −0.0454789
\(933\) 15495.7 0.543735
\(934\) 16809.3 0.588884
\(935\) 156.982 0.00549077
\(936\) 766.291 0.0267596
\(937\) −27212.3 −0.948760 −0.474380 0.880320i \(-0.657328\pi\)
−0.474380 + 0.880320i \(0.657328\pi\)
\(938\) −26435.7 −0.920208
\(939\) −32793.3 −1.13969
\(940\) 253.447 0.00879420
\(941\) −15596.4 −0.540306 −0.270153 0.962817i \(-0.587074\pi\)
−0.270153 + 0.962817i \(0.587074\pi\)
\(942\) −28618.4 −0.989849
\(943\) −35350.0 −1.22074
\(944\) −58658.2 −2.02242
\(945\) −16522.1 −0.568747
\(946\) −5818.59 −0.199977
\(947\) −48748.2 −1.67276 −0.836380 0.548150i \(-0.815332\pi\)
−0.836380 + 0.548150i \(0.815332\pi\)
\(948\) −887.782 −0.0304154
\(949\) −303.642 −0.0103863
\(950\) 1361.02 0.0464814
\(951\) −5276.58 −0.179921
\(952\) 1570.37 0.0534623
\(953\) 10573.1 0.359388 0.179694 0.983723i \(-0.442489\pi\)
0.179694 + 0.983723i \(0.442489\pi\)
\(954\) −1135.55 −0.0385374
\(955\) −16940.8 −0.574021
\(956\) −216.241 −0.00731563
\(957\) 4661.01 0.157439
\(958\) −23856.3 −0.804552
\(959\) 19137.9 0.644414
\(960\) −13448.2 −0.452123
\(961\) −28462.8 −0.955417
\(962\) −1578.55 −0.0529048
\(963\) 2169.31 0.0725909
\(964\) −607.209 −0.0202872
\(965\) −19963.3 −0.665950
\(966\) 47626.4 1.58629
\(967\) 34987.8 1.16353 0.581764 0.813358i \(-0.302363\pi\)
0.581764 + 0.813358i \(0.302363\pi\)
\(968\) 2700.82 0.0896772
\(969\) −292.970 −0.00971266
\(970\) −12358.9 −0.409093
\(971\) 11577.6 0.382640 0.191320 0.981528i \(-0.438723\pi\)
0.191320 + 0.981528i \(0.438723\pi\)
\(972\) 128.449 0.00423868
\(973\) 8979.54 0.295859
\(974\) −14289.7 −0.470095
\(975\) −2121.74 −0.0696925
\(976\) 14796.8 0.485281
\(977\) −23084.9 −0.755938 −0.377969 0.925818i \(-0.623377\pi\)
−0.377969 + 0.925818i \(0.623377\pi\)
\(978\) −34841.6 −1.13917
\(979\) −12400.2 −0.404814
\(980\) 277.796 0.00905497
\(981\) 1338.83 0.0435734
\(982\) −49975.3 −1.62401
\(983\) 52632.0 1.70773 0.853866 0.520493i \(-0.174252\pi\)
0.853866 + 0.520493i \(0.174252\pi\)
\(984\) −34150.1 −1.10637
\(985\) 16410.0 0.530829
\(986\) 641.452 0.0207181
\(987\) 32145.7 1.03669
\(988\) −62.6767 −0.00201823
\(989\) 23043.2 0.740882
\(990\) 344.387 0.0110559
\(991\) −10382.8 −0.332816 −0.166408 0.986057i \(-0.553217\pi\)
−0.166408 + 0.986057i \(0.553217\pi\)
\(992\) −346.227 −0.0110814
\(993\) 24945.2 0.797193
\(994\) 13709.5 0.437463
\(995\) −3196.28 −0.101838
\(996\) 47.8854 0.00152340
\(997\) 18002.2 0.571852 0.285926 0.958252i \(-0.407699\pi\)
0.285926 + 0.958252i \(0.407699\pi\)
\(998\) 18071.6 0.573193
\(999\) 4701.18 0.148887
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1045.4.a.d.1.7 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1045.4.a.d.1.7 22 1.1 even 1 trivial