Newspace parameters
Level: | \( N \) | \(=\) | \( 1045 = 5 \cdot 11 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1045.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(61.6569959560\) |
Analytic rank: | \(1\) |
Dimension: | \(22\) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −5.35702 | −10.2482 | 20.6977 | 5.00000 | 54.9000 | −17.5818 | −68.0218 | 78.0263 | −26.7851 | ||||||||||||||||||
1.2 | −4.84890 | −0.335233 | 15.5118 | 5.00000 | 1.62551 | −24.3429 | −36.4242 | −26.8876 | −24.2445 | ||||||||||||||||||
1.3 | −4.73877 | 1.86006 | 14.4559 | 5.00000 | −8.81437 | 1.31072 | −30.5930 | −23.5402 | −23.6938 | ||||||||||||||||||
1.4 | −4.71998 | 6.85295 | 14.2783 | 5.00000 | −32.3458 | 15.9495 | −29.6333 | 19.9630 | −23.5999 | ||||||||||||||||||
1.5 | −3.16156 | −8.60870 | 1.99549 | 5.00000 | 27.2170 | 32.5634 | 18.9837 | 47.1098 | −15.8078 | ||||||||||||||||||
1.6 | −3.11441 | −0.179144 | 1.69958 | 5.00000 | 0.557928 | 16.3837 | 19.6221 | −26.9679 | −15.5721 | ||||||||||||||||||
1.7 | −2.86531 | −5.40234 | 0.209982 | 5.00000 | 15.4794 | −24.6494 | 22.3208 | 2.18531 | −14.3265 | ||||||||||||||||||
1.8 | −2.52988 | 7.31543 | −1.59971 | 5.00000 | −18.5072 | 2.79284 | 24.2861 | 26.5155 | −12.6494 | ||||||||||||||||||
1.9 | −2.22182 | 6.66604 | −3.06353 | 5.00000 | −14.8107 | −18.2528 | 24.5811 | 17.4361 | −11.1091 | ||||||||||||||||||
1.10 | −1.15290 | −8.73139 | −6.67082 | 5.00000 | 10.0664 | 10.3417 | 16.9140 | 49.2372 | −5.76450 | ||||||||||||||||||
1.11 | −0.0295893 | −3.21150 | −7.99912 | 5.00000 | 0.0950261 | 7.73734 | 0.473403 | −16.6862 | −0.147946 | ||||||||||||||||||
1.12 | 0.0768470 | 2.42732 | −7.99409 | 5.00000 | 0.186533 | −11.4153 | −1.22910 | −21.1081 | 0.384235 | ||||||||||||||||||
1.13 | 1.04826 | 7.96396 | −6.90116 | 5.00000 | 8.34827 | −11.0379 | −15.6202 | 36.4247 | 5.24128 | ||||||||||||||||||
1.14 | 1.41332 | 3.57743 | −6.00252 | 5.00000 | 5.05605 | 30.1984 | −19.7901 | −14.2020 | 7.06661 | ||||||||||||||||||
1.15 | 1.45119 | −8.75662 | −5.89406 | 5.00000 | −12.7075 | −31.7430 | −20.1629 | 49.6783 | 7.25593 | ||||||||||||||||||
1.16 | 2.01284 | −4.64592 | −3.94849 | 5.00000 | −9.35147 | 7.18147 | −24.0504 | −5.41547 | 10.0642 | ||||||||||||||||||
1.17 | 3.65397 | 3.36009 | 5.35150 | 5.00000 | 12.2777 | −1.36266 | −9.67753 | −15.7098 | 18.2699 | ||||||||||||||||||
1.18 | 3.68170 | 2.35610 | 5.55493 | 5.00000 | 8.67444 | −1.20638 | −9.00201 | −21.4488 | 18.4085 | ||||||||||||||||||
1.19 | 3.88965 | −9.46724 | 7.12938 | 5.00000 | −36.8243 | 13.8479 | −3.38640 | 62.6286 | 19.4483 | ||||||||||||||||||
1.20 | 4.17470 | 5.44396 | 9.42811 | 5.00000 | 22.7269 | −28.9642 | 5.96192 | 2.63670 | 20.8735 | ||||||||||||||||||
See all 22 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(5\) | \(-1\) |
\(11\) | \(1\) |
\(19\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1045.4.a.d | ✓ | 22 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1045.4.a.d | ✓ | 22 | 1.a | even | 1 | 1 | trivial |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{22} + 4 T_{2}^{21} - 117 T_{2}^{20} - 442 T_{2}^{19} + 5863 T_{2}^{18} + 20719 T_{2}^{17} - 164424 T_{2}^{16} - 537203 T_{2}^{15} + 2831700 T_{2}^{14} + 8413712 T_{2}^{13} - 30998309 T_{2}^{12} + \cdots - 4958464 \)
acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1045))\).