Properties

Label 1040.4.a.ba
Level $1040$
Weight $4$
Character orbit 1040.a
Self dual yes
Analytic conductor $61.362$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1040,4,Mod(1,1040)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1040, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1040.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1040 = 2^{4} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1040.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,30,0,-38,0,102] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(61.3619864060\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 97x^{4} + 192x^{3} + 2324x^{2} - 3158x - 13948 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: no (minimal twist has level 520)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + 5 q^{5} + ( - \beta_{5} - 6) q^{7} + (\beta_{2} + 17) q^{9} + ( - \beta_{5} - \beta_{3} - 9) q^{11} + 13 q^{13} - 5 \beta_1 q^{15} + (\beta_{4} + \beta_{2} + 19) q^{17} + ( - \beta_{5} + \beta_{3} + 2 \beta_{2} + \cdots + 13) q^{19}+ \cdots + ( - 3 \beta_{5} - 20 \beta_{4} + \cdots - 25) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 30 q^{5} - 38 q^{7} + 102 q^{9} - 54 q^{11} + 78 q^{13} + 112 q^{17} + 74 q^{19} - 16 q^{21} - 20 q^{23} + 150 q^{25} + 108 q^{27} + 128 q^{29} - 130 q^{31} + 48 q^{33} - 190 q^{35} + 668 q^{37} + 284 q^{41}+ \cdots - 66 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 97x^{4} + 192x^{3} + 2324x^{2} - 3158x - 13948 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 40\nu^{5} + 14\nu^{4} - 2831\nu^{3} - 497\nu^{2} + 30318\nu + 33328 ) / 10161 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -12\nu^{5} - 230\nu^{4} + 1188\nu^{3} + 20584\nu^{2} - 40030\nu - 315280 ) / 3387 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 76\nu^{5} + 704\nu^{4} - 6395\nu^{3} - 41927\nu^{2} + 170730\nu + 298381 ) / 10161 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -14\nu^{5} + 108\nu^{4} + 1386\nu^{3} - 8350\nu^{2} - 29014\nu + 94687 ) / 1129 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 179\nu^{5} + 232\nu^{4} - 15463\nu^{3} - 15010\nu^{2} + 240162\nu + 276494 ) / 10161 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -2\beta_{5} - \beta_{4} + \beta_{3} - \beta_{2} + 3\beta _1 + 6 ) / 16 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{5} + \beta_{4} + 7\beta_{3} + 9\beta_{2} - 11\beta _1 + 530 ) / 16 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -126\beta_{5} - 31\beta_{4} + 39\beta_{3} - 39\beta_{2} + 357\beta _1 + 82 ) / 16 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 266\beta_{5} + 181\beta_{4} + 555\beta_{3} + 653\beta_{2} - 1087\beta _1 + 25634 ) / 16 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -7470\beta_{5} - 1487\beta_{4} + 1895\beta_{3} - 2119\beta_{2} + 27301\beta _1 - 14462 ) / 16 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.73485
7.67069
3.96886
−2.17902
5.43889
−8.16457
0 −8.95492 0 5.00000 0 −19.2741 0 53.1905 0
1.2 0 −6.85320 0 5.00000 0 12.3750 0 19.9663 0
1.3 0 −1.15206 0 5.00000 0 −31.6241 0 −25.6728 0
1.4 0 0.733633 0 5.00000 0 9.91107 0 −26.4618 0
1.5 0 6.82343 0 5.00000 0 22.9556 0 19.5592 0
1.6 0 9.40311 0 5.00000 0 −32.3435 0 61.4186 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1040.4.a.ba 6
4.b odd 2 1 520.4.a.k 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
520.4.a.k 6 4.b odd 2 1
1040.4.a.ba 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1040))\):

\( T_{3}^{6} - 132T_{3}^{4} - 36T_{3}^{3} + 4056T_{3}^{2} + 1632T_{3} - 3328 \) Copy content Toggle raw display
\( T_{7}^{6} + 38T_{7}^{5} - 876T_{7}^{4} - 32360T_{7}^{3} + 304416T_{7}^{2} + 6152448T_{7} - 55504896 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} - 132 T^{4} + \cdots - 3328 \) Copy content Toggle raw display
$5$ \( (T - 5)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 38 T^{5} + \cdots - 55504896 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 2433014016 \) Copy content Toggle raw display
$13$ \( (T - 13)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 13443260352 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots - 180467368448 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 5449660416 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots + 1474831403072 \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 20293855694592 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 29769067393600 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 3484024714816 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 145712050154752 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 56068283359232 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 129657317252416 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 12\!\cdots\!24 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots + 60\!\cdots\!48 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 15159561301504 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 17\!\cdots\!68 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 14\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 37\!\cdots\!16 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 98\!\cdots\!76 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 39\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 10\!\cdots\!72 \) Copy content Toggle raw display
show more
show less