Properties

Label 2-1040-1.1-c3-0-33
Degree $2$
Conductor $1040$
Sign $1$
Analytic cond. $61.3619$
Root an. cond. $7.83338$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.40·3-s + 5·5-s − 32.3·7-s + 61.4·9-s − 31.5·11-s + 13·13-s + 47.0·15-s + 70.9·17-s + 128.·19-s − 304.·21-s + 114.·23-s + 25·25-s + 323.·27-s + 56.3·29-s − 260.·31-s − 296.·33-s − 161.·35-s + 386.·37-s + 122.·39-s − 82.8·41-s + 457.·43-s + 307.·45-s − 226.·47-s + 703.·49-s + 666.·51-s + 212.·53-s − 157.·55-s + ⋯
L(s)  = 1  + 1.80·3-s + 0.447·5-s − 1.74·7-s + 2.27·9-s − 0.863·11-s + 0.277·13-s + 0.809·15-s + 1.01·17-s + 1.54·19-s − 3.16·21-s + 1.04·23-s + 0.200·25-s + 2.30·27-s + 0.361·29-s − 1.51·31-s − 1.56·33-s − 0.781·35-s + 1.71·37-s + 0.501·39-s − 0.315·41-s + 1.62·43-s + 1.01·45-s − 0.701·47-s + 2.04·49-s + 1.83·51-s + 0.550·53-s − 0.386·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1040 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1040\)    =    \(2^{4} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(61.3619\)
Root analytic conductor: \(7.83338\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1040,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.067405122\)
\(L(\frac12)\) \(\approx\) \(4.067405122\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 5T \)
13 \( 1 - 13T \)
good3 \( 1 - 9.40T + 27T^{2} \)
7 \( 1 + 32.3T + 343T^{2} \)
11 \( 1 + 31.5T + 1.33e3T^{2} \)
17 \( 1 - 70.9T + 4.91e3T^{2} \)
19 \( 1 - 128.T + 6.85e3T^{2} \)
23 \( 1 - 114.T + 1.21e4T^{2} \)
29 \( 1 - 56.3T + 2.43e4T^{2} \)
31 \( 1 + 260.T + 2.97e4T^{2} \)
37 \( 1 - 386.T + 5.06e4T^{2} \)
41 \( 1 + 82.8T + 6.89e4T^{2} \)
43 \( 1 - 457.T + 7.95e4T^{2} \)
47 \( 1 + 226.T + 1.03e5T^{2} \)
53 \( 1 - 212.T + 1.48e5T^{2} \)
59 \( 1 - 39.3T + 2.05e5T^{2} \)
61 \( 1 + 726.T + 2.26e5T^{2} \)
67 \( 1 + 453.T + 3.00e5T^{2} \)
71 \( 1 - 890.T + 3.57e5T^{2} \)
73 \( 1 - 544.T + 3.89e5T^{2} \)
79 \( 1 - 927.T + 4.93e5T^{2} \)
83 \( 1 - 50.9T + 5.71e5T^{2} \)
89 \( 1 - 702.T + 7.04e5T^{2} \)
97 \( 1 - 555.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.444831991364799944341557583617, −9.007747266769069557232598314609, −7.77543298331073702238674276683, −7.36683068950093447193266953186, −6.28538232668349506872941069836, −5.21977619517837198075286108336, −3.71874528427823887148281574312, −3.11736282639827301715660569132, −2.50963178380182078701162028122, −1.01089677666303805017606766073, 1.01089677666303805017606766073, 2.50963178380182078701162028122, 3.11736282639827301715660569132, 3.71874528427823887148281574312, 5.21977619517837198075286108336, 6.28538232668349506872941069836, 7.36683068950093447193266953186, 7.77543298331073702238674276683, 9.007747266769069557232598314609, 9.444831991364799944341557583617

Graph of the $Z$-function along the critical line