Properties

Label 104.4.a.e.1.2
Level $104$
Weight $4$
Character 104.1
Self dual yes
Analytic conductor $6.136$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [104,4,Mod(1,104)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("104.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(104, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 104.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.13619864060\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.18257.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 26x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-4.78415\) of defining polynomial
Character \(\chi\) \(=\) 104.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.0519499 q^{3} +7.51634 q^{5} +12.0519 q^{7} -26.9973 q^{9} +58.5849 q^{11} +13.0000 q^{13} -0.390473 q^{15} +94.7514 q^{17} +82.3771 q^{19} -0.626097 q^{21} -4.96192 q^{23} -68.5046 q^{25} +2.80515 q^{27} -256.886 q^{29} +203.443 q^{31} -3.04348 q^{33} +90.5866 q^{35} +5.51726 q^{37} -0.675348 q^{39} -266.398 q^{41} -451.577 q^{43} -202.921 q^{45} +68.8724 q^{47} -197.751 q^{49} -4.92232 q^{51} +97.8531 q^{53} +440.344 q^{55} -4.27948 q^{57} -598.977 q^{59} +218.290 q^{61} -325.370 q^{63} +97.7124 q^{65} -65.7000 q^{67} +0.257771 q^{69} -319.255 q^{71} -285.588 q^{73} +3.55881 q^{75} +706.062 q^{77} +917.746 q^{79} +728.781 q^{81} +133.337 q^{83} +712.184 q^{85} +13.3452 q^{87} +244.626 q^{89} +156.675 q^{91} -10.5688 q^{93} +619.174 q^{95} +926.249 q^{97} -1581.63 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 8 q^{5} + 36 q^{7} + 73 q^{9} + 52 q^{11} + 39 q^{13} + 244 q^{15} - 116 q^{17} + 124 q^{19} - 154 q^{21} + 232 q^{23} + 191 q^{25} + 12 q^{27} - 30 q^{29} + 240 q^{31} - 564 q^{33} - 340 q^{35} - 264 q^{37}+ \cdots - 1940 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.0519499 −0.00999776 −0.00499888 0.999988i \(-0.501591\pi\)
−0.00499888 + 0.999988i \(0.501591\pi\)
\(4\) 0 0
\(5\) 7.51634 0.672282 0.336141 0.941812i \(-0.390878\pi\)
0.336141 + 0.941812i \(0.390878\pi\)
\(6\) 0 0
\(7\) 12.0519 0.650744 0.325372 0.945586i \(-0.394510\pi\)
0.325372 + 0.945586i \(0.394510\pi\)
\(8\) 0 0
\(9\) −26.9973 −0.999900
\(10\) 0 0
\(11\) 58.5849 1.60582 0.802909 0.596101i \(-0.203284\pi\)
0.802909 + 0.596101i \(0.203284\pi\)
\(12\) 0 0
\(13\) 13.0000 0.277350
\(14\) 0 0
\(15\) −0.390473 −0.00672131
\(16\) 0 0
\(17\) 94.7514 1.35180 0.675900 0.736993i \(-0.263755\pi\)
0.675900 + 0.736993i \(0.263755\pi\)
\(18\) 0 0
\(19\) 82.3771 0.994663 0.497331 0.867561i \(-0.334313\pi\)
0.497331 + 0.867561i \(0.334313\pi\)
\(20\) 0 0
\(21\) −0.626097 −0.00650598
\(22\) 0 0
\(23\) −4.96192 −0.0449840 −0.0224920 0.999747i \(-0.507160\pi\)
−0.0224920 + 0.999747i \(0.507160\pi\)
\(24\) 0 0
\(25\) −68.5046 −0.548037
\(26\) 0 0
\(27\) 2.80515 0.0199945
\(28\) 0 0
\(29\) −256.886 −1.64491 −0.822457 0.568828i \(-0.807397\pi\)
−0.822457 + 0.568828i \(0.807397\pi\)
\(30\) 0 0
\(31\) 203.443 1.17869 0.589345 0.807881i \(-0.299386\pi\)
0.589345 + 0.807881i \(0.299386\pi\)
\(32\) 0 0
\(33\) −3.04348 −0.0160546
\(34\) 0 0
\(35\) 90.5866 0.437484
\(36\) 0 0
\(37\) 5.51726 0.0245144 0.0122572 0.999925i \(-0.496098\pi\)
0.0122572 + 0.999925i \(0.496098\pi\)
\(38\) 0 0
\(39\) −0.675348 −0.00277288
\(40\) 0 0
\(41\) −266.398 −1.01474 −0.507370 0.861729i \(-0.669382\pi\)
−0.507370 + 0.861729i \(0.669382\pi\)
\(42\) 0 0
\(43\) −451.577 −1.60151 −0.800754 0.598993i \(-0.795568\pi\)
−0.800754 + 0.598993i \(0.795568\pi\)
\(44\) 0 0
\(45\) −202.921 −0.672215
\(46\) 0 0
\(47\) 68.8724 0.213746 0.106873 0.994273i \(-0.465916\pi\)
0.106873 + 0.994273i \(0.465916\pi\)
\(48\) 0 0
\(49\) −197.751 −0.576532
\(50\) 0 0
\(51\) −4.92232 −0.0135150
\(52\) 0 0
\(53\) 97.8531 0.253607 0.126803 0.991928i \(-0.459528\pi\)
0.126803 + 0.991928i \(0.459528\pi\)
\(54\) 0 0
\(55\) 440.344 1.07956
\(56\) 0 0
\(57\) −4.27948 −0.00994440
\(58\) 0 0
\(59\) −598.977 −1.32170 −0.660849 0.750519i \(-0.729804\pi\)
−0.660849 + 0.750519i \(0.729804\pi\)
\(60\) 0 0
\(61\) 218.290 0.458184 0.229092 0.973405i \(-0.426424\pi\)
0.229092 + 0.973405i \(0.426424\pi\)
\(62\) 0 0
\(63\) −325.370 −0.650679
\(64\) 0 0
\(65\) 97.7124 0.186457
\(66\) 0 0
\(67\) −65.7000 −0.119799 −0.0598995 0.998204i \(-0.519078\pi\)
−0.0598995 + 0.998204i \(0.519078\pi\)
\(68\) 0 0
\(69\) 0.257771 0.000449739 0
\(70\) 0 0
\(71\) −319.255 −0.533642 −0.266821 0.963746i \(-0.585973\pi\)
−0.266821 + 0.963746i \(0.585973\pi\)
\(72\) 0 0
\(73\) −285.588 −0.457884 −0.228942 0.973440i \(-0.573527\pi\)
−0.228942 + 0.973440i \(0.573527\pi\)
\(74\) 0 0
\(75\) 3.55881 0.00547914
\(76\) 0 0
\(77\) 706.062 1.04498
\(78\) 0 0
\(79\) 917.746 1.30702 0.653510 0.756918i \(-0.273296\pi\)
0.653510 + 0.756918i \(0.273296\pi\)
\(80\) 0 0
\(81\) 728.781 0.999700
\(82\) 0 0
\(83\) 133.337 0.176332 0.0881662 0.996106i \(-0.471899\pi\)
0.0881662 + 0.996106i \(0.471899\pi\)
\(84\) 0 0
\(85\) 712.184 0.908791
\(86\) 0 0
\(87\) 13.3452 0.0164454
\(88\) 0 0
\(89\) 244.626 0.291352 0.145676 0.989332i \(-0.453464\pi\)
0.145676 + 0.989332i \(0.453464\pi\)
\(90\) 0 0
\(91\) 156.675 0.180484
\(92\) 0 0
\(93\) −10.5688 −0.0117843
\(94\) 0 0
\(95\) 619.174 0.668694
\(96\) 0 0
\(97\) 926.249 0.969550 0.484775 0.874639i \(-0.338902\pi\)
0.484775 + 0.874639i \(0.338902\pi\)
\(98\) 0 0
\(99\) −1581.63 −1.60566
\(100\) 0 0
\(101\) −1358.74 −1.33862 −0.669308 0.742985i \(-0.733409\pi\)
−0.669308 + 0.742985i \(0.733409\pi\)
\(102\) 0 0
\(103\) 1144.49 1.09486 0.547429 0.836852i \(-0.315607\pi\)
0.547429 + 0.836852i \(0.315607\pi\)
\(104\) 0 0
\(105\) −4.70596 −0.00437385
\(106\) 0 0
\(107\) −1770.30 −1.59945 −0.799727 0.600364i \(-0.795022\pi\)
−0.799727 + 0.600364i \(0.795022\pi\)
\(108\) 0 0
\(109\) 1250.33 1.09871 0.549355 0.835589i \(-0.314873\pi\)
0.549355 + 0.835589i \(0.314873\pi\)
\(110\) 0 0
\(111\) −0.286621 −0.000245089 0
\(112\) 0 0
\(113\) 823.180 0.685294 0.342647 0.939464i \(-0.388676\pi\)
0.342647 + 0.939464i \(0.388676\pi\)
\(114\) 0 0
\(115\) −37.2955 −0.0302419
\(116\) 0 0
\(117\) −350.965 −0.277322
\(118\) 0 0
\(119\) 1141.94 0.879676
\(120\) 0 0
\(121\) 2101.19 1.57865
\(122\) 0 0
\(123\) 13.8393 0.0101451
\(124\) 0 0
\(125\) −1454.45 −1.04072
\(126\) 0 0
\(127\) −1962.83 −1.37144 −0.685722 0.727864i \(-0.740513\pi\)
−0.685722 + 0.727864i \(0.740513\pi\)
\(128\) 0 0
\(129\) 23.4594 0.0160115
\(130\) 0 0
\(131\) −1166.78 −0.778183 −0.389092 0.921199i \(-0.627211\pi\)
−0.389092 + 0.921199i \(0.627211\pi\)
\(132\) 0 0
\(133\) 992.804 0.647271
\(134\) 0 0
\(135\) 21.0845 0.0134420
\(136\) 0 0
\(137\) −3104.18 −1.93582 −0.967912 0.251288i \(-0.919146\pi\)
−0.967912 + 0.251288i \(0.919146\pi\)
\(138\) 0 0
\(139\) 528.389 0.322427 0.161213 0.986920i \(-0.448459\pi\)
0.161213 + 0.986920i \(0.448459\pi\)
\(140\) 0 0
\(141\) −3.57791 −0.00213698
\(142\) 0 0
\(143\) 761.603 0.445374
\(144\) 0 0
\(145\) −1930.84 −1.10585
\(146\) 0 0
\(147\) 10.2731 0.00576403
\(148\) 0 0
\(149\) −1599.76 −0.879581 −0.439790 0.898100i \(-0.644947\pi\)
−0.439790 + 0.898100i \(0.644947\pi\)
\(150\) 0 0
\(151\) −195.543 −0.105385 −0.0526923 0.998611i \(-0.516780\pi\)
−0.0526923 + 0.998611i \(0.516780\pi\)
\(152\) 0 0
\(153\) −2558.03 −1.35166
\(154\) 0 0
\(155\) 1529.15 0.792413
\(156\) 0 0
\(157\) 1414.57 0.719078 0.359539 0.933130i \(-0.382934\pi\)
0.359539 + 0.933130i \(0.382934\pi\)
\(158\) 0 0
\(159\) −5.08346 −0.00253550
\(160\) 0 0
\(161\) −59.8008 −0.0292731
\(162\) 0 0
\(163\) −3177.92 −1.52708 −0.763539 0.645761i \(-0.776540\pi\)
−0.763539 + 0.645761i \(0.776540\pi\)
\(164\) 0 0
\(165\) −22.8758 −0.0107932
\(166\) 0 0
\(167\) 3356.99 1.55552 0.777760 0.628561i \(-0.216356\pi\)
0.777760 + 0.628561i \(0.216356\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) −2223.96 −0.994563
\(172\) 0 0
\(173\) −3828.33 −1.68244 −0.841222 0.540690i \(-0.818163\pi\)
−0.841222 + 0.540690i \(0.818163\pi\)
\(174\) 0 0
\(175\) −825.614 −0.356632
\(176\) 0 0
\(177\) 31.1168 0.0132140
\(178\) 0 0
\(179\) 804.950 0.336116 0.168058 0.985777i \(-0.446250\pi\)
0.168058 + 0.985777i \(0.446250\pi\)
\(180\) 0 0
\(181\) 4274.16 1.75523 0.877614 0.479369i \(-0.159134\pi\)
0.877614 + 0.479369i \(0.159134\pi\)
\(182\) 0 0
\(183\) −11.3402 −0.00458081
\(184\) 0 0
\(185\) 41.4696 0.0164806
\(186\) 0 0
\(187\) 5551.00 2.17074
\(188\) 0 0
\(189\) 33.8076 0.0130113
\(190\) 0 0
\(191\) 3993.20 1.51276 0.756382 0.654130i \(-0.226965\pi\)
0.756382 + 0.654130i \(0.226965\pi\)
\(192\) 0 0
\(193\) −3346.26 −1.24803 −0.624014 0.781413i \(-0.714499\pi\)
−0.624014 + 0.781413i \(0.714499\pi\)
\(194\) 0 0
\(195\) −5.07615 −0.00186416
\(196\) 0 0
\(197\) 97.2020 0.0351541 0.0175770 0.999846i \(-0.494405\pi\)
0.0175770 + 0.999846i \(0.494405\pi\)
\(198\) 0 0
\(199\) 640.175 0.228044 0.114022 0.993478i \(-0.463626\pi\)
0.114022 + 0.993478i \(0.463626\pi\)
\(200\) 0 0
\(201\) 3.41311 0.00119772
\(202\) 0 0
\(203\) −3095.97 −1.07042
\(204\) 0 0
\(205\) −2002.33 −0.682191
\(206\) 0 0
\(207\) 133.958 0.0449795
\(208\) 0 0
\(209\) 4826.05 1.59725
\(210\) 0 0
\(211\) 1423.20 0.464346 0.232173 0.972674i \(-0.425416\pi\)
0.232173 + 0.972674i \(0.425416\pi\)
\(212\) 0 0
\(213\) 16.5852 0.00533522
\(214\) 0 0
\(215\) −3394.21 −1.07667
\(216\) 0 0
\(217\) 2451.88 0.767026
\(218\) 0 0
\(219\) 14.8363 0.00457782
\(220\) 0 0
\(221\) 1231.77 0.374922
\(222\) 0 0
\(223\) 1186.75 0.356371 0.178186 0.983997i \(-0.442977\pi\)
0.178186 + 0.983997i \(0.442977\pi\)
\(224\) 0 0
\(225\) 1849.44 0.547982
\(226\) 0 0
\(227\) 3539.02 1.03477 0.517386 0.855752i \(-0.326905\pi\)
0.517386 + 0.855752i \(0.326905\pi\)
\(228\) 0 0
\(229\) −4176.67 −1.20525 −0.602625 0.798025i \(-0.705878\pi\)
−0.602625 + 0.798025i \(0.705878\pi\)
\(230\) 0 0
\(231\) −36.6798 −0.0104474
\(232\) 0 0
\(233\) −198.372 −0.0557758 −0.0278879 0.999611i \(-0.508878\pi\)
−0.0278879 + 0.999611i \(0.508878\pi\)
\(234\) 0 0
\(235\) 517.668 0.143698
\(236\) 0 0
\(237\) −47.6768 −0.0130673
\(238\) 0 0
\(239\) 5193.18 1.40552 0.702760 0.711427i \(-0.251951\pi\)
0.702760 + 0.711427i \(0.251951\pi\)
\(240\) 0 0
\(241\) 5435.97 1.45295 0.726476 0.687192i \(-0.241157\pi\)
0.726476 + 0.687192i \(0.241157\pi\)
\(242\) 0 0
\(243\) −113.599 −0.0299893
\(244\) 0 0
\(245\) −1486.36 −0.387592
\(246\) 0 0
\(247\) 1070.90 0.275870
\(248\) 0 0
\(249\) −6.92681 −0.00176293
\(250\) 0 0
\(251\) −2269.27 −0.570657 −0.285328 0.958430i \(-0.592103\pi\)
−0.285328 + 0.958430i \(0.592103\pi\)
\(252\) 0 0
\(253\) −290.693 −0.0722361
\(254\) 0 0
\(255\) −36.9979 −0.00908587
\(256\) 0 0
\(257\) −6947.78 −1.68634 −0.843172 0.537643i \(-0.819315\pi\)
−0.843172 + 0.537643i \(0.819315\pi\)
\(258\) 0 0
\(259\) 66.4937 0.0159526
\(260\) 0 0
\(261\) 6935.22 1.64475
\(262\) 0 0
\(263\) −5220.32 −1.22395 −0.611974 0.790878i \(-0.709624\pi\)
−0.611974 + 0.790878i \(0.709624\pi\)
\(264\) 0 0
\(265\) 735.497 0.170495
\(266\) 0 0
\(267\) −12.7083 −0.00291287
\(268\) 0 0
\(269\) −1641.66 −0.372095 −0.186048 0.982541i \(-0.559568\pi\)
−0.186048 + 0.982541i \(0.559568\pi\)
\(270\) 0 0
\(271\) 1558.50 0.349345 0.174672 0.984627i \(-0.444113\pi\)
0.174672 + 0.984627i \(0.444113\pi\)
\(272\) 0 0
\(273\) −8.13926 −0.00180443
\(274\) 0 0
\(275\) −4013.33 −0.880048
\(276\) 0 0
\(277\) 5192.23 1.12625 0.563124 0.826372i \(-0.309599\pi\)
0.563124 + 0.826372i \(0.309599\pi\)
\(278\) 0 0
\(279\) −5492.41 −1.17857
\(280\) 0 0
\(281\) −5602.55 −1.18939 −0.594697 0.803950i \(-0.702728\pi\)
−0.594697 + 0.803950i \(0.702728\pi\)
\(282\) 0 0
\(283\) −5928.63 −1.24530 −0.622651 0.782500i \(-0.713944\pi\)
−0.622651 + 0.782500i \(0.713944\pi\)
\(284\) 0 0
\(285\) −32.1660 −0.00668544
\(286\) 0 0
\(287\) −3210.61 −0.660336
\(288\) 0 0
\(289\) 4064.83 0.827363
\(290\) 0 0
\(291\) −48.1185 −0.00969332
\(292\) 0 0
\(293\) 3604.56 0.718705 0.359353 0.933202i \(-0.382997\pi\)
0.359353 + 0.933202i \(0.382997\pi\)
\(294\) 0 0
\(295\) −4502.12 −0.888554
\(296\) 0 0
\(297\) 164.339 0.0321076
\(298\) 0 0
\(299\) −64.5050 −0.0124763
\(300\) 0 0
\(301\) −5442.39 −1.04217
\(302\) 0 0
\(303\) 70.5866 0.0133832
\(304\) 0 0
\(305\) 1640.74 0.308029
\(306\) 0 0
\(307\) 1487.38 0.276511 0.138256 0.990397i \(-0.455850\pi\)
0.138256 + 0.990397i \(0.455850\pi\)
\(308\) 0 0
\(309\) −59.4563 −0.0109461
\(310\) 0 0
\(311\) 3760.35 0.685627 0.342814 0.939403i \(-0.388620\pi\)
0.342814 + 0.939403i \(0.388620\pi\)
\(312\) 0 0
\(313\) −3546.69 −0.640481 −0.320241 0.947336i \(-0.603764\pi\)
−0.320241 + 0.947336i \(0.603764\pi\)
\(314\) 0 0
\(315\) −2445.59 −0.437440
\(316\) 0 0
\(317\) −2015.56 −0.357113 −0.178557 0.983930i \(-0.557143\pi\)
−0.178557 + 0.983930i \(0.557143\pi\)
\(318\) 0 0
\(319\) −15049.6 −2.64143
\(320\) 0 0
\(321\) 91.9670 0.0159909
\(322\) 0 0
\(323\) 7805.34 1.34458
\(324\) 0 0
\(325\) −890.560 −0.151998
\(326\) 0 0
\(327\) −64.9542 −0.0109846
\(328\) 0 0
\(329\) 830.046 0.139094
\(330\) 0 0
\(331\) 3112.38 0.516834 0.258417 0.966033i \(-0.416799\pi\)
0.258417 + 0.966033i \(0.416799\pi\)
\(332\) 0 0
\(333\) −148.951 −0.0245119
\(334\) 0 0
\(335\) −493.824 −0.0805387
\(336\) 0 0
\(337\) 3594.16 0.580969 0.290484 0.956880i \(-0.406184\pi\)
0.290484 + 0.956880i \(0.406184\pi\)
\(338\) 0 0
\(339\) −42.7641 −0.00685141
\(340\) 0 0
\(341\) 11918.7 1.89276
\(342\) 0 0
\(343\) −6517.10 −1.02592
\(344\) 0 0
\(345\) 1.93750 0.000302352 0
\(346\) 0 0
\(347\) 9718.13 1.50345 0.751724 0.659478i \(-0.229223\pi\)
0.751724 + 0.659478i \(0.229223\pi\)
\(348\) 0 0
\(349\) −10264.7 −1.57438 −0.787188 0.616713i \(-0.788464\pi\)
−0.787188 + 0.616713i \(0.788464\pi\)
\(350\) 0 0
\(351\) 36.4670 0.00554548
\(352\) 0 0
\(353\) −4486.65 −0.676489 −0.338244 0.941058i \(-0.609833\pi\)
−0.338244 + 0.941058i \(0.609833\pi\)
\(354\) 0 0
\(355\) −2399.63 −0.358758
\(356\) 0 0
\(357\) −59.3236 −0.00879478
\(358\) 0 0
\(359\) 4448.49 0.653990 0.326995 0.945026i \(-0.393964\pi\)
0.326995 + 0.945026i \(0.393964\pi\)
\(360\) 0 0
\(361\) −73.0198 −0.0106458
\(362\) 0 0
\(363\) −109.156 −0.0157830
\(364\) 0 0
\(365\) −2146.58 −0.307827
\(366\) 0 0
\(367\) −12147.3 −1.72775 −0.863876 0.503704i \(-0.831970\pi\)
−0.863876 + 0.503704i \(0.831970\pi\)
\(368\) 0 0
\(369\) 7192.02 1.01464
\(370\) 0 0
\(371\) 1179.32 0.165033
\(372\) 0 0
\(373\) 7131.62 0.989977 0.494989 0.868900i \(-0.335172\pi\)
0.494989 + 0.868900i \(0.335172\pi\)
\(374\) 0 0
\(375\) 75.5583 0.0104048
\(376\) 0 0
\(377\) −3339.51 −0.456217
\(378\) 0 0
\(379\) 11916.2 1.61503 0.807515 0.589847i \(-0.200812\pi\)
0.807515 + 0.589847i \(0.200812\pi\)
\(380\) 0 0
\(381\) 101.969 0.0137114
\(382\) 0 0
\(383\) 353.179 0.0471191 0.0235596 0.999722i \(-0.492500\pi\)
0.0235596 + 0.999722i \(0.492500\pi\)
\(384\) 0 0
\(385\) 5307.00 0.702519
\(386\) 0 0
\(387\) 12191.4 1.60135
\(388\) 0 0
\(389\) −808.659 −0.105400 −0.0527001 0.998610i \(-0.516783\pi\)
−0.0527001 + 0.998610i \(0.516783\pi\)
\(390\) 0 0
\(391\) −470.149 −0.0608094
\(392\) 0 0
\(393\) 60.6141 0.00778009
\(394\) 0 0
\(395\) 6898.09 0.878685
\(396\) 0 0
\(397\) 375.922 0.0475239 0.0237620 0.999718i \(-0.492436\pi\)
0.0237620 + 0.999718i \(0.492436\pi\)
\(398\) 0 0
\(399\) −51.5761 −0.00647126
\(400\) 0 0
\(401\) 5039.29 0.627556 0.313778 0.949496i \(-0.398405\pi\)
0.313778 + 0.949496i \(0.398405\pi\)
\(402\) 0 0
\(403\) 2644.76 0.326910
\(404\) 0 0
\(405\) 5477.77 0.672080
\(406\) 0 0
\(407\) 323.228 0.0393656
\(408\) 0 0
\(409\) −9366.18 −1.13234 −0.566171 0.824288i \(-0.691576\pi\)
−0.566171 + 0.824288i \(0.691576\pi\)
\(410\) 0 0
\(411\) 161.262 0.0193539
\(412\) 0 0
\(413\) −7218.84 −0.860087
\(414\) 0 0
\(415\) 1002.20 0.118545
\(416\) 0 0
\(417\) −27.4497 −0.00322355
\(418\) 0 0
\(419\) 4560.60 0.531743 0.265871 0.964009i \(-0.414340\pi\)
0.265871 + 0.964009i \(0.414340\pi\)
\(420\) 0 0
\(421\) −9468.60 −1.09613 −0.548066 0.836435i \(-0.684636\pi\)
−0.548066 + 0.836435i \(0.684636\pi\)
\(422\) 0 0
\(423\) −1859.37 −0.213725
\(424\) 0 0
\(425\) −6490.91 −0.740836
\(426\) 0 0
\(427\) 2630.82 0.298160
\(428\) 0 0
\(429\) −39.5652 −0.00445274
\(430\) 0 0
\(431\) 15675.3 1.75186 0.875930 0.482439i \(-0.160249\pi\)
0.875930 + 0.482439i \(0.160249\pi\)
\(432\) 0 0
\(433\) −4434.92 −0.492214 −0.246107 0.969243i \(-0.579151\pi\)
−0.246107 + 0.969243i \(0.579151\pi\)
\(434\) 0 0
\(435\) 100.307 0.0110560
\(436\) 0 0
\(437\) −408.749 −0.0447439
\(438\) 0 0
\(439\) 16390.8 1.78198 0.890988 0.454026i \(-0.150013\pi\)
0.890988 + 0.454026i \(0.150013\pi\)
\(440\) 0 0
\(441\) 5338.73 0.576474
\(442\) 0 0
\(443\) −3793.91 −0.406894 −0.203447 0.979086i \(-0.565215\pi\)
−0.203447 + 0.979086i \(0.565215\pi\)
\(444\) 0 0
\(445\) 1838.69 0.195871
\(446\) 0 0
\(447\) 83.1074 0.00879383
\(448\) 0 0
\(449\) 16415.2 1.72535 0.862673 0.505762i \(-0.168789\pi\)
0.862673 + 0.505762i \(0.168789\pi\)
\(450\) 0 0
\(451\) −15606.9 −1.62949
\(452\) 0 0
\(453\) 10.1584 0.00105361
\(454\) 0 0
\(455\) 1177.63 0.121336
\(456\) 0 0
\(457\) −2312.29 −0.236683 −0.118342 0.992973i \(-0.537758\pi\)
−0.118342 + 0.992973i \(0.537758\pi\)
\(458\) 0 0
\(459\) 265.792 0.0270286
\(460\) 0 0
\(461\) 8067.63 0.815069 0.407535 0.913190i \(-0.366389\pi\)
0.407535 + 0.913190i \(0.366389\pi\)
\(462\) 0 0
\(463\) −12116.9 −1.21625 −0.608124 0.793842i \(-0.708077\pi\)
−0.608124 + 0.793842i \(0.708077\pi\)
\(464\) 0 0
\(465\) −79.4389 −0.00792235
\(466\) 0 0
\(467\) −11811.6 −1.17039 −0.585196 0.810892i \(-0.698983\pi\)
−0.585196 + 0.810892i \(0.698983\pi\)
\(468\) 0 0
\(469\) −791.813 −0.0779585
\(470\) 0 0
\(471\) −73.4869 −0.00718917
\(472\) 0 0
\(473\) −26455.6 −2.57173
\(474\) 0 0
\(475\) −5643.21 −0.545112
\(476\) 0 0
\(477\) −2641.77 −0.253581
\(478\) 0 0
\(479\) −6707.40 −0.639810 −0.319905 0.947450i \(-0.603651\pi\)
−0.319905 + 0.947450i \(0.603651\pi\)
\(480\) 0 0
\(481\) 71.7244 0.00679906
\(482\) 0 0
\(483\) 3.10665 0.000292665 0
\(484\) 0 0
\(485\) 6962.00 0.651811
\(486\) 0 0
\(487\) 8141.26 0.757527 0.378763 0.925494i \(-0.376349\pi\)
0.378763 + 0.925494i \(0.376349\pi\)
\(488\) 0 0
\(489\) 165.092 0.0152674
\(490\) 0 0
\(491\) 10112.7 0.929490 0.464745 0.885445i \(-0.346146\pi\)
0.464745 + 0.885445i \(0.346146\pi\)
\(492\) 0 0
\(493\) −24340.3 −2.22359
\(494\) 0 0
\(495\) −11888.1 −1.07945
\(496\) 0 0
\(497\) −3847.64 −0.347264
\(498\) 0 0
\(499\) 14174.0 1.27157 0.635785 0.771866i \(-0.280676\pi\)
0.635785 + 0.771866i \(0.280676\pi\)
\(500\) 0 0
\(501\) −174.395 −0.0155517
\(502\) 0 0
\(503\) −4190.17 −0.371432 −0.185716 0.982603i \(-0.559460\pi\)
−0.185716 + 0.982603i \(0.559460\pi\)
\(504\) 0 0
\(505\) −10212.8 −0.899927
\(506\) 0 0
\(507\) −8.77953 −0.000769058 0
\(508\) 0 0
\(509\) −10761.4 −0.937111 −0.468555 0.883434i \(-0.655225\pi\)
−0.468555 + 0.883434i \(0.655225\pi\)
\(510\) 0 0
\(511\) −3441.89 −0.297966
\(512\) 0 0
\(513\) 231.080 0.0198878
\(514\) 0 0
\(515\) 8602.41 0.736053
\(516\) 0 0
\(517\) 4034.88 0.343237
\(518\) 0 0
\(519\) 198.881 0.0168207
\(520\) 0 0
\(521\) 15561.6 1.30858 0.654288 0.756246i \(-0.272969\pi\)
0.654288 + 0.756246i \(0.272969\pi\)
\(522\) 0 0
\(523\) −7111.00 −0.594536 −0.297268 0.954794i \(-0.596076\pi\)
−0.297268 + 0.954794i \(0.596076\pi\)
\(524\) 0 0
\(525\) 42.8906 0.00356552
\(526\) 0 0
\(527\) 19276.5 1.59335
\(528\) 0 0
\(529\) −12142.4 −0.997976
\(530\) 0 0
\(531\) 16170.8 1.32157
\(532\) 0 0
\(533\) −3463.17 −0.281438
\(534\) 0 0
\(535\) −13306.2 −1.07528
\(536\) 0 0
\(537\) −41.8170 −0.00336041
\(538\) 0 0
\(539\) −11585.2 −0.925806
\(540\) 0 0
\(541\) 22162.3 1.76124 0.880620 0.473824i \(-0.157127\pi\)
0.880620 + 0.473824i \(0.157127\pi\)
\(542\) 0 0
\(543\) −222.042 −0.0175483
\(544\) 0 0
\(545\) 9397.87 0.738643
\(546\) 0 0
\(547\) −9401.44 −0.734875 −0.367437 0.930048i \(-0.619765\pi\)
−0.367437 + 0.930048i \(0.619765\pi\)
\(548\) 0 0
\(549\) −5893.25 −0.458138
\(550\) 0 0
\(551\) −21161.5 −1.63613
\(552\) 0 0
\(553\) 11060.6 0.850535
\(554\) 0 0
\(555\) −2.15434 −0.000164769 0
\(556\) 0 0
\(557\) −12244.7 −0.931463 −0.465731 0.884926i \(-0.654209\pi\)
−0.465731 + 0.884926i \(0.654209\pi\)
\(558\) 0 0
\(559\) −5870.50 −0.444179
\(560\) 0 0
\(561\) −288.374 −0.0217026
\(562\) 0 0
\(563\) −21958.0 −1.64373 −0.821865 0.569682i \(-0.807066\pi\)
−0.821865 + 0.569682i \(0.807066\pi\)
\(564\) 0 0
\(565\) 6187.30 0.460711
\(566\) 0 0
\(567\) 8783.24 0.650549
\(568\) 0 0
\(569\) 501.601 0.0369564 0.0184782 0.999829i \(-0.494118\pi\)
0.0184782 + 0.999829i \(0.494118\pi\)
\(570\) 0 0
\(571\) −24616.5 −1.80415 −0.902076 0.431578i \(-0.857957\pi\)
−0.902076 + 0.431578i \(0.857957\pi\)
\(572\) 0 0
\(573\) −207.446 −0.0151242
\(574\) 0 0
\(575\) 339.915 0.0246529
\(576\) 0 0
\(577\) 2346.78 0.169320 0.0846600 0.996410i \(-0.473020\pi\)
0.0846600 + 0.996410i \(0.473020\pi\)
\(578\) 0 0
\(579\) 173.838 0.0124775
\(580\) 0 0
\(581\) 1606.96 0.114747
\(582\) 0 0
\(583\) 5732.71 0.407246
\(584\) 0 0
\(585\) −2637.97 −0.186439
\(586\) 0 0
\(587\) 1566.32 0.110135 0.0550673 0.998483i \(-0.482463\pi\)
0.0550673 + 0.998483i \(0.482463\pi\)
\(588\) 0 0
\(589\) 16759.0 1.17240
\(590\) 0 0
\(591\) −5.04963 −0.000351462 0
\(592\) 0 0
\(593\) 19887.0 1.37717 0.688583 0.725157i \(-0.258233\pi\)
0.688583 + 0.725157i \(0.258233\pi\)
\(594\) 0 0
\(595\) 8583.21 0.591390
\(596\) 0 0
\(597\) −33.2570 −0.00227993
\(598\) 0 0
\(599\) −9073.88 −0.618946 −0.309473 0.950908i \(-0.600153\pi\)
−0.309473 + 0.950908i \(0.600153\pi\)
\(600\) 0 0
\(601\) 16604.5 1.12697 0.563487 0.826125i \(-0.309459\pi\)
0.563487 + 0.826125i \(0.309459\pi\)
\(602\) 0 0
\(603\) 1773.72 0.119787
\(604\) 0 0
\(605\) 15793.2 1.06130
\(606\) 0 0
\(607\) 26692.4 1.78486 0.892431 0.451183i \(-0.148998\pi\)
0.892431 + 0.451183i \(0.148998\pi\)
\(608\) 0 0
\(609\) 160.835 0.0107018
\(610\) 0 0
\(611\) 895.341 0.0592825
\(612\) 0 0
\(613\) 8549.18 0.563292 0.281646 0.959518i \(-0.409120\pi\)
0.281646 + 0.959518i \(0.409120\pi\)
\(614\) 0 0
\(615\) 104.021 0.00682038
\(616\) 0 0
\(617\) −776.812 −0.0506860 −0.0253430 0.999679i \(-0.508068\pi\)
−0.0253430 + 0.999679i \(0.508068\pi\)
\(618\) 0 0
\(619\) 26846.2 1.74320 0.871599 0.490219i \(-0.163083\pi\)
0.871599 + 0.490219i \(0.163083\pi\)
\(620\) 0 0
\(621\) −13.9189 −0.000899433 0
\(622\) 0 0
\(623\) 2948.22 0.189596
\(624\) 0 0
\(625\) −2369.04 −0.151618
\(626\) 0 0
\(627\) −250.713 −0.0159689
\(628\) 0 0
\(629\) 522.768 0.0331385
\(630\) 0 0
\(631\) −13226.6 −0.834458 −0.417229 0.908801i \(-0.636999\pi\)
−0.417229 + 0.908801i \(0.636999\pi\)
\(632\) 0 0
\(633\) −73.9350 −0.00464242
\(634\) 0 0
\(635\) −14753.3 −0.921996
\(636\) 0 0
\(637\) −2570.76 −0.159901
\(638\) 0 0
\(639\) 8619.01 0.533588
\(640\) 0 0
\(641\) −2242.71 −0.138193 −0.0690964 0.997610i \(-0.522012\pi\)
−0.0690964 + 0.997610i \(0.522012\pi\)
\(642\) 0 0
\(643\) 1337.91 0.0820563 0.0410282 0.999158i \(-0.486937\pi\)
0.0410282 + 0.999158i \(0.486937\pi\)
\(644\) 0 0
\(645\) 176.329 0.0107642
\(646\) 0 0
\(647\) 17870.6 1.08588 0.542941 0.839771i \(-0.317311\pi\)
0.542941 + 0.839771i \(0.317311\pi\)
\(648\) 0 0
\(649\) −35091.0 −2.12241
\(650\) 0 0
\(651\) −127.375 −0.00766854
\(652\) 0 0
\(653\) 6267.11 0.375576 0.187788 0.982210i \(-0.439868\pi\)
0.187788 + 0.982210i \(0.439868\pi\)
\(654\) 0 0
\(655\) −8769.91 −0.523159
\(656\) 0 0
\(657\) 7710.11 0.457839
\(658\) 0 0
\(659\) −17737.7 −1.04850 −0.524252 0.851563i \(-0.675655\pi\)
−0.524252 + 0.851563i \(0.675655\pi\)
\(660\) 0 0
\(661\) 21640.1 1.27338 0.636689 0.771121i \(-0.280304\pi\)
0.636689 + 0.771121i \(0.280304\pi\)
\(662\) 0 0
\(663\) −63.9902 −0.00374838
\(664\) 0 0
\(665\) 7462.25 0.435149
\(666\) 0 0
\(667\) 1274.65 0.0739948
\(668\) 0 0
\(669\) −61.6516 −0.00356291
\(670\) 0 0
\(671\) 12788.5 0.735760
\(672\) 0 0
\(673\) 26852.2 1.53800 0.769002 0.639246i \(-0.220753\pi\)
0.769002 + 0.639246i \(0.220753\pi\)
\(674\) 0 0
\(675\) −192.166 −0.0109577
\(676\) 0 0
\(677\) 1645.08 0.0933910 0.0466955 0.998909i \(-0.485131\pi\)
0.0466955 + 0.998909i \(0.485131\pi\)
\(678\) 0 0
\(679\) 11163.1 0.630929
\(680\) 0 0
\(681\) −183.852 −0.0103454
\(682\) 0 0
\(683\) 3172.63 0.177742 0.0888708 0.996043i \(-0.471674\pi\)
0.0888708 + 0.996043i \(0.471674\pi\)
\(684\) 0 0
\(685\) −23332.1 −1.30142
\(686\) 0 0
\(687\) 216.978 0.0120498
\(688\) 0 0
\(689\) 1272.09 0.0703378
\(690\) 0 0
\(691\) −15820.0 −0.870943 −0.435472 0.900203i \(-0.643418\pi\)
−0.435472 + 0.900203i \(0.643418\pi\)
\(692\) 0 0
\(693\) −19061.8 −1.04487
\(694\) 0 0
\(695\) 3971.55 0.216762
\(696\) 0 0
\(697\) −25241.5 −1.37172
\(698\) 0 0
\(699\) 10.3054 0.000557633 0
\(700\) 0 0
\(701\) 12729.3 0.685848 0.342924 0.939363i \(-0.388583\pi\)
0.342924 + 0.939363i \(0.388583\pi\)
\(702\) 0 0
\(703\) 454.496 0.0243835
\(704\) 0 0
\(705\) −26.8928 −0.00143665
\(706\) 0 0
\(707\) −16375.5 −0.871096
\(708\) 0 0
\(709\) 15175.0 0.803821 0.401911 0.915679i \(-0.368346\pi\)
0.401911 + 0.915679i \(0.368346\pi\)
\(710\) 0 0
\(711\) −24776.7 −1.30689
\(712\) 0 0
\(713\) −1009.47 −0.0530222
\(714\) 0 0
\(715\) 5724.47 0.299417
\(716\) 0 0
\(717\) −269.785 −0.0140520
\(718\) 0 0
\(719\) 15055.8 0.780926 0.390463 0.920619i \(-0.372315\pi\)
0.390463 + 0.920619i \(0.372315\pi\)
\(720\) 0 0
\(721\) 13793.4 0.712473
\(722\) 0 0
\(723\) −282.398 −0.0145263
\(724\) 0 0
\(725\) 17597.9 0.901473
\(726\) 0 0
\(727\) 12070.5 0.615778 0.307889 0.951422i \(-0.400378\pi\)
0.307889 + 0.951422i \(0.400378\pi\)
\(728\) 0 0
\(729\) −19671.2 −0.999400
\(730\) 0 0
\(731\) −42787.6 −2.16492
\(732\) 0 0
\(733\) −26625.2 −1.34165 −0.670823 0.741618i \(-0.734059\pi\)
−0.670823 + 0.741618i \(0.734059\pi\)
\(734\) 0 0
\(735\) 77.2162 0.00387505
\(736\) 0 0
\(737\) −3849.03 −0.192375
\(738\) 0 0
\(739\) 1063.52 0.0529395 0.0264697 0.999650i \(-0.491573\pi\)
0.0264697 + 0.999650i \(0.491573\pi\)
\(740\) 0 0
\(741\) −55.6332 −0.00275808
\(742\) 0 0
\(743\) 33166.8 1.63765 0.818825 0.574044i \(-0.194626\pi\)
0.818825 + 0.574044i \(0.194626\pi\)
\(744\) 0 0
\(745\) −12024.3 −0.591326
\(746\) 0 0
\(747\) −3599.73 −0.176315
\(748\) 0 0
\(749\) −21335.6 −1.04084
\(750\) 0 0
\(751\) 18934.9 0.920032 0.460016 0.887911i \(-0.347844\pi\)
0.460016 + 0.887911i \(0.347844\pi\)
\(752\) 0 0
\(753\) 117.888 0.00570529
\(754\) 0 0
\(755\) −1469.77 −0.0708481
\(756\) 0 0
\(757\) −9329.09 −0.447915 −0.223957 0.974599i \(-0.571898\pi\)
−0.223957 + 0.974599i \(0.571898\pi\)
\(758\) 0 0
\(759\) 15.1015 0.000722199 0
\(760\) 0 0
\(761\) −17120.0 −0.815506 −0.407753 0.913092i \(-0.633687\pi\)
−0.407753 + 0.913092i \(0.633687\pi\)
\(762\) 0 0
\(763\) 15068.9 0.714979
\(764\) 0 0
\(765\) −19227.0 −0.908700
\(766\) 0 0
\(767\) −7786.70 −0.366573
\(768\) 0 0
\(769\) 34301.4 1.60850 0.804252 0.594288i \(-0.202566\pi\)
0.804252 + 0.594288i \(0.202566\pi\)
\(770\) 0 0
\(771\) 360.936 0.0168597
\(772\) 0 0
\(773\) −21732.1 −1.01119 −0.505595 0.862771i \(-0.668727\pi\)
−0.505595 + 0.862771i \(0.668727\pi\)
\(774\) 0 0
\(775\) −13936.8 −0.645966
\(776\) 0 0
\(777\) −3.45434 −0.000159490 0
\(778\) 0 0
\(779\) −21945.0 −1.00932
\(780\) 0 0
\(781\) −18703.5 −0.856931
\(782\) 0 0
\(783\) −720.604 −0.0328892
\(784\) 0 0
\(785\) 10632.4 0.483423
\(786\) 0 0
\(787\) 11556.4 0.523434 0.261717 0.965145i \(-0.415711\pi\)
0.261717 + 0.965145i \(0.415711\pi\)
\(788\) 0 0
\(789\) 271.195 0.0122367
\(790\) 0 0
\(791\) 9920.93 0.445951
\(792\) 0 0
\(793\) 2837.77 0.127077
\(794\) 0 0
\(795\) −38.2090 −0.00170457
\(796\) 0 0
\(797\) −12158.2 −0.540357 −0.270178 0.962810i \(-0.587083\pi\)
−0.270178 + 0.962810i \(0.587083\pi\)
\(798\) 0 0
\(799\) 6525.75 0.288942
\(800\) 0 0
\(801\) −6604.25 −0.291323
\(802\) 0 0
\(803\) −16731.1 −0.735279
\(804\) 0 0
\(805\) −449.483 −0.0196798
\(806\) 0 0
\(807\) 85.2839 0.00372012
\(808\) 0 0
\(809\) 1954.04 0.0849203 0.0424602 0.999098i \(-0.486480\pi\)
0.0424602 + 0.999098i \(0.486480\pi\)
\(810\) 0 0
\(811\) −13701.0 −0.593228 −0.296614 0.954997i \(-0.595857\pi\)
−0.296614 + 0.954997i \(0.595857\pi\)
\(812\) 0 0
\(813\) −80.9641 −0.00349266
\(814\) 0 0
\(815\) −23886.3 −1.02663
\(816\) 0 0
\(817\) −37199.6 −1.59296
\(818\) 0 0
\(819\) −4229.81 −0.180466
\(820\) 0 0
\(821\) −11806.6 −0.501891 −0.250945 0.968001i \(-0.580741\pi\)
−0.250945 + 0.968001i \(0.580741\pi\)
\(822\) 0 0
\(823\) 44947.6 1.90374 0.951868 0.306509i \(-0.0991610\pi\)
0.951868 + 0.306509i \(0.0991610\pi\)
\(824\) 0 0
\(825\) 208.492 0.00879850
\(826\) 0 0
\(827\) 11776.9 0.495190 0.247595 0.968864i \(-0.420360\pi\)
0.247595 + 0.968864i \(0.420360\pi\)
\(828\) 0 0
\(829\) −13479.2 −0.564720 −0.282360 0.959309i \(-0.591117\pi\)
−0.282360 + 0.959309i \(0.591117\pi\)
\(830\) 0 0
\(831\) −269.736 −0.0112600
\(832\) 0 0
\(833\) −18737.1 −0.779356
\(834\) 0 0
\(835\) 25232.3 1.04575
\(836\) 0 0
\(837\) 570.688 0.0235674
\(838\) 0 0
\(839\) −15662.9 −0.644509 −0.322254 0.946653i \(-0.604441\pi\)
−0.322254 + 0.946653i \(0.604441\pi\)
\(840\) 0 0
\(841\) 41601.3 1.70574
\(842\) 0 0
\(843\) 291.052 0.0118913
\(844\) 0 0
\(845\) 1270.26 0.0517140
\(846\) 0 0
\(847\) 25323.4 1.02730
\(848\) 0 0
\(849\) 307.992 0.0124502
\(850\) 0 0
\(851\) −27.3762 −0.00110275
\(852\) 0 0
\(853\) 39238.1 1.57501 0.787507 0.616305i \(-0.211371\pi\)
0.787507 + 0.616305i \(0.211371\pi\)
\(854\) 0 0
\(855\) −16716.0 −0.668627
\(856\) 0 0
\(857\) −17154.7 −0.683774 −0.341887 0.939741i \(-0.611066\pi\)
−0.341887 + 0.939741i \(0.611066\pi\)
\(858\) 0 0
\(859\) 37572.5 1.49238 0.746192 0.665731i \(-0.231880\pi\)
0.746192 + 0.665731i \(0.231880\pi\)
\(860\) 0 0
\(861\) 166.791 0.00660188
\(862\) 0 0
\(863\) 37677.0 1.48614 0.743071 0.669213i \(-0.233369\pi\)
0.743071 + 0.669213i \(0.233369\pi\)
\(864\) 0 0
\(865\) −28775.1 −1.13108
\(866\) 0 0
\(867\) −211.168 −0.00827177
\(868\) 0 0
\(869\) 53766.0 2.09884
\(870\) 0 0
\(871\) −854.100 −0.0332263
\(872\) 0 0
\(873\) −25006.2 −0.969453
\(874\) 0 0
\(875\) −17528.9 −0.677241
\(876\) 0 0
\(877\) 3534.78 0.136102 0.0680508 0.997682i \(-0.478322\pi\)
0.0680508 + 0.997682i \(0.478322\pi\)
\(878\) 0 0
\(879\) −187.256 −0.00718544
\(880\) 0 0
\(881\) 11107.5 0.424770 0.212385 0.977186i \(-0.431877\pi\)
0.212385 + 0.977186i \(0.431877\pi\)
\(882\) 0 0
\(883\) 5892.96 0.224591 0.112296 0.993675i \(-0.464180\pi\)
0.112296 + 0.993675i \(0.464180\pi\)
\(884\) 0 0
\(885\) 233.884 0.00888354
\(886\) 0 0
\(887\) 21476.4 0.812972 0.406486 0.913657i \(-0.366754\pi\)
0.406486 + 0.913657i \(0.366754\pi\)
\(888\) 0 0
\(889\) −23656.0 −0.892459
\(890\) 0 0
\(891\) 42695.6 1.60534
\(892\) 0 0
\(893\) 5673.50 0.212605
\(894\) 0 0
\(895\) 6050.28 0.225965
\(896\) 0 0
\(897\) 3.35103 0.000124735 0
\(898\) 0 0
\(899\) −52261.6 −1.93884
\(900\) 0 0
\(901\) 9271.72 0.342825
\(902\) 0 0
\(903\) 282.731 0.0104194
\(904\) 0 0
\(905\) 32126.1 1.18001
\(906\) 0 0
\(907\) −16593.2 −0.607461 −0.303731 0.952758i \(-0.598232\pi\)
−0.303731 + 0.952758i \(0.598232\pi\)
\(908\) 0 0
\(909\) 36682.4 1.33848
\(910\) 0 0
\(911\) −48547.9 −1.76560 −0.882802 0.469745i \(-0.844346\pi\)
−0.882802 + 0.469745i \(0.844346\pi\)
\(912\) 0 0
\(913\) 7811.50 0.283158
\(914\) 0 0
\(915\) −85.2364 −0.00307960
\(916\) 0 0
\(917\) −14062.0 −0.506398
\(918\) 0 0
\(919\) 34369.8 1.23368 0.616842 0.787087i \(-0.288412\pi\)
0.616842 + 0.787087i \(0.288412\pi\)
\(920\) 0 0
\(921\) −77.2690 −0.00276449
\(922\) 0 0
\(923\) −4150.31 −0.148006
\(924\) 0 0
\(925\) −377.958 −0.0134348
\(926\) 0 0
\(927\) −30898.3 −1.09475
\(928\) 0 0
\(929\) −19337.2 −0.682920 −0.341460 0.939896i \(-0.610921\pi\)
−0.341460 + 0.939896i \(0.610921\pi\)
\(930\) 0 0
\(931\) −16290.1 −0.573455
\(932\) 0 0
\(933\) −195.350 −0.00685474
\(934\) 0 0
\(935\) 41723.2 1.45935
\(936\) 0 0
\(937\) 53408.0 1.86207 0.931037 0.364924i \(-0.118905\pi\)
0.931037 + 0.364924i \(0.118905\pi\)
\(938\) 0 0
\(939\) 184.250 0.00640338
\(940\) 0 0
\(941\) 46543.7 1.61241 0.806207 0.591634i \(-0.201517\pi\)
0.806207 + 0.591634i \(0.201517\pi\)
\(942\) 0 0
\(943\) 1321.84 0.0456470
\(944\) 0 0
\(945\) 254.109 0.00874727
\(946\) 0 0
\(947\) −14885.8 −0.510794 −0.255397 0.966836i \(-0.582206\pi\)
−0.255397 + 0.966836i \(0.582206\pi\)
\(948\) 0 0
\(949\) −3712.65 −0.126994
\(950\) 0 0
\(951\) 104.708 0.00357033
\(952\) 0 0
\(953\) 31363.2 1.06606 0.533028 0.846097i \(-0.321054\pi\)
0.533028 + 0.846097i \(0.321054\pi\)
\(954\) 0 0
\(955\) 30014.3 1.01700
\(956\) 0 0
\(957\) 781.826 0.0264084
\(958\) 0 0
\(959\) −37411.4 −1.25973
\(960\) 0 0
\(961\) 11598.0 0.389312
\(962\) 0 0
\(963\) 47793.4 1.59929
\(964\) 0 0
\(965\) −25151.7 −0.839027
\(966\) 0 0
\(967\) −34784.3 −1.15676 −0.578380 0.815767i \(-0.696315\pi\)
−0.578380 + 0.815767i \(0.696315\pi\)
\(968\) 0 0
\(969\) −405.487 −0.0134428
\(970\) 0 0
\(971\) −21889.3 −0.723439 −0.361720 0.932287i \(-0.617810\pi\)
−0.361720 + 0.932287i \(0.617810\pi\)
\(972\) 0 0
\(973\) 6368.11 0.209817
\(974\) 0 0
\(975\) 46.2645 0.00151964
\(976\) 0 0
\(977\) −2790.44 −0.0913757 −0.0456878 0.998956i \(-0.514548\pi\)
−0.0456878 + 0.998956i \(0.514548\pi\)
\(978\) 0 0
\(979\) 14331.4 0.467858
\(980\) 0 0
\(981\) −33755.4 −1.09860
\(982\) 0 0
\(983\) −30018.4 −0.973996 −0.486998 0.873403i \(-0.661908\pi\)
−0.486998 + 0.873403i \(0.661908\pi\)
\(984\) 0 0
\(985\) 730.603 0.0236334
\(986\) 0 0
\(987\) −43.1208 −0.00139063
\(988\) 0 0
\(989\) 2240.69 0.0720423
\(990\) 0 0
\(991\) 46961.9 1.50534 0.752670 0.658398i \(-0.228765\pi\)
0.752670 + 0.658398i \(0.228765\pi\)
\(992\) 0 0
\(993\) −161.688 −0.00516718
\(994\) 0 0
\(995\) 4811.78 0.153310
\(996\) 0 0
\(997\) −6426.34 −0.204137 −0.102068 0.994777i \(-0.532546\pi\)
−0.102068 + 0.994777i \(0.532546\pi\)
\(998\) 0 0
\(999\) 15.4768 0.000490153 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 104.4.a.e.1.2 3
3.2 odd 2 936.4.a.m.1.1 3
4.3 odd 2 208.4.a.l.1.2 3
8.3 odd 2 832.4.a.bb.1.2 3
8.5 even 2 832.4.a.bc.1.2 3
12.11 even 2 1872.4.a.bm.1.1 3
13.12 even 2 1352.4.a.h.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.4.a.e.1.2 3 1.1 even 1 trivial
208.4.a.l.1.2 3 4.3 odd 2
832.4.a.bb.1.2 3 8.3 odd 2
832.4.a.bc.1.2 3 8.5 even 2
936.4.a.m.1.1 3 3.2 odd 2
1352.4.a.h.1.2 3 13.12 even 2
1872.4.a.bm.1.1 3 12.11 even 2