Properties

Label 104.4
Level 104
Weight 4
Dimension 537
Nonzero newspaces 10
Newform subspaces 17
Sturm bound 2688
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 10 \)
Newform subspaces: \( 17 \)
Sturm bound: \(2688\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(104))\).

Total New Old
Modular forms 1080 581 499
Cusp forms 936 537 399
Eisenstein series 144 44 100

Trace form

\( 537 q - 8 q^{2} - 4 q^{3} + 12 q^{4} + 4 q^{5} - 68 q^{6} - 28 q^{7} - 92 q^{8} + 2 q^{9} + 100 q^{10} + 76 q^{11} + 100 q^{12} - 22 q^{13} - 56 q^{14} - 252 q^{15} - 44 q^{16} - 209 q^{17} - 16 q^{18}+ \cdots - 16916 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(104))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
104.4.a \(\chi_{104}(1, \cdot)\) 104.4.a.a 1 1
104.4.a.b 1
104.4.a.c 2
104.4.a.d 2
104.4.a.e 3
104.4.b \(\chi_{104}(53, \cdot)\) 104.4.b.a 2 1
104.4.b.b 34
104.4.e \(\chi_{104}(77, \cdot)\) 104.4.e.a 40 1
104.4.f \(\chi_{104}(25, \cdot)\) 104.4.f.a 10 1
104.4.i \(\chi_{104}(9, \cdot)\) 104.4.i.a 2 2
104.4.i.b 8
104.4.i.c 12
104.4.k \(\chi_{104}(31, \cdot)\) None 0 2
104.4.m \(\chi_{104}(83, \cdot)\) 104.4.m.a 80 2
104.4.o \(\chi_{104}(17, \cdot)\) 104.4.o.a 20 2
104.4.r \(\chi_{104}(29, \cdot)\) 104.4.r.a 80 2
104.4.s \(\chi_{104}(69, \cdot)\) 104.4.s.a 80 2
104.4.u \(\chi_{104}(11, \cdot)\) 104.4.u.a 160 4
104.4.w \(\chi_{104}(7, \cdot)\) None 0 4

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(104))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(104)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 2}\)