Properties

Label 1035.2.a.p.1.4
Level $1035$
Weight $2$
Character 1035.1
Self dual yes
Analytic conductor $8.265$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1035,2,Mod(1,1035)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1035.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1035, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1035 = 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1035.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,10,-6,0,6,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.26451660920\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.98838128.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 10x^{4} - x^{3} + 16x^{2} + 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.493507\) of defining polynomial
Character \(\chi\) \(=\) 1035.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.810417 q^{2} -1.34322 q^{4} -1.00000 q^{5} -4.60617 q^{7} -2.70941 q^{8} -0.810417 q^{10} +5.35375 q^{11} +5.51982 q^{13} -3.73292 q^{14} +0.490703 q^{16} +1.17660 q^{17} -1.73292 q^{19} +1.34322 q^{20} +4.33877 q^{22} +1.00000 q^{23} +1.00000 q^{25} +4.47336 q^{26} +6.18712 q^{28} -3.08635 q^{29} +4.34322 q^{31} +5.81648 q^{32} +0.953534 q^{34} +4.60617 q^{35} +8.81926 q^{37} -1.40438 q^{38} +2.70941 q^{40} -7.27347 q^{41} +8.52038 q^{43} -7.19129 q^{44} +0.810417 q^{46} +9.69252 q^{47} +14.2168 q^{49} +0.810417 q^{50} -7.41436 q^{52} +10.2018 q^{53} -5.35375 q^{55} +12.4800 q^{56} -2.50123 q^{58} -11.7468 q^{59} +1.33270 q^{61} +3.51982 q^{62} +3.73237 q^{64} -5.51982 q^{65} -6.01391 q^{67} -1.58043 q^{68} +3.73292 q^{70} -11.3991 q^{71} -1.51982 q^{73} +7.14728 q^{74} +2.32770 q^{76} -24.6603 q^{77} +1.26764 q^{79} -0.490703 q^{80} -5.89454 q^{82} +1.15555 q^{83} -1.17660 q^{85} +6.90506 q^{86} -14.5055 q^{88} -5.40223 q^{89} -25.4252 q^{91} -1.34322 q^{92} +7.85498 q^{94} +1.73292 q^{95} +16.4440 q^{97} +11.5215 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 10 q^{4} - 6 q^{5} + 6 q^{7} + 4 q^{11} + 12 q^{13} - 4 q^{14} + 14 q^{16} + 4 q^{17} + 8 q^{19} - 10 q^{20} + 8 q^{22} + 6 q^{23} + 6 q^{25} - 12 q^{26} + 24 q^{28} - 6 q^{29} + 8 q^{31} + 20 q^{32}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.810417 0.573051 0.286526 0.958073i \(-0.407500\pi\)
0.286526 + 0.958073i \(0.407500\pi\)
\(3\) 0 0
\(4\) −1.34322 −0.671612
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −4.60617 −1.74097 −0.870484 0.492196i \(-0.836194\pi\)
−0.870484 + 0.492196i \(0.836194\pi\)
\(8\) −2.70941 −0.957919
\(9\) 0 0
\(10\) −0.810417 −0.256276
\(11\) 5.35375 1.61422 0.807108 0.590404i \(-0.201031\pi\)
0.807108 + 0.590404i \(0.201031\pi\)
\(12\) 0 0
\(13\) 5.51982 1.53092 0.765462 0.643482i \(-0.222511\pi\)
0.765462 + 0.643482i \(0.222511\pi\)
\(14\) −3.73292 −0.997664
\(15\) 0 0
\(16\) 0.490703 0.122676
\(17\) 1.17660 0.285367 0.142683 0.989768i \(-0.454427\pi\)
0.142683 + 0.989768i \(0.454427\pi\)
\(18\) 0 0
\(19\) −1.73292 −0.397558 −0.198779 0.980044i \(-0.563698\pi\)
−0.198779 + 0.980044i \(0.563698\pi\)
\(20\) 1.34322 0.300354
\(21\) 0 0
\(22\) 4.33877 0.925028
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 4.47336 0.877297
\(27\) 0 0
\(28\) 6.18712 1.16926
\(29\) −3.08635 −0.573120 −0.286560 0.958062i \(-0.592512\pi\)
−0.286560 + 0.958062i \(0.592512\pi\)
\(30\) 0 0
\(31\) 4.34322 0.780066 0.390033 0.920801i \(-0.372464\pi\)
0.390033 + 0.920801i \(0.372464\pi\)
\(32\) 5.81648 1.02822
\(33\) 0 0
\(34\) 0.953534 0.163530
\(35\) 4.60617 0.778585
\(36\) 0 0
\(37\) 8.81926 1.44988 0.724939 0.688813i \(-0.241868\pi\)
0.724939 + 0.688813i \(0.241868\pi\)
\(38\) −1.40438 −0.227821
\(39\) 0 0
\(40\) 2.70941 0.428395
\(41\) −7.27347 −1.13593 −0.567963 0.823054i \(-0.692268\pi\)
−0.567963 + 0.823054i \(0.692268\pi\)
\(42\) 0 0
\(43\) 8.52038 1.29935 0.649673 0.760214i \(-0.274906\pi\)
0.649673 + 0.760214i \(0.274906\pi\)
\(44\) −7.19129 −1.08413
\(45\) 0 0
\(46\) 0.810417 0.119489
\(47\) 9.69252 1.41380 0.706899 0.707314i \(-0.250093\pi\)
0.706899 + 0.707314i \(0.250093\pi\)
\(48\) 0 0
\(49\) 14.2168 2.03097
\(50\) 0.810417 0.114610
\(51\) 0 0
\(52\) −7.41436 −1.02819
\(53\) 10.2018 1.40133 0.700663 0.713492i \(-0.252887\pi\)
0.700663 + 0.713492i \(0.252887\pi\)
\(54\) 0 0
\(55\) −5.35375 −0.721899
\(56\) 12.4800 1.66771
\(57\) 0 0
\(58\) −2.50123 −0.328427
\(59\) −11.7468 −1.52931 −0.764653 0.644442i \(-0.777090\pi\)
−0.764653 + 0.644442i \(0.777090\pi\)
\(60\) 0 0
\(61\) 1.33270 0.170635 0.0853174 0.996354i \(-0.472810\pi\)
0.0853174 + 0.996354i \(0.472810\pi\)
\(62\) 3.51982 0.447018
\(63\) 0 0
\(64\) 3.73237 0.466546
\(65\) −5.51982 −0.684650
\(66\) 0 0
\(67\) −6.01391 −0.734716 −0.367358 0.930080i \(-0.619738\pi\)
−0.367358 + 0.930080i \(0.619738\pi\)
\(68\) −1.58043 −0.191656
\(69\) 0 0
\(70\) 3.73292 0.446169
\(71\) −11.3991 −1.35283 −0.676415 0.736521i \(-0.736467\pi\)
−0.676415 + 0.736521i \(0.736467\pi\)
\(72\) 0 0
\(73\) −1.51982 −0.177882 −0.0889408 0.996037i \(-0.528348\pi\)
−0.0889408 + 0.996037i \(0.528348\pi\)
\(74\) 7.14728 0.830854
\(75\) 0 0
\(76\) 2.32770 0.267005
\(77\) −24.6603 −2.81030
\(78\) 0 0
\(79\) 1.26764 0.142621 0.0713103 0.997454i \(-0.477282\pi\)
0.0713103 + 0.997454i \(0.477282\pi\)
\(80\) −0.490703 −0.0548623
\(81\) 0 0
\(82\) −5.89454 −0.650943
\(83\) 1.15555 0.126838 0.0634189 0.997987i \(-0.479800\pi\)
0.0634189 + 0.997987i \(0.479800\pi\)
\(84\) 0 0
\(85\) −1.17660 −0.127620
\(86\) 6.90506 0.744591
\(87\) 0 0
\(88\) −14.5055 −1.54629
\(89\) −5.40223 −0.572635 −0.286317 0.958135i \(-0.592431\pi\)
−0.286317 + 0.958135i \(0.592431\pi\)
\(90\) 0 0
\(91\) −25.4252 −2.66529
\(92\) −1.34322 −0.140041
\(93\) 0 0
\(94\) 7.85498 0.810179
\(95\) 1.73292 0.177793
\(96\) 0 0
\(97\) 16.4440 1.66964 0.834819 0.550524i \(-0.185572\pi\)
0.834819 + 0.550524i \(0.185572\pi\)
\(98\) 11.5215 1.16385
\(99\) 0 0
\(100\) −1.34322 −0.134322
\(101\) −3.43403 −0.341699 −0.170849 0.985297i \(-0.554651\pi\)
−0.170849 + 0.985297i \(0.554651\pi\)
\(102\) 0 0
\(103\) 9.42879 0.929046 0.464523 0.885561i \(-0.346226\pi\)
0.464523 + 0.885561i \(0.346226\pi\)
\(104\) −14.9554 −1.46650
\(105\) 0 0
\(106\) 8.26772 0.803032
\(107\) −14.9093 −1.44134 −0.720669 0.693279i \(-0.756165\pi\)
−0.720669 + 0.693279i \(0.756165\pi\)
\(108\) 0 0
\(109\) 8.26216 0.791371 0.395686 0.918386i \(-0.370507\pi\)
0.395686 + 0.918386i \(0.370507\pi\)
\(110\) −4.33877 −0.413685
\(111\) 0 0
\(112\) −2.26026 −0.213575
\(113\) 10.6280 0.999798 0.499899 0.866084i \(-0.333370\pi\)
0.499899 + 0.866084i \(0.333370\pi\)
\(114\) 0 0
\(115\) −1.00000 −0.0932505
\(116\) 4.14566 0.384915
\(117\) 0 0
\(118\) −9.51982 −0.876371
\(119\) −5.41960 −0.496814
\(120\) 0 0
\(121\) 17.6626 1.60569
\(122\) 1.08004 0.0977825
\(123\) 0 0
\(124\) −5.83393 −0.523902
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −2.23560 −0.198377 −0.0991887 0.995069i \(-0.531625\pi\)
−0.0991887 + 0.995069i \(0.531625\pi\)
\(128\) −8.60819 −0.760864
\(129\) 0 0
\(130\) −4.47336 −0.392339
\(131\) 10.6831 0.933386 0.466693 0.884419i \(-0.345445\pi\)
0.466693 + 0.884419i \(0.345445\pi\)
\(132\) 0 0
\(133\) 7.98211 0.692136
\(134\) −4.87377 −0.421030
\(135\) 0 0
\(136\) −3.18788 −0.273358
\(137\) 0.326633 0.0279061 0.0139531 0.999903i \(-0.495558\pi\)
0.0139531 + 0.999903i \(0.495558\pi\)
\(138\) 0 0
\(139\) 9.54894 0.809931 0.404965 0.914332i \(-0.367284\pi\)
0.404965 + 0.914332i \(0.367284\pi\)
\(140\) −6.18712 −0.522907
\(141\) 0 0
\(142\) −9.23805 −0.775240
\(143\) 29.5517 2.47124
\(144\) 0 0
\(145\) 3.08635 0.256307
\(146\) −1.23169 −0.101935
\(147\) 0 0
\(148\) −11.8463 −0.973756
\(149\) 22.5368 1.84628 0.923142 0.384460i \(-0.125612\pi\)
0.923142 + 0.384460i \(0.125612\pi\)
\(150\) 0 0
\(151\) 16.3305 1.32896 0.664478 0.747308i \(-0.268654\pi\)
0.664478 + 0.747308i \(0.268654\pi\)
\(152\) 4.69517 0.380829
\(153\) 0 0
\(154\) −19.9851 −1.61045
\(155\) −4.34322 −0.348856
\(156\) 0 0
\(157\) −13.2666 −1.05879 −0.529397 0.848374i \(-0.677582\pi\)
−0.529397 + 0.848374i \(0.677582\pi\)
\(158\) 1.02732 0.0817289
\(159\) 0 0
\(160\) −5.81648 −0.459833
\(161\) −4.60617 −0.363017
\(162\) 0 0
\(163\) −15.7261 −1.23176 −0.615881 0.787839i \(-0.711200\pi\)
−0.615881 + 0.787839i \(0.711200\pi\)
\(164\) 9.76990 0.762901
\(165\) 0 0
\(166\) 0.936475 0.0726846
\(167\) 1.59282 0.123256 0.0616279 0.998099i \(-0.480371\pi\)
0.0616279 + 0.998099i \(0.480371\pi\)
\(168\) 0 0
\(169\) 17.4684 1.34373
\(170\) −0.953534 −0.0731327
\(171\) 0 0
\(172\) −11.4448 −0.872657
\(173\) −6.90506 −0.524982 −0.262491 0.964934i \(-0.584544\pi\)
−0.262491 + 0.964934i \(0.584544\pi\)
\(174\) 0 0
\(175\) −4.60617 −0.348194
\(176\) 2.62710 0.198025
\(177\) 0 0
\(178\) −4.37805 −0.328149
\(179\) −25.1515 −1.87991 −0.939957 0.341294i \(-0.889135\pi\)
−0.939957 + 0.341294i \(0.889135\pi\)
\(180\) 0 0
\(181\) −12.9678 −0.963886 −0.481943 0.876203i \(-0.660069\pi\)
−0.481943 + 0.876203i \(0.660069\pi\)
\(182\) −20.6050 −1.52735
\(183\) 0 0
\(184\) −2.70941 −0.199740
\(185\) −8.81926 −0.648405
\(186\) 0 0
\(187\) 6.29920 0.460643
\(188\) −13.0192 −0.949525
\(189\) 0 0
\(190\) 1.40438 0.101885
\(191\) 3.90897 0.282843 0.141421 0.989949i \(-0.454833\pi\)
0.141421 + 0.989949i \(0.454833\pi\)
\(192\) 0 0
\(193\) −2.68645 −0.193375 −0.0966874 0.995315i \(-0.530825\pi\)
−0.0966874 + 0.995315i \(0.530825\pi\)
\(194\) 13.3265 0.956788
\(195\) 0 0
\(196\) −19.0964 −1.36403
\(197\) 9.78139 0.696895 0.348448 0.937328i \(-0.386709\pi\)
0.348448 + 0.937328i \(0.386709\pi\)
\(198\) 0 0
\(199\) −19.0867 −1.35302 −0.676509 0.736434i \(-0.736508\pi\)
−0.676509 + 0.736434i \(0.736508\pi\)
\(200\) −2.70941 −0.191584
\(201\) 0 0
\(202\) −2.78299 −0.195811
\(203\) 14.2162 0.997784
\(204\) 0 0
\(205\) 7.27347 0.508001
\(206\) 7.64125 0.532391
\(207\) 0 0
\(208\) 2.70859 0.187807
\(209\) −9.27760 −0.641745
\(210\) 0 0
\(211\) −8.09524 −0.557299 −0.278650 0.960393i \(-0.589887\pi\)
−0.278650 + 0.960393i \(0.589887\pi\)
\(212\) −13.7033 −0.941149
\(213\) 0 0
\(214\) −12.0828 −0.825960
\(215\) −8.52038 −0.581085
\(216\) 0 0
\(217\) −20.0056 −1.35807
\(218\) 6.69579 0.453496
\(219\) 0 0
\(220\) 7.19129 0.484837
\(221\) 6.49460 0.436874
\(222\) 0 0
\(223\) 14.2094 0.951534 0.475767 0.879571i \(-0.342171\pi\)
0.475767 + 0.879571i \(0.342171\pi\)
\(224\) −26.7917 −1.79010
\(225\) 0 0
\(226\) 8.61311 0.572936
\(227\) 16.6256 1.10348 0.551740 0.834016i \(-0.313964\pi\)
0.551740 + 0.834016i \(0.313964\pi\)
\(228\) 0 0
\(229\) 15.3640 1.01528 0.507640 0.861569i \(-0.330518\pi\)
0.507640 + 0.861569i \(0.330518\pi\)
\(230\) −0.810417 −0.0534373
\(231\) 0 0
\(232\) 8.36217 0.549003
\(233\) 15.0878 0.988433 0.494217 0.869339i \(-0.335455\pi\)
0.494217 + 0.869339i \(0.335455\pi\)
\(234\) 0 0
\(235\) −9.69252 −0.632270
\(236\) 15.7786 1.02710
\(237\) 0 0
\(238\) −4.39214 −0.284700
\(239\) 1.42847 0.0924000 0.0462000 0.998932i \(-0.485289\pi\)
0.0462000 + 0.998932i \(0.485289\pi\)
\(240\) 0 0
\(241\) 10.5954 0.682511 0.341255 0.939971i \(-0.389148\pi\)
0.341255 + 0.939971i \(0.389148\pi\)
\(242\) 14.3141 0.920145
\(243\) 0 0
\(244\) −1.79012 −0.114600
\(245\) −14.2168 −0.908278
\(246\) 0 0
\(247\) −9.56539 −0.608631
\(248\) −11.7676 −0.747241
\(249\) 0 0
\(250\) −0.810417 −0.0512552
\(251\) −15.3939 −0.971657 −0.485829 0.874054i \(-0.661482\pi\)
−0.485829 + 0.874054i \(0.661482\pi\)
\(252\) 0 0
\(253\) 5.35375 0.336587
\(254\) −1.81177 −0.113680
\(255\) 0 0
\(256\) −14.4410 −0.902560
\(257\) 7.92004 0.494038 0.247019 0.969011i \(-0.420549\pi\)
0.247019 + 0.969011i \(0.420549\pi\)
\(258\) 0 0
\(259\) −40.6230 −2.52419
\(260\) 7.41436 0.459819
\(261\) 0 0
\(262\) 8.65776 0.534878
\(263\) 17.7857 1.09671 0.548355 0.836246i \(-0.315254\pi\)
0.548355 + 0.836246i \(0.315254\pi\)
\(264\) 0 0
\(265\) −10.2018 −0.626692
\(266\) 6.46883 0.396629
\(267\) 0 0
\(268\) 8.07803 0.493444
\(269\) 0.155319 0.00946996 0.00473498 0.999989i \(-0.498493\pi\)
0.00473498 + 0.999989i \(0.498493\pi\)
\(270\) 0 0
\(271\) 26.1967 1.59134 0.795668 0.605733i \(-0.207120\pi\)
0.795668 + 0.605733i \(0.207120\pi\)
\(272\) 0.577359 0.0350076
\(273\) 0 0
\(274\) 0.264709 0.0159916
\(275\) 5.35375 0.322843
\(276\) 0 0
\(277\) −17.6542 −1.06074 −0.530369 0.847767i \(-0.677947\pi\)
−0.530369 + 0.847767i \(0.677947\pi\)
\(278\) 7.73862 0.464132
\(279\) 0 0
\(280\) −12.4800 −0.745821
\(281\) 18.7534 1.11873 0.559366 0.828921i \(-0.311045\pi\)
0.559366 + 0.828921i \(0.311045\pi\)
\(282\) 0 0
\(283\) 16.3826 0.973847 0.486923 0.873445i \(-0.338119\pi\)
0.486923 + 0.873445i \(0.338119\pi\)
\(284\) 15.3116 0.908577
\(285\) 0 0
\(286\) 23.9492 1.41615
\(287\) 33.5028 1.97761
\(288\) 0 0
\(289\) −15.6156 −0.918566
\(290\) 2.50123 0.146877
\(291\) 0 0
\(292\) 2.04146 0.119468
\(293\) −16.5506 −0.966897 −0.483448 0.875373i \(-0.660616\pi\)
−0.483448 + 0.875373i \(0.660616\pi\)
\(294\) 0 0
\(295\) 11.7468 0.683927
\(296\) −23.8950 −1.38887
\(297\) 0 0
\(298\) 18.2642 1.05801
\(299\) 5.51982 0.319220
\(300\) 0 0
\(301\) −39.2463 −2.26212
\(302\) 13.2345 0.761560
\(303\) 0 0
\(304\) −0.850347 −0.0487707
\(305\) −1.33270 −0.0763102
\(306\) 0 0
\(307\) 17.3084 0.987844 0.493922 0.869506i \(-0.335563\pi\)
0.493922 + 0.869506i \(0.335563\pi\)
\(308\) 33.1243 1.88743
\(309\) 0 0
\(310\) −3.51982 −0.199912
\(311\) −16.8210 −0.953834 −0.476917 0.878948i \(-0.658246\pi\)
−0.476917 + 0.878948i \(0.658246\pi\)
\(312\) 0 0
\(313\) −8.44566 −0.477377 −0.238688 0.971096i \(-0.576717\pi\)
−0.238688 + 0.971096i \(0.576717\pi\)
\(314\) −10.7515 −0.606743
\(315\) 0 0
\(316\) −1.70273 −0.0957858
\(317\) 32.7283 1.83821 0.919104 0.394016i \(-0.128915\pi\)
0.919104 + 0.394016i \(0.128915\pi\)
\(318\) 0 0
\(319\) −16.5235 −0.925140
\(320\) −3.73237 −0.208646
\(321\) 0 0
\(322\) −3.73292 −0.208027
\(323\) −2.03894 −0.113450
\(324\) 0 0
\(325\) 5.51982 0.306185
\(326\) −12.7447 −0.705863
\(327\) 0 0
\(328\) 19.7068 1.08812
\(329\) −44.6454 −2.46138
\(330\) 0 0
\(331\) −15.2008 −0.835512 −0.417756 0.908559i \(-0.637183\pi\)
−0.417756 + 0.908559i \(0.637183\pi\)
\(332\) −1.55216 −0.0851859
\(333\) 0 0
\(334\) 1.29085 0.0706319
\(335\) 6.01391 0.328575
\(336\) 0 0
\(337\) 11.9751 0.652327 0.326164 0.945313i \(-0.394244\pi\)
0.326164 + 0.945313i \(0.394244\pi\)
\(338\) 14.1567 0.770023
\(339\) 0 0
\(340\) 1.58043 0.0857111
\(341\) 23.2525 1.25920
\(342\) 0 0
\(343\) −33.2418 −1.79489
\(344\) −23.0852 −1.24467
\(345\) 0 0
\(346\) −5.59597 −0.300841
\(347\) −15.6679 −0.841095 −0.420547 0.907271i \(-0.638162\pi\)
−0.420547 + 0.907271i \(0.638162\pi\)
\(348\) 0 0
\(349\) 24.0603 1.28792 0.643958 0.765061i \(-0.277291\pi\)
0.643958 + 0.765061i \(0.277291\pi\)
\(350\) −3.73292 −0.199533
\(351\) 0 0
\(352\) 31.1400 1.65977
\(353\) −22.5772 −1.20166 −0.600830 0.799376i \(-0.705163\pi\)
−0.600830 + 0.799376i \(0.705163\pi\)
\(354\) 0 0
\(355\) 11.3991 0.605004
\(356\) 7.25641 0.384589
\(357\) 0 0
\(358\) −20.3832 −1.07729
\(359\) −24.3132 −1.28320 −0.641602 0.767038i \(-0.721730\pi\)
−0.641602 + 0.767038i \(0.721730\pi\)
\(360\) 0 0
\(361\) −15.9970 −0.841947
\(362\) −10.5093 −0.552356
\(363\) 0 0
\(364\) 34.1518 1.79004
\(365\) 1.51982 0.0795511
\(366\) 0 0
\(367\) 16.0482 0.837708 0.418854 0.908053i \(-0.362432\pi\)
0.418854 + 0.908053i \(0.362432\pi\)
\(368\) 0.490703 0.0255797
\(369\) 0 0
\(370\) −7.14728 −0.371569
\(371\) −46.9913 −2.43967
\(372\) 0 0
\(373\) 14.8470 0.768747 0.384373 0.923178i \(-0.374418\pi\)
0.384373 + 0.923178i \(0.374418\pi\)
\(374\) 5.10498 0.263972
\(375\) 0 0
\(376\) −26.2610 −1.35431
\(377\) −17.0361 −0.877403
\(378\) 0 0
\(379\) 21.8303 1.12135 0.560673 0.828038i \(-0.310543\pi\)
0.560673 + 0.828038i \(0.310543\pi\)
\(380\) −2.32770 −0.119408
\(381\) 0 0
\(382\) 3.16789 0.162083
\(383\) −11.4590 −0.585528 −0.292764 0.956185i \(-0.594575\pi\)
−0.292764 + 0.956185i \(0.594575\pi\)
\(384\) 0 0
\(385\) 24.6603 1.25680
\(386\) −2.17714 −0.110814
\(387\) 0 0
\(388\) −22.0880 −1.12135
\(389\) 30.7060 1.55686 0.778428 0.627734i \(-0.216018\pi\)
0.778428 + 0.627734i \(0.216018\pi\)
\(390\) 0 0
\(391\) 1.17660 0.0595031
\(392\) −38.5191 −1.94551
\(393\) 0 0
\(394\) 7.92700 0.399357
\(395\) −1.26764 −0.0637819
\(396\) 0 0
\(397\) −36.3445 −1.82408 −0.912039 0.410102i \(-0.865493\pi\)
−0.912039 + 0.410102i \(0.865493\pi\)
\(398\) −15.4682 −0.775348
\(399\) 0 0
\(400\) 0.490703 0.0245351
\(401\) −7.23228 −0.361163 −0.180581 0.983560i \(-0.557798\pi\)
−0.180581 + 0.983560i \(0.557798\pi\)
\(402\) 0 0
\(403\) 23.9738 1.19422
\(404\) 4.61267 0.229489
\(405\) 0 0
\(406\) 11.5211 0.571781
\(407\) 47.2161 2.34042
\(408\) 0 0
\(409\) −13.2289 −0.654129 −0.327064 0.945002i \(-0.606059\pi\)
−0.327064 + 0.945002i \(0.606059\pi\)
\(410\) 5.89454 0.291111
\(411\) 0 0
\(412\) −12.6650 −0.623959
\(413\) 54.1079 2.66247
\(414\) 0 0
\(415\) −1.15555 −0.0567236
\(416\) 32.1060 1.57412
\(417\) 0 0
\(418\) −7.51872 −0.367753
\(419\) −18.3115 −0.894574 −0.447287 0.894390i \(-0.647610\pi\)
−0.447287 + 0.894390i \(0.647610\pi\)
\(420\) 0 0
\(421\) 14.1996 0.692049 0.346024 0.938226i \(-0.387531\pi\)
0.346024 + 0.938226i \(0.387531\pi\)
\(422\) −6.56052 −0.319361
\(423\) 0 0
\(424\) −27.6408 −1.34236
\(425\) 1.17660 0.0570733
\(426\) 0 0
\(427\) −6.13864 −0.297070
\(428\) 20.0266 0.968020
\(429\) 0 0
\(430\) −6.90506 −0.332991
\(431\) −35.0475 −1.68818 −0.844090 0.536202i \(-0.819859\pi\)
−0.844090 + 0.536202i \(0.819859\pi\)
\(432\) 0 0
\(433\) 3.14590 0.151182 0.0755911 0.997139i \(-0.475916\pi\)
0.0755911 + 0.997139i \(0.475916\pi\)
\(434\) −16.2129 −0.778244
\(435\) 0 0
\(436\) −11.0979 −0.531495
\(437\) −1.73292 −0.0828966
\(438\) 0 0
\(439\) 1.95513 0.0933135 0.0466567 0.998911i \(-0.485143\pi\)
0.0466567 + 0.998911i \(0.485143\pi\)
\(440\) 14.5055 0.691521
\(441\) 0 0
\(442\) 5.26334 0.250351
\(443\) −27.4890 −1.30604 −0.653020 0.757340i \(-0.726498\pi\)
−0.653020 + 0.757340i \(0.726498\pi\)
\(444\) 0 0
\(445\) 5.40223 0.256090
\(446\) 11.5156 0.545277
\(447\) 0 0
\(448\) −17.1919 −0.812242
\(449\) 2.83238 0.133668 0.0668341 0.997764i \(-0.478710\pi\)
0.0668341 + 0.997764i \(0.478710\pi\)
\(450\) 0 0
\(451\) −38.9403 −1.83363
\(452\) −14.2758 −0.671477
\(453\) 0 0
\(454\) 13.4737 0.632350
\(455\) 25.4252 1.19195
\(456\) 0 0
\(457\) −2.97045 −0.138952 −0.0694760 0.997584i \(-0.522133\pi\)
−0.0694760 + 0.997584i \(0.522133\pi\)
\(458\) 12.4512 0.581808
\(459\) 0 0
\(460\) 1.34322 0.0626282
\(461\) 16.1855 0.753832 0.376916 0.926247i \(-0.376984\pi\)
0.376916 + 0.926247i \(0.376984\pi\)
\(462\) 0 0
\(463\) −2.40718 −0.111871 −0.0559356 0.998434i \(-0.517814\pi\)
−0.0559356 + 0.998434i \(0.517814\pi\)
\(464\) −1.51448 −0.0703080
\(465\) 0 0
\(466\) 12.2274 0.566423
\(467\) 10.0639 0.465700 0.232850 0.972513i \(-0.425195\pi\)
0.232850 + 0.972513i \(0.425195\pi\)
\(468\) 0 0
\(469\) 27.7011 1.27912
\(470\) −7.85498 −0.362323
\(471\) 0 0
\(472\) 31.8269 1.46495
\(473\) 45.6160 2.09742
\(474\) 0 0
\(475\) −1.73292 −0.0795116
\(476\) 7.27975 0.333667
\(477\) 0 0
\(478\) 1.15766 0.0529499
\(479\) −26.0812 −1.19168 −0.595841 0.803102i \(-0.703181\pi\)
−0.595841 + 0.803102i \(0.703181\pi\)
\(480\) 0 0
\(481\) 48.6808 2.21965
\(482\) 8.58670 0.391114
\(483\) 0 0
\(484\) −23.7249 −1.07840
\(485\) −16.4440 −0.746685
\(486\) 0 0
\(487\) 23.7436 1.07592 0.537962 0.842969i \(-0.319194\pi\)
0.537962 + 0.842969i \(0.319194\pi\)
\(488\) −3.61082 −0.163454
\(489\) 0 0
\(490\) −11.5215 −0.520490
\(491\) −2.79506 −0.126139 −0.0630696 0.998009i \(-0.520089\pi\)
−0.0630696 + 0.998009i \(0.520089\pi\)
\(492\) 0 0
\(493\) −3.63139 −0.163549
\(494\) −7.75195 −0.348777
\(495\) 0 0
\(496\) 2.13123 0.0956952
\(497\) 52.5064 2.35523
\(498\) 0 0
\(499\) −8.35214 −0.373893 −0.186947 0.982370i \(-0.559859\pi\)
−0.186947 + 0.982370i \(0.559859\pi\)
\(500\) 1.34322 0.0600708
\(501\) 0 0
\(502\) −12.4755 −0.556809
\(503\) −19.8111 −0.883333 −0.441667 0.897179i \(-0.645613\pi\)
−0.441667 + 0.897179i \(0.645613\pi\)
\(504\) 0 0
\(505\) 3.43403 0.152812
\(506\) 4.33877 0.192882
\(507\) 0 0
\(508\) 3.00291 0.133233
\(509\) −29.1471 −1.29192 −0.645961 0.763371i \(-0.723543\pi\)
−0.645961 + 0.763371i \(0.723543\pi\)
\(510\) 0 0
\(511\) 7.00056 0.309686
\(512\) 5.51319 0.243651
\(513\) 0 0
\(514\) 6.41853 0.283109
\(515\) −9.42879 −0.415482
\(516\) 0 0
\(517\) 51.8913 2.28218
\(518\) −32.9216 −1.44649
\(519\) 0 0
\(520\) 14.9554 0.655839
\(521\) −3.73563 −0.163661 −0.0818306 0.996646i \(-0.526077\pi\)
−0.0818306 + 0.996646i \(0.526077\pi\)
\(522\) 0 0
\(523\) −28.4551 −1.24425 −0.622127 0.782916i \(-0.713731\pi\)
−0.622127 + 0.782916i \(0.713731\pi\)
\(524\) −14.3498 −0.626874
\(525\) 0 0
\(526\) 14.4138 0.628471
\(527\) 5.11022 0.222605
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) −8.26772 −0.359127
\(531\) 0 0
\(532\) −10.7218 −0.464847
\(533\) −40.1483 −1.73901
\(534\) 0 0
\(535\) 14.9093 0.644586
\(536\) 16.2941 0.703798
\(537\) 0 0
\(538\) 0.125873 0.00542677
\(539\) 76.1132 3.27843
\(540\) 0 0
\(541\) 37.3591 1.60619 0.803097 0.595849i \(-0.203184\pi\)
0.803097 + 0.595849i \(0.203184\pi\)
\(542\) 21.2302 0.911917
\(543\) 0 0
\(544\) 6.84366 0.293419
\(545\) −8.26216 −0.353912
\(546\) 0 0
\(547\) −38.4683 −1.64479 −0.822394 0.568919i \(-0.807362\pi\)
−0.822394 + 0.568919i \(0.807362\pi\)
\(548\) −0.438742 −0.0187421
\(549\) 0 0
\(550\) 4.33877 0.185006
\(551\) 5.34838 0.227849
\(552\) 0 0
\(553\) −5.83896 −0.248298
\(554\) −14.3073 −0.607857
\(555\) 0 0
\(556\) −12.8264 −0.543959
\(557\) −29.8981 −1.26682 −0.633412 0.773815i \(-0.718346\pi\)
−0.633412 + 0.773815i \(0.718346\pi\)
\(558\) 0 0
\(559\) 47.0310 1.98920
\(560\) 2.26026 0.0955134
\(561\) 0 0
\(562\) 15.1980 0.641090
\(563\) −36.7777 −1.54999 −0.774997 0.631965i \(-0.782249\pi\)
−0.774997 + 0.631965i \(0.782249\pi\)
\(564\) 0 0
\(565\) −10.6280 −0.447123
\(566\) 13.2768 0.558064
\(567\) 0 0
\(568\) 30.8849 1.29590
\(569\) −19.0192 −0.797328 −0.398664 0.917097i \(-0.630526\pi\)
−0.398664 + 0.917097i \(0.630526\pi\)
\(570\) 0 0
\(571\) 41.8743 1.75238 0.876192 0.481962i \(-0.160076\pi\)
0.876192 + 0.481962i \(0.160076\pi\)
\(572\) −39.6946 −1.65972
\(573\) 0 0
\(574\) 27.1513 1.13327
\(575\) 1.00000 0.0417029
\(576\) 0 0
\(577\) 30.6755 1.27704 0.638520 0.769605i \(-0.279547\pi\)
0.638520 + 0.769605i \(0.279547\pi\)
\(578\) −12.6552 −0.526385
\(579\) 0 0
\(580\) −4.14566 −0.172139
\(581\) −5.32265 −0.220821
\(582\) 0 0
\(583\) 54.6180 2.26204
\(584\) 4.11781 0.170396
\(585\) 0 0
\(586\) −13.4129 −0.554081
\(587\) −1.52558 −0.0629675 −0.0314837 0.999504i \(-0.510023\pi\)
−0.0314837 + 0.999504i \(0.510023\pi\)
\(588\) 0 0
\(589\) −7.52644 −0.310122
\(590\) 9.51982 0.391925
\(591\) 0 0
\(592\) 4.32764 0.177865
\(593\) −5.12072 −0.210283 −0.105141 0.994457i \(-0.533529\pi\)
−0.105141 + 0.994457i \(0.533529\pi\)
\(594\) 0 0
\(595\) 5.41960 0.222182
\(596\) −30.2719 −1.23999
\(597\) 0 0
\(598\) 4.47336 0.182929
\(599\) 18.5010 0.755931 0.377966 0.925820i \(-0.376624\pi\)
0.377966 + 0.925820i \(0.376624\pi\)
\(600\) 0 0
\(601\) −30.5128 −1.24464 −0.622322 0.782761i \(-0.713811\pi\)
−0.622322 + 0.782761i \(0.713811\pi\)
\(602\) −31.8059 −1.29631
\(603\) 0 0
\(604\) −21.9355 −0.892544
\(605\) −17.6626 −0.718088
\(606\) 0 0
\(607\) −20.6414 −0.837808 −0.418904 0.908031i \(-0.637586\pi\)
−0.418904 + 0.908031i \(0.637586\pi\)
\(608\) −10.0795 −0.408777
\(609\) 0 0
\(610\) −1.08004 −0.0437296
\(611\) 53.5010 2.16442
\(612\) 0 0
\(613\) −11.4793 −0.463643 −0.231822 0.972758i \(-0.574469\pi\)
−0.231822 + 0.972758i \(0.574469\pi\)
\(614\) 14.0270 0.566085
\(615\) 0 0
\(616\) 66.8147 2.69204
\(617\) −19.8055 −0.797340 −0.398670 0.917095i \(-0.630528\pi\)
−0.398670 + 0.917095i \(0.630528\pi\)
\(618\) 0 0
\(619\) −24.4491 −0.982692 −0.491346 0.870965i \(-0.663495\pi\)
−0.491346 + 0.870965i \(0.663495\pi\)
\(620\) 5.83393 0.234296
\(621\) 0 0
\(622\) −13.6320 −0.546595
\(623\) 24.8836 0.996939
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −6.84450 −0.273561
\(627\) 0 0
\(628\) 17.8201 0.711099
\(629\) 10.3767 0.413747
\(630\) 0 0
\(631\) 46.5829 1.85444 0.927218 0.374522i \(-0.122193\pi\)
0.927218 + 0.374522i \(0.122193\pi\)
\(632\) −3.43455 −0.136619
\(633\) 0 0
\(634\) 26.5236 1.05339
\(635\) 2.23560 0.0887171
\(636\) 0 0
\(637\) 78.4742 3.10926
\(638\) −13.3909 −0.530153
\(639\) 0 0
\(640\) 8.60819 0.340269
\(641\) 18.8170 0.743226 0.371613 0.928388i \(-0.378805\pi\)
0.371613 + 0.928388i \(0.378805\pi\)
\(642\) 0 0
\(643\) −17.1868 −0.677783 −0.338891 0.940826i \(-0.610052\pi\)
−0.338891 + 0.940826i \(0.610052\pi\)
\(644\) 6.18712 0.243807
\(645\) 0 0
\(646\) −1.65239 −0.0650126
\(647\) −16.6153 −0.653214 −0.326607 0.945160i \(-0.605905\pi\)
−0.326607 + 0.945160i \(0.605905\pi\)
\(648\) 0 0
\(649\) −62.8896 −2.46863
\(650\) 4.47336 0.175459
\(651\) 0 0
\(652\) 21.1237 0.827267
\(653\) −8.71155 −0.340909 −0.170455 0.985366i \(-0.554524\pi\)
−0.170455 + 0.985366i \(0.554524\pi\)
\(654\) 0 0
\(655\) −10.6831 −0.417423
\(656\) −3.56911 −0.139350
\(657\) 0 0
\(658\) −36.1814 −1.41050
\(659\) 24.1116 0.939256 0.469628 0.882865i \(-0.344388\pi\)
0.469628 + 0.882865i \(0.344388\pi\)
\(660\) 0 0
\(661\) 39.6144 1.54082 0.770411 0.637548i \(-0.220051\pi\)
0.770411 + 0.637548i \(0.220051\pi\)
\(662\) −12.3190 −0.478791
\(663\) 0 0
\(664\) −3.13085 −0.121500
\(665\) −7.98211 −0.309533
\(666\) 0 0
\(667\) −3.08635 −0.119504
\(668\) −2.13951 −0.0827802
\(669\) 0 0
\(670\) 4.87377 0.188290
\(671\) 7.13494 0.275441
\(672\) 0 0
\(673\) 20.0269 0.771980 0.385990 0.922503i \(-0.373860\pi\)
0.385990 + 0.922503i \(0.373860\pi\)
\(674\) 9.70485 0.373817
\(675\) 0 0
\(676\) −23.4640 −0.902463
\(677\) −51.3624 −1.97402 −0.987010 0.160662i \(-0.948637\pi\)
−0.987010 + 0.160662i \(0.948637\pi\)
\(678\) 0 0
\(679\) −75.7440 −2.90679
\(680\) 3.18788 0.122250
\(681\) 0 0
\(682\) 18.8442 0.721583
\(683\) −1.78656 −0.0683609 −0.0341804 0.999416i \(-0.510882\pi\)
−0.0341804 + 0.999416i \(0.510882\pi\)
\(684\) 0 0
\(685\) −0.326633 −0.0124800
\(686\) −26.9397 −1.02856
\(687\) 0 0
\(688\) 4.18097 0.159398
\(689\) 56.3122 2.14532
\(690\) 0 0
\(691\) −51.7197 −1.96751 −0.983755 0.179515i \(-0.942547\pi\)
−0.983755 + 0.179515i \(0.942547\pi\)
\(692\) 9.27504 0.352584
\(693\) 0 0
\(694\) −12.6975 −0.481990
\(695\) −9.54894 −0.362212
\(696\) 0 0
\(697\) −8.55794 −0.324155
\(698\) 19.4988 0.738042
\(699\) 0 0
\(700\) 6.18712 0.233851
\(701\) 33.4929 1.26501 0.632504 0.774557i \(-0.282027\pi\)
0.632504 + 0.774557i \(0.282027\pi\)
\(702\) 0 0
\(703\) −15.2830 −0.576411
\(704\) 19.9822 0.753106
\(705\) 0 0
\(706\) −18.2969 −0.688613
\(707\) 15.8177 0.594887
\(708\) 0 0
\(709\) −15.8720 −0.596085 −0.298043 0.954553i \(-0.596334\pi\)
−0.298043 + 0.954553i \(0.596334\pi\)
\(710\) 9.23805 0.346698
\(711\) 0 0
\(712\) 14.6368 0.548538
\(713\) 4.34322 0.162655
\(714\) 0 0
\(715\) −29.5517 −1.10517
\(716\) 33.7842 1.26257
\(717\) 0 0
\(718\) −19.7038 −0.735341
\(719\) −15.3345 −0.571881 −0.285941 0.958247i \(-0.592306\pi\)
−0.285941 + 0.958247i \(0.592306\pi\)
\(720\) 0 0
\(721\) −43.4306 −1.61744
\(722\) −12.9642 −0.482479
\(723\) 0 0
\(724\) 17.4186 0.647358
\(725\) −3.08635 −0.114624
\(726\) 0 0
\(727\) 27.1804 1.00806 0.504032 0.863685i \(-0.331849\pi\)
0.504032 + 0.863685i \(0.331849\pi\)
\(728\) 68.8873 2.55313
\(729\) 0 0
\(730\) 1.23169 0.0455868
\(731\) 10.0250 0.370790
\(732\) 0 0
\(733\) −4.70308 −0.173712 −0.0868560 0.996221i \(-0.527682\pi\)
−0.0868560 + 0.996221i \(0.527682\pi\)
\(734\) 13.0057 0.480050
\(735\) 0 0
\(736\) 5.81648 0.214398
\(737\) −32.1970 −1.18599
\(738\) 0 0
\(739\) 1.19298 0.0438845 0.0219422 0.999759i \(-0.493015\pi\)
0.0219422 + 0.999759i \(0.493015\pi\)
\(740\) 11.8463 0.435477
\(741\) 0 0
\(742\) −38.0825 −1.39805
\(743\) 10.0273 0.367867 0.183934 0.982939i \(-0.441117\pi\)
0.183934 + 0.982939i \(0.441117\pi\)
\(744\) 0 0
\(745\) −22.5368 −0.825683
\(746\) 12.0322 0.440531
\(747\) 0 0
\(748\) −8.46125 −0.309374
\(749\) 68.6748 2.50932
\(750\) 0 0
\(751\) −19.2248 −0.701524 −0.350762 0.936465i \(-0.614077\pi\)
−0.350762 + 0.936465i \(0.614077\pi\)
\(752\) 4.75615 0.173439
\(753\) 0 0
\(754\) −13.8063 −0.502797
\(755\) −16.3305 −0.594327
\(756\) 0 0
\(757\) −29.0674 −1.05647 −0.528236 0.849098i \(-0.677146\pi\)
−0.528236 + 0.849098i \(0.677146\pi\)
\(758\) 17.6916 0.642588
\(759\) 0 0
\(760\) −4.69517 −0.170312
\(761\) −34.9604 −1.26731 −0.633657 0.773614i \(-0.718447\pi\)
−0.633657 + 0.773614i \(0.718447\pi\)
\(762\) 0 0
\(763\) −38.0569 −1.37775
\(764\) −5.25062 −0.189961
\(765\) 0 0
\(766\) −9.28658 −0.335538
\(767\) −64.8404 −2.34125
\(768\) 0 0
\(769\) 8.00084 0.288518 0.144259 0.989540i \(-0.453920\pi\)
0.144259 + 0.989540i \(0.453920\pi\)
\(770\) 19.9851 0.720213
\(771\) 0 0
\(772\) 3.60851 0.129873
\(773\) −25.3463 −0.911644 −0.455822 0.890071i \(-0.650655\pi\)
−0.455822 + 0.890071i \(0.650655\pi\)
\(774\) 0 0
\(775\) 4.34322 0.156013
\(776\) −44.5535 −1.59938
\(777\) 0 0
\(778\) 24.8846 0.892158
\(779\) 12.6043 0.451596
\(780\) 0 0
\(781\) −61.0282 −2.18376
\(782\) 0.953534 0.0340983
\(783\) 0 0
\(784\) 6.97622 0.249151
\(785\) 13.2666 0.473507
\(786\) 0 0
\(787\) −5.10486 −0.181969 −0.0909843 0.995852i \(-0.529001\pi\)
−0.0909843 + 0.995852i \(0.529001\pi\)
\(788\) −13.1386 −0.468044
\(789\) 0 0
\(790\) −1.02732 −0.0365503
\(791\) −48.9544 −1.74062
\(792\) 0 0
\(793\) 7.35627 0.261229
\(794\) −29.4542 −1.04529
\(795\) 0 0
\(796\) 25.6377 0.908704
\(797\) 44.0182 1.55921 0.779603 0.626274i \(-0.215421\pi\)
0.779603 + 0.626274i \(0.215421\pi\)
\(798\) 0 0
\(799\) 11.4042 0.403451
\(800\) 5.81648 0.205644
\(801\) 0 0
\(802\) −5.86116 −0.206965
\(803\) −8.13674 −0.287139
\(804\) 0 0
\(805\) 4.60617 0.162346
\(806\) 19.4288 0.684350
\(807\) 0 0
\(808\) 9.30418 0.327320
\(809\) 6.15978 0.216566 0.108283 0.994120i \(-0.465465\pi\)
0.108283 + 0.994120i \(0.465465\pi\)
\(810\) 0 0
\(811\) −2.23801 −0.0785873 −0.0392936 0.999228i \(-0.512511\pi\)
−0.0392936 + 0.999228i \(0.512511\pi\)
\(812\) −19.0956 −0.670124
\(813\) 0 0
\(814\) 38.2647 1.34118
\(815\) 15.7261 0.550861
\(816\) 0 0
\(817\) −14.7651 −0.516565
\(818\) −10.7209 −0.374849
\(819\) 0 0
\(820\) −9.76990 −0.341180
\(821\) −39.9914 −1.39571 −0.697855 0.716239i \(-0.745862\pi\)
−0.697855 + 0.716239i \(0.745862\pi\)
\(822\) 0 0
\(823\) 23.3116 0.812590 0.406295 0.913742i \(-0.366821\pi\)
0.406295 + 0.913742i \(0.366821\pi\)
\(824\) −25.5464 −0.889951
\(825\) 0 0
\(826\) 43.8499 1.52573
\(827\) 43.4988 1.51260 0.756301 0.654224i \(-0.227005\pi\)
0.756301 + 0.654224i \(0.227005\pi\)
\(828\) 0 0
\(829\) 33.1090 1.14992 0.574961 0.818181i \(-0.305017\pi\)
0.574961 + 0.818181i \(0.305017\pi\)
\(830\) −0.936475 −0.0325055
\(831\) 0 0
\(832\) 20.6020 0.714246
\(833\) 16.7274 0.579571
\(834\) 0 0
\(835\) −1.59282 −0.0551217
\(836\) 12.4619 0.431004
\(837\) 0 0
\(838\) −14.8399 −0.512637
\(839\) 52.5227 1.81329 0.906643 0.421899i \(-0.138636\pi\)
0.906643 + 0.421899i \(0.138636\pi\)
\(840\) 0 0
\(841\) −19.4745 −0.671533
\(842\) 11.5076 0.396579
\(843\) 0 0
\(844\) 10.8737 0.374289
\(845\) −17.4684 −0.600932
\(846\) 0 0
\(847\) −81.3571 −2.79546
\(848\) 5.00606 0.171909
\(849\) 0 0
\(850\) 0.953534 0.0327059
\(851\) 8.81926 0.302320
\(852\) 0 0
\(853\) 22.9673 0.786385 0.393192 0.919456i \(-0.371371\pi\)
0.393192 + 0.919456i \(0.371371\pi\)
\(854\) −4.97486 −0.170236
\(855\) 0 0
\(856\) 40.3954 1.38069
\(857\) 55.1228 1.88296 0.941480 0.337069i \(-0.109436\pi\)
0.941480 + 0.337069i \(0.109436\pi\)
\(858\) 0 0
\(859\) −49.9526 −1.70436 −0.852180 0.523249i \(-0.824720\pi\)
−0.852180 + 0.523249i \(0.824720\pi\)
\(860\) 11.4448 0.390264
\(861\) 0 0
\(862\) −28.4031 −0.967413
\(863\) −12.0802 −0.411214 −0.205607 0.978635i \(-0.565917\pi\)
−0.205607 + 0.978635i \(0.565917\pi\)
\(864\) 0 0
\(865\) 6.90506 0.234779
\(866\) 2.54949 0.0866351
\(867\) 0 0
\(868\) 26.8721 0.912097
\(869\) 6.78663 0.230221
\(870\) 0 0
\(871\) −33.1957 −1.12479
\(872\) −22.3855 −0.758070
\(873\) 0 0
\(874\) −1.40438 −0.0475040
\(875\) 4.60617 0.155717
\(876\) 0 0
\(877\) 45.5573 1.53836 0.769180 0.639033i \(-0.220665\pi\)
0.769180 + 0.639033i \(0.220665\pi\)
\(878\) 1.58447 0.0534734
\(879\) 0 0
\(880\) −2.62710 −0.0885595
\(881\) 6.57232 0.221427 0.110714 0.993852i \(-0.464686\pi\)
0.110714 + 0.993852i \(0.464686\pi\)
\(882\) 0 0
\(883\) 5.51200 0.185494 0.0927468 0.995690i \(-0.470435\pi\)
0.0927468 + 0.995690i \(0.470435\pi\)
\(884\) −8.72371 −0.293410
\(885\) 0 0
\(886\) −22.2775 −0.748428
\(887\) 31.2681 1.04988 0.524941 0.851139i \(-0.324087\pi\)
0.524941 + 0.851139i \(0.324087\pi\)
\(888\) 0 0
\(889\) 10.2975 0.345369
\(890\) 4.37805 0.146753
\(891\) 0 0
\(892\) −19.0865 −0.639062
\(893\) −16.7963 −0.562067
\(894\) 0 0
\(895\) 25.1515 0.840723
\(896\) 39.6508 1.32464
\(897\) 0 0
\(898\) 2.29541 0.0765987
\(899\) −13.4047 −0.447072
\(900\) 0 0
\(901\) 12.0034 0.399892
\(902\) −31.5579 −1.05076
\(903\) 0 0
\(904\) −28.7956 −0.957726
\(905\) 12.9678 0.431063
\(906\) 0 0
\(907\) −12.7989 −0.424982 −0.212491 0.977163i \(-0.568158\pi\)
−0.212491 + 0.977163i \(0.568158\pi\)
\(908\) −22.3319 −0.741110
\(909\) 0 0
\(910\) 20.6050 0.683050
\(911\) 31.6963 1.05015 0.525073 0.851057i \(-0.324038\pi\)
0.525073 + 0.851057i \(0.324038\pi\)
\(912\) 0 0
\(913\) 6.18651 0.204744
\(914\) −2.40730 −0.0796265
\(915\) 0 0
\(916\) −20.6373 −0.681875
\(917\) −49.2081 −1.62500
\(918\) 0 0
\(919\) 7.63249 0.251773 0.125886 0.992045i \(-0.459823\pi\)
0.125886 + 0.992045i \(0.459823\pi\)
\(920\) 2.70941 0.0893264
\(921\) 0 0
\(922\) 13.1170 0.431984
\(923\) −62.9212 −2.07108
\(924\) 0 0
\(925\) 8.81926 0.289976
\(926\) −1.95082 −0.0641080
\(927\) 0 0
\(928\) −17.9517 −0.589293
\(929\) −17.2979 −0.567525 −0.283763 0.958895i \(-0.591583\pi\)
−0.283763 + 0.958895i \(0.591583\pi\)
\(930\) 0 0
\(931\) −24.6365 −0.807429
\(932\) −20.2663 −0.663844
\(933\) 0 0
\(934\) 8.15593 0.266870
\(935\) −6.29920 −0.206006
\(936\) 0 0
\(937\) 12.5967 0.411517 0.205759 0.978603i \(-0.434034\pi\)
0.205759 + 0.978603i \(0.434034\pi\)
\(938\) 22.4494 0.732999
\(939\) 0 0
\(940\) 13.0192 0.424640
\(941\) 19.7213 0.642895 0.321448 0.946927i \(-0.395831\pi\)
0.321448 + 0.946927i \(0.395831\pi\)
\(942\) 0 0
\(943\) −7.27347 −0.236857
\(944\) −5.76420 −0.187609
\(945\) 0 0
\(946\) 36.9679 1.20193
\(947\) 24.8824 0.808569 0.404285 0.914633i \(-0.367521\pi\)
0.404285 + 0.914633i \(0.367521\pi\)
\(948\) 0 0
\(949\) −8.38914 −0.272323
\(950\) −1.40438 −0.0455642
\(951\) 0 0
\(952\) 14.6839 0.475908
\(953\) 24.9095 0.806899 0.403449 0.915002i \(-0.367811\pi\)
0.403449 + 0.915002i \(0.367811\pi\)
\(954\) 0 0
\(955\) −3.90897 −0.126491
\(956\) −1.91876 −0.0620570
\(957\) 0 0
\(958\) −21.1367 −0.682895
\(959\) −1.50453 −0.0485837
\(960\) 0 0
\(961\) −12.1364 −0.391497
\(962\) 39.4517 1.27197
\(963\) 0 0
\(964\) −14.2320 −0.458383
\(965\) 2.68645 0.0864799
\(966\) 0 0
\(967\) −29.4706 −0.947709 −0.473855 0.880603i \(-0.657138\pi\)
−0.473855 + 0.880603i \(0.657138\pi\)
\(968\) −47.8552 −1.53813
\(969\) 0 0
\(970\) −13.3265 −0.427889
\(971\) −36.7868 −1.18054 −0.590272 0.807204i \(-0.700980\pi\)
−0.590272 + 0.807204i \(0.700980\pi\)
\(972\) 0 0
\(973\) −43.9840 −1.41006
\(974\) 19.2422 0.616560
\(975\) 0 0
\(976\) 0.653960 0.0209327
\(977\) −14.6435 −0.468488 −0.234244 0.972178i \(-0.575262\pi\)
−0.234244 + 0.972178i \(0.575262\pi\)
\(978\) 0 0
\(979\) −28.9222 −0.924357
\(980\) 19.0964 0.610011
\(981\) 0 0
\(982\) −2.26516 −0.0722843
\(983\) −1.10622 −0.0352831 −0.0176415 0.999844i \(-0.505616\pi\)
−0.0176415 + 0.999844i \(0.505616\pi\)
\(984\) 0 0
\(985\) −9.78139 −0.311661
\(986\) −2.94294 −0.0937222
\(987\) 0 0
\(988\) 12.8485 0.408764
\(989\) 8.52038 0.270932
\(990\) 0 0
\(991\) −42.7058 −1.35659 −0.678297 0.734788i \(-0.737282\pi\)
−0.678297 + 0.734788i \(0.737282\pi\)
\(992\) 25.2623 0.802079
\(993\) 0 0
\(994\) 42.5520 1.34967
\(995\) 19.0867 0.605088
\(996\) 0 0
\(997\) 30.0771 0.952553 0.476276 0.879296i \(-0.341986\pi\)
0.476276 + 0.879296i \(0.341986\pi\)
\(998\) −6.76871 −0.214260
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1035.2.a.p.1.4 6
3.2 odd 2 1035.2.a.q.1.3 yes 6
5.4 even 2 5175.2.a.bz.1.3 6
15.14 odd 2 5175.2.a.by.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1035.2.a.p.1.4 6 1.1 even 1 trivial
1035.2.a.q.1.3 yes 6 3.2 odd 2
5175.2.a.by.1.4 6 15.14 odd 2
5175.2.a.bz.1.3 6 5.4 even 2