Properties

Label 1035.2.a.p
Level 10351035
Weight 22
Character orbit 1035.a
Self dual yes
Analytic conductor 8.2658.265
Analytic rank 00
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1035,2,Mod(1,1035)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1035, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1035.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1035=32523 1035 = 3^{2} \cdot 5 \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1035.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,10,-6,0,6,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 8.264516609208.26451660920
Analytic rank: 00
Dimension: 66
Coefficient field: 6.6.98838128.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x6x510x4x3+16x2+5x1 x^{6} - x^{5} - 10x^{4} - x^{3} + 16x^{2} + 5x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q2+(β4+2)q4q5+(β3+1)q7+(β5+2β2)q8β2q10+(β1+1)q11+(β5β2+2)q13+(2β2β11)q14++(β52β42β3+2)q98+O(q100) q + \beta_{2} q^{2} + (\beta_{4} + 2) q^{4} - q^{5} + (\beta_{3} + 1) q^{7} + (\beta_{5} + 2 \beta_{2}) q^{8} - \beta_{2} q^{10} + (\beta_1 + 1) q^{11} + ( - \beta_{5} - \beta_{2} + 2) q^{13} + (2 \beta_{2} - \beta_1 - 1) q^{14}+ \cdots + ( - \beta_{5} - 2 \beta_{4} - 2 \beta_{3} + \cdots - 2) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+10q46q5+6q7+4q11+12q134q14+14q16+4q17+8q1910q20+8q22+6q23+6q2512q26+24q286q29+8q31+20q32+4q98+O(q100) 6 q + 10 q^{4} - 6 q^{5} + 6 q^{7} + 4 q^{11} + 12 q^{13} - 4 q^{14} + 14 q^{16} + 4 q^{17} + 8 q^{19} - 10 q^{20} + 8 q^{22} + 6 q^{23} + 6 q^{25} - 12 q^{26} + 24 q^{28} - 6 q^{29} + 8 q^{31} + 20 q^{32}+ \cdots - 4 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6x510x4x3+16x2+5x1 x^{6} - x^{5} - 10x^{4} - x^{3} + 16x^{2} + 5x - 1 : Copy content Toggle raw display

β1\beta_{1}== ν32ν26ν+2 \nu^{3} - 2\nu^{2} - 6\nu + 2 Copy content Toggle raw display
β2\beta_{2}== (ν42ν37ν2+4ν+5)/2 ( \nu^{4} - 2\nu^{3} - 7\nu^{2} + 4\nu + 5 ) / 2 Copy content Toggle raw display
β3\beta_{3}== (2ν53ν418ν3+7ν2+24ν3)/2 ( 2\nu^{5} - 3\nu^{4} - 18\nu^{3} + 7\nu^{2} + 24\nu - 3 ) / 2 Copy content Toggle raw display
β4\beta_{4}== (2ν53ν418ν3+5ν2+26ν+3)/2 ( 2\nu^{5} - 3\nu^{4} - 18\nu^{3} + 5\nu^{2} + 26\nu + 3 ) / 2 Copy content Toggle raw display
β5\beta_{5}== (2ν53ν418ν3+5ν2+30ν+3)/2 ( 2\nu^{5} - 3\nu^{4} - 18\nu^{3} + 5\nu^{2} + 30\nu + 3 ) / 2 Copy content Toggle raw display
ν\nu== (β5β4)/2 ( \beta_{5} - \beta_{4} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β53β4+2β3+6)/2 ( \beta_{5} - 3\beta_{4} + 2\beta_{3} + 6 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== 4β56β4+2β3+β1+4 4\beta_{5} - 6\beta_{4} + 2\beta_{3} + \beta _1 + 4 Copy content Toggle raw display
ν4\nu^{4}== (19β541β4+22β3+4β2+4β1+48)/2 ( 19\beta_{5} - 41\beta_{4} + 22\beta_{3} + 4\beta_{2} + 4\beta _1 + 48 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (85β5147β4+64β3+6β2+24β1+126)/2 ( 85\beta_{5} - 147\beta_{4} + 64\beta_{3} + 6\beta_{2} + 24\beta _1 + 126 ) / 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.44541
1.36724
3.52269
−0.493507
−2.09026
0.139251
−2.50089 0 4.25445 −1.00000 0 3.78907 −5.63815 0 2.50089
1.2 −2.11684 0 2.48100 −1.00000 0 −1.01690 −1.01820 0 2.11684
1.3 −0.605771 0 −1.63304 −1.00000 0 3.25359 2.20079 0 0.605771
1.4 0.810417 0 −1.34322 −1.00000 0 −4.60617 −2.70941 0 −0.810417
1.5 1.70496 0 0.906890 −1.00000 0 3.36634 −1.86371 0 −1.70496
1.6 2.70812 0 5.33392 −1.00000 0 1.21406 9.02867 0 −2.70812
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 +1 +1
55 +1 +1
2323 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1035.2.a.p 6
3.b odd 2 1 1035.2.a.q yes 6
5.b even 2 1 5175.2.a.bz 6
15.d odd 2 1 5175.2.a.by 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1035.2.a.p 6 1.a even 1 1 trivial
1035.2.a.q yes 6 3.b odd 2 1
5175.2.a.by 6 15.d odd 2 1
5175.2.a.bz 6 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(1035))S_{2}^{\mathrm{new}}(\Gamma_0(1035)):

T2611T24+30T224T212 T_{2}^{6} - 11T_{2}^{4} + 30T_{2}^{2} - 4T_{2} - 12 Copy content Toggle raw display
T766T7512T74+134T73201T72116T7+236 T_{7}^{6} - 6T_{7}^{5} - 12T_{7}^{4} + 134T_{7}^{3} - 201T_{7}^{2} - 116T_{7} + 236 Copy content Toggle raw display
T1164T11542T114+196T113+100T112928T11+576 T_{11}^{6} - 4T_{11}^{5} - 42T_{11}^{4} + 196T_{11}^{3} + 100T_{11}^{2} - 928T_{11} + 576 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T611T4+12 T^{6} - 11 T^{4} + \cdots - 12 Copy content Toggle raw display
33 T6 T^{6} Copy content Toggle raw display
55 (T+1)6 (T + 1)^{6} Copy content Toggle raw display
77 T66T5++236 T^{6} - 6 T^{5} + \cdots + 236 Copy content Toggle raw display
1111 T64T5++576 T^{6} - 4 T^{5} + \cdots + 576 Copy content Toggle raw display
1313 T612T5++496 T^{6} - 12 T^{5} + \cdots + 496 Copy content Toggle raw display
1717 T64T5++108 T^{6} - 4 T^{5} + \cdots + 108 Copy content Toggle raw display
1919 T68T5++64 T^{6} - 8 T^{5} + \cdots + 64 Copy content Toggle raw display
2323 (T1)6 (T - 1)^{6} Copy content Toggle raw display
2929 T6+6T5++3408 T^{6} + 6 T^{5} + \cdots + 3408 Copy content Toggle raw display
3131 T68T5++64 T^{6} - 8 T^{5} + \cdots + 64 Copy content Toggle raw display
3737 T622T5+63824 T^{6} - 22 T^{5} + \cdots - 63824 Copy content Toggle raw display
4141 T6+18T5+7056 T^{6} + 18 T^{5} + \cdots - 7056 Copy content Toggle raw display
4343 T68T5+12096 T^{6} - 8 T^{5} + \cdots - 12096 Copy content Toggle raw display
4747 T612T5++6912 T^{6} - 12 T^{5} + \cdots + 6912 Copy content Toggle raw display
5353 T64T5++1212 T^{6} - 4 T^{5} + \cdots + 1212 Copy content Toggle raw display
5959 T6+6T5++348 T^{6} + 6 T^{5} + \cdots + 348 Copy content Toggle raw display
6161 T6126T4++16784 T^{6} - 126 T^{4} + \cdots + 16784 Copy content Toggle raw display
6767 T610T5+19892 T^{6} - 10 T^{5} + \cdots - 19892 Copy content Toggle raw display
7171 T6+22T5++308076 T^{6} + 22 T^{5} + \cdots + 308076 Copy content Toggle raw display
7373 T612T5+336 T^{6} - 12 T^{5} + \cdots - 336 Copy content Toggle raw display
7979 T64T5+12288 T^{6} - 4 T^{5} + \cdots - 12288 Copy content Toggle raw display
8383 T624T5++31536 T^{6} - 24 T^{5} + \cdots + 31536 Copy content Toggle raw display
8989 T6+8T5+575232 T^{6} + 8 T^{5} + \cdots - 575232 Copy content Toggle raw display
9797 T612T5++93952 T^{6} - 12 T^{5} + \cdots + 93952 Copy content Toggle raw display
show more
show less