gp: [N,k,chi] = [1035,2,Mod(1,1035)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1035, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1035.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [6,0,0,10,-6,0,6,0,0,0,4]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 5 1,\beta_1,\ldots,\beta_{5} 1 , β 1 , … , β 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 6 − x 5 − 10 x 4 − x 3 + 16 x 2 + 5 x − 1 x^{6} - x^{5} - 10x^{4} - x^{3} + 16x^{2} + 5x - 1 x 6 − x 5 − 1 0 x 4 − x 3 + 1 6 x 2 + 5 x − 1
x^6 - x^5 - 10*x^4 - x^3 + 16*x^2 + 5*x - 1
:
β 1 \beta_{1} β 1 = = =
ν 3 − 2 ν 2 − 6 ν + 2 \nu^{3} - 2\nu^{2} - 6\nu + 2 ν 3 − 2 ν 2 − 6 ν + 2
v^3 - 2*v^2 - 6*v + 2
β 2 \beta_{2} β 2 = = =
( ν 4 − 2 ν 3 − 7 ν 2 + 4 ν + 5 ) / 2 ( \nu^{4} - 2\nu^{3} - 7\nu^{2} + 4\nu + 5 ) / 2 ( ν 4 − 2 ν 3 − 7 ν 2 + 4 ν + 5 ) / 2
(v^4 - 2*v^3 - 7*v^2 + 4*v + 5) / 2
β 3 \beta_{3} β 3 = = =
( 2 ν 5 − 3 ν 4 − 18 ν 3 + 7 ν 2 + 24 ν − 3 ) / 2 ( 2\nu^{5} - 3\nu^{4} - 18\nu^{3} + 7\nu^{2} + 24\nu - 3 ) / 2 ( 2 ν 5 − 3 ν 4 − 1 8 ν 3 + 7 ν 2 + 2 4 ν − 3 ) / 2
(2*v^5 - 3*v^4 - 18*v^3 + 7*v^2 + 24*v - 3) / 2
β 4 \beta_{4} β 4 = = =
( 2 ν 5 − 3 ν 4 − 18 ν 3 + 5 ν 2 + 26 ν + 3 ) / 2 ( 2\nu^{5} - 3\nu^{4} - 18\nu^{3} + 5\nu^{2} + 26\nu + 3 ) / 2 ( 2 ν 5 − 3 ν 4 − 1 8 ν 3 + 5 ν 2 + 2 6 ν + 3 ) / 2
(2*v^5 - 3*v^4 - 18*v^3 + 5*v^2 + 26*v + 3) / 2
β 5 \beta_{5} β 5 = = =
( 2 ν 5 − 3 ν 4 − 18 ν 3 + 5 ν 2 + 30 ν + 3 ) / 2 ( 2\nu^{5} - 3\nu^{4} - 18\nu^{3} + 5\nu^{2} + 30\nu + 3 ) / 2 ( 2 ν 5 − 3 ν 4 − 1 8 ν 3 + 5 ν 2 + 3 0 ν + 3 ) / 2
(2*v^5 - 3*v^4 - 18*v^3 + 5*v^2 + 30*v + 3) / 2
ν \nu ν = = =
( β 5 − β 4 ) / 2 ( \beta_{5} - \beta_{4} ) / 2 ( β 5 − β 4 ) / 2
(b5 - b4) / 2
ν 2 \nu^{2} ν 2 = = =
( β 5 − 3 β 4 + 2 β 3 + 6 ) / 2 ( \beta_{5} - 3\beta_{4} + 2\beta_{3} + 6 ) / 2 ( β 5 − 3 β 4 + 2 β 3 + 6 ) / 2
(b5 - 3*b4 + 2*b3 + 6) / 2
ν 3 \nu^{3} ν 3 = = =
4 β 5 − 6 β 4 + 2 β 3 + β 1 + 4 4\beta_{5} - 6\beta_{4} + 2\beta_{3} + \beta _1 + 4 4 β 5 − 6 β 4 + 2 β 3 + β 1 + 4
4*b5 - 6*b4 + 2*b3 + b1 + 4
ν 4 \nu^{4} ν 4 = = =
( 19 β 5 − 41 β 4 + 22 β 3 + 4 β 2 + 4 β 1 + 48 ) / 2 ( 19\beta_{5} - 41\beta_{4} + 22\beta_{3} + 4\beta_{2} + 4\beta _1 + 48 ) / 2 ( 1 9 β 5 − 4 1 β 4 + 2 2 β 3 + 4 β 2 + 4 β 1 + 4 8 ) / 2
(19*b5 - 41*b4 + 22*b3 + 4*b2 + 4*b1 + 48) / 2
ν 5 \nu^{5} ν 5 = = =
( 85 β 5 − 147 β 4 + 64 β 3 + 6 β 2 + 24 β 1 + 126 ) / 2 ( 85\beta_{5} - 147\beta_{4} + 64\beta_{3} + 6\beta_{2} + 24\beta _1 + 126 ) / 2 ( 8 5 β 5 − 1 4 7 β 4 + 6 4 β 3 + 6 β 2 + 2 4 β 1 + 1 2 6 ) / 2
(85*b5 - 147*b4 + 64*b3 + 6*b2 + 24*b1 + 126) / 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
3 3 3
+ 1 +1 + 1
5 5 5
+ 1 +1 + 1
23 23 2 3
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 1035 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(1035)) S 2 n e w ( Γ 0 ( 1 0 3 5 ) ) :
T 2 6 − 11 T 2 4 + 30 T 2 2 − 4 T 2 − 12 T_{2}^{6} - 11T_{2}^{4} + 30T_{2}^{2} - 4T_{2} - 12 T 2 6 − 1 1 T 2 4 + 3 0 T 2 2 − 4 T 2 − 1 2
T2^6 - 11*T2^4 + 30*T2^2 - 4*T2 - 12
T 7 6 − 6 T 7 5 − 12 T 7 4 + 134 T 7 3 − 201 T 7 2 − 116 T 7 + 236 T_{7}^{6} - 6T_{7}^{5} - 12T_{7}^{4} + 134T_{7}^{3} - 201T_{7}^{2} - 116T_{7} + 236 T 7 6 − 6 T 7 5 − 1 2 T 7 4 + 1 3 4 T 7 3 − 2 0 1 T 7 2 − 1 1 6 T 7 + 2 3 6
T7^6 - 6*T7^5 - 12*T7^4 + 134*T7^3 - 201*T7^2 - 116*T7 + 236
T 11 6 − 4 T 11 5 − 42 T 11 4 + 196 T 11 3 + 100 T 11 2 − 928 T 11 + 576 T_{11}^{6} - 4T_{11}^{5} - 42T_{11}^{4} + 196T_{11}^{3} + 100T_{11}^{2} - 928T_{11} + 576 T 1 1 6 − 4 T 1 1 5 − 4 2 T 1 1 4 + 1 9 6 T 1 1 3 + 1 0 0 T 1 1 2 − 9 2 8 T 1 1 + 5 7 6
T11^6 - 4*T11^5 - 42*T11^4 + 196*T11^3 + 100*T11^2 - 928*T11 + 576
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 6 − 11 T 4 + ⋯ − 12 T^{6} - 11 T^{4} + \cdots - 12 T 6 − 1 1 T 4 + ⋯ − 1 2
T^6 - 11*T^4 + 30*T^2 - 4*T - 12
3 3 3
T 6 T^{6} T 6
T^6
5 5 5
( T + 1 ) 6 (T + 1)^{6} ( T + 1 ) 6
(T + 1)^6
7 7 7
T 6 − 6 T 5 + ⋯ + 236 T^{6} - 6 T^{5} + \cdots + 236 T 6 − 6 T 5 + ⋯ + 2 3 6
T^6 - 6*T^5 - 12*T^4 + 134*T^3 - 201*T^2 - 116*T + 236
11 11 1 1
T 6 − 4 T 5 + ⋯ + 576 T^{6} - 4 T^{5} + \cdots + 576 T 6 − 4 T 5 + ⋯ + 5 7 6
T^6 - 4*T^5 - 42*T^4 + 196*T^3 + 100*T^2 - 928*T + 576
13 13 1 3
T 6 − 12 T 5 + ⋯ + 496 T^{6} - 12 T^{5} + \cdots + 496 T 6 − 1 2 T 5 + ⋯ + 4 9 6
T^6 - 12*T^5 + 18*T^4 + 228*T^3 - 716*T^2 - 96*T + 496
17 17 1 7
T 6 − 4 T 5 + ⋯ + 108 T^{6} - 4 T^{5} + \cdots + 108 T 6 − 4 T 5 + ⋯ + 1 0 8
T^6 - 4*T^5 - 36*T^4 + 120*T^3 + 131*T^2 - 348*T + 108
19 19 1 9
T 6 − 8 T 5 + ⋯ + 64 T^{6} - 8 T^{5} + \cdots + 64 T 6 − 8 T 5 + ⋯ + 6 4
T^6 - 8*T^5 - 50*T^4 + 484*T^3 - 348*T^2 - 2192*T + 64
23 23 2 3
( T − 1 ) 6 (T - 1)^{6} ( T − 1 ) 6
(T - 1)^6
29 29 2 9
T 6 + 6 T 5 + ⋯ + 3408 T^{6} + 6 T^{5} + \cdots + 3408 T 6 + 6 T 5 + ⋯ + 3 4 0 8
T^6 + 6*T^5 - 46*T^4 - 274*T^3 + 365*T^2 + 3224*T + 3408
31 31 3 1
T 6 − 8 T 5 + ⋯ + 64 T^{6} - 8 T^{5} + \cdots + 64 T 6 − 8 T 5 + ⋯ + 6 4
T^6 - 8*T^5 + 6*T^4 + 64*T^3 - 71*T^2 - 104*T + 64
37 37 3 7
T 6 − 22 T 5 + ⋯ − 63824 T^{6} - 22 T^{5} + \cdots - 63824 T 6 − 2 2 T 5 + ⋯ − 6 3 8 2 4
T^6 - 22*T^5 + 104*T^4 + 1014*T^3 - 12641*T^2 + 48252*T - 63824
41 41 4 1
T 6 + 18 T 5 + ⋯ − 7056 T^{6} + 18 T^{5} + \cdots - 7056 T 6 + 1 8 T 5 + ⋯ − 7 0 5 6
T^6 + 18*T^5 + 2*T^4 - 1086*T^3 - 1267*T^2 + 18016*T - 7056
43 43 4 3
T 6 − 8 T 5 + ⋯ − 12096 T^{6} - 8 T^{5} + \cdots - 12096 T 6 − 8 T 5 + ⋯ − 1 2 0 9 6
T^6 - 8*T^5 - 96*T^4 + 416*T^3 + 3232*T^2 + 320*T - 12096
47 47 4 7
T 6 − 12 T 5 + ⋯ + 6912 T^{6} - 12 T^{5} + \cdots + 6912 T 6 − 1 2 T 5 + ⋯ + 6 9 1 2
T^6 - 12*T^5 - 74*T^4 + 1060*T^3 + 1132*T^2 - 23520*T + 6912
53 53 5 3
T 6 − 4 T 5 + ⋯ + 1212 T^{6} - 4 T^{5} + \cdots + 1212 T 6 − 4 T 5 + ⋯ + 1 2 1 2
T^6 - 4*T^5 - 180*T^4 + 472*T^3 + 6739*T^2 + 5948*T + 1212
59 59 5 9
T 6 + 6 T 5 + ⋯ + 348 T^{6} + 6 T^{5} + \cdots + 348 T 6 + 6 T 5 + ⋯ + 3 4 8
T^6 + 6*T^5 - 90*T^4 - 82*T^3 + 1869*T^2 - 3160*T + 348
61 61 6 1
T 6 − 126 T 4 + ⋯ + 16784 T^{6} - 126 T^{4} + \cdots + 16784 T 6 − 1 2 6 T 4 + ⋯ + 1 6 7 8 4
T^6 - 126*T^4 + 292*T^3 + 4044*T^2 - 18208*T + 16784
67 67 6 7
T 6 − 10 T 5 + ⋯ − 19892 T^{6} - 10 T^{5} + \cdots - 19892 T 6 − 1 0 T 5 + ⋯ − 1 9 8 9 2
T^6 - 10*T^5 - 172*T^4 + 978*T^3 + 7543*T^2 - 9780*T - 19892
71 71 7 1
T 6 + 22 T 5 + ⋯ + 308076 T^{6} + 22 T^{5} + \cdots + 308076 T 6 + 2 2 T 5 + ⋯ + 3 0 8 0 7 6
T^6 + 22*T^5 - 122*T^4 - 4450*T^3 - 2491*T^2 + 217168*T + 308076
73 73 7 3
T 6 − 12 T 5 + ⋯ − 336 T^{6} - 12 T^{5} + \cdots - 336 T 6 − 1 2 T 5 + ⋯ − 3 3 6
T^6 - 12*T^5 + 18*T^4 + 124*T^3 - 92*T^2 - 512*T - 336
79 79 7 9
T 6 − 4 T 5 + ⋯ − 12288 T^{6} - 4 T^{5} + \cdots - 12288 T 6 − 4 T 5 + ⋯ − 1 2 2 8 8
T^6 - 4*T^5 - 256*T^4 + 1344*T^3 + 7168*T^2 - 1024*T - 12288
83 83 8 3
T 6 − 24 T 5 + ⋯ + 31536 T^{6} - 24 T^{5} + \cdots + 31536 T 6 − 2 4 T 5 + ⋯ + 3 1 5 3 6
T^6 - 24*T^5 + 2432*T^3 - 4813*T^2 - 24936*T + 31536
89 89 8 9
T 6 + 8 T 5 + ⋯ − 575232 T^{6} + 8 T^{5} + \cdots - 575232 T 6 + 8 T 5 + ⋯ − 5 7 5 2 3 2
T^6 + 8*T^5 - 444*T^4 - 2608*T^3 + 52800*T^2 + 182656*T - 575232
97 97 9 7
T 6 − 12 T 5 + ⋯ + 93952 T^{6} - 12 T^{5} + \cdots + 93952 T 6 − 1 2 T 5 + ⋯ + 9 3 9 5 2
T^6 - 12*T^5 - 364*T^4 + 4720*T^3 + 5168*T^2 - 73408*T + 93952
show more
show less