Properties

Label 2-1035-1.1-c1-0-8
Degree $2$
Conductor $1035$
Sign $1$
Analytic cond. $8.26451$
Root an. cond. $2.87480$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.605·2-s − 1.63·4-s − 5-s + 3.25·7-s + 2.20·8-s + 0.605·10-s + 0.759·11-s − 0.806·13-s − 1.97·14-s + 1.93·16-s − 5.43·17-s + 0.0290·19-s + 1.63·20-s − 0.460·22-s + 23-s + 25-s + 0.488·26-s − 5.31·28-s − 1.55·29-s + 4.63·31-s − 5.57·32-s + 3.29·34-s − 3.25·35-s + 5.52·37-s − 0.0176·38-s − 2.20·40-s + 5.76·41-s + ⋯
L(s)  = 1  − 0.428·2-s − 0.816·4-s − 0.447·5-s + 1.22·7-s + 0.778·8-s + 0.191·10-s + 0.228·11-s − 0.223·13-s − 0.526·14-s + 0.483·16-s − 1.31·17-s + 0.00666·19-s + 0.365·20-s − 0.0980·22-s + 0.208·23-s + 0.200·25-s + 0.0958·26-s − 1.00·28-s − 0.288·29-s + 0.832·31-s − 0.985·32-s + 0.565·34-s − 0.549·35-s + 0.908·37-s − 0.00285·38-s − 0.347·40-s + 0.899·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1035 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1035 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1035\)    =    \(3^{2} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(8.26451\)
Root analytic conductor: \(2.87480\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1035,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.058817710\)
\(L(\frac12)\) \(\approx\) \(1.058817710\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + T \)
23 \( 1 - T \)
good2 \( 1 + 0.605T + 2T^{2} \)
7 \( 1 - 3.25T + 7T^{2} \)
11 \( 1 - 0.759T + 11T^{2} \)
13 \( 1 + 0.806T + 13T^{2} \)
17 \( 1 + 5.43T + 17T^{2} \)
19 \( 1 - 0.0290T + 19T^{2} \)
29 \( 1 + 1.55T + 29T^{2} \)
31 \( 1 - 4.63T + 31T^{2} \)
37 \( 1 - 5.52T + 37T^{2} \)
41 \( 1 - 5.76T + 41T^{2} \)
43 \( 1 - 10.8T + 43T^{2} \)
47 \( 1 - 0.299T + 47T^{2} \)
53 \( 1 + 0.633T + 53T^{2} \)
59 \( 1 - 5.27T + 59T^{2} \)
61 \( 1 - 6.50T + 61T^{2} \)
67 \( 1 - 9.24T + 67T^{2} \)
71 \( 1 - 10.9T + 71T^{2} \)
73 \( 1 - 4.80T + 73T^{2} \)
79 \( 1 - 11.6T + 79T^{2} \)
83 \( 1 - 4.30T + 83T^{2} \)
89 \( 1 + 16.6T + 89T^{2} \)
97 \( 1 - 2.40T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.740917097625371268106644513005, −9.047459377371459927941985350502, −8.258104679038711509862334225557, −7.75975564127036151409271740510, −6.74308982781265614228255488828, −5.42570612019230271050450142687, −4.56110108920229507710171036023, −4.00352462415893642645325960961, −2.31038135078833385316846604135, −0.883173085791483898515254904439, 0.883173085791483898515254904439, 2.31038135078833385316846604135, 4.00352462415893642645325960961, 4.56110108920229507710171036023, 5.42570612019230271050450142687, 6.74308982781265614228255488828, 7.75975564127036151409271740510, 8.258104679038711509862334225557, 9.047459377371459927941985350502, 9.740917097625371268106644513005

Graph of the $Z$-function along the critical line