Properties

Label 1024.4.a.h
Level $1024$
Weight $4$
Character orbit 1024.a
Self dual yes
Analytic conductor $60.418$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1024,4,Mod(1,1024)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1024.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1024, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1024 = 2^{10} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1024.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,52,0,0,0,0,0,0,0,64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(60.4179558459\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{5} \)
Twist minimal: no (minimal twist has level 512)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{3} - 7 \beta_1 q^{5} - \beta_{3} q^{7} + 13 q^{9} + 9 \beta_{2} q^{11} - 45 \beta_1 q^{13} - 7 \beta_{3} q^{15} + 16 q^{17} + 17 \beta_{2} q^{19} - 40 \beta_1 q^{21} - \beta_{3} q^{23}+ \cdots + 117 \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 52 q^{9} + 64 q^{17} - 108 q^{25} + 1440 q^{33} - 1312 q^{41} - 1052 q^{49} + 2720 q^{57} + 2520 q^{65} + 3128 q^{73} - 3644 q^{81} + 2040 q^{89} + 4864 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 6x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 4\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{3} + 8\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 4\nu^{2} - 12 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 2\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 12 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{2} + 4\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.874032
−2.28825
2.28825
0.874032
0 −6.32456 0 −9.89949 0 8.94427 0 13.0000 0
1.2 0 −6.32456 0 9.89949 0 −8.94427 0 13.0000 0
1.3 0 6.32456 0 −9.89949 0 −8.94427 0 13.0000 0
1.4 0 6.32456 0 9.89949 0 8.94427 0 13.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1024.4.a.h 4
4.b odd 2 1 inner 1024.4.a.h 4
8.b even 2 1 inner 1024.4.a.h 4
8.d odd 2 1 inner 1024.4.a.h 4
16.e even 4 2 1024.4.b.g 4
16.f odd 4 2 1024.4.b.g 4
32.g even 8 2 512.4.e.l 4
32.g even 8 2 512.4.e.m yes 4
32.h odd 8 2 512.4.e.l 4
32.h odd 8 2 512.4.e.m yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
512.4.e.l 4 32.g even 8 2
512.4.e.l 4 32.h odd 8 2
512.4.e.m yes 4 32.g even 8 2
512.4.e.m yes 4 32.h odd 8 2
1024.4.a.h 4 1.a even 1 1 trivial
1024.4.a.h 4 4.b odd 2 1 inner
1024.4.a.h 4 8.b even 2 1 inner
1024.4.a.h 4 8.d odd 2 1 inner
1024.4.b.g 4 16.e even 4 2
1024.4.b.g 4 16.f odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1024))\):

\( T_{3}^{2} - 40 \) Copy content Toggle raw display
\( T_{5}^{2} - 98 \) Copy content Toggle raw display
\( T_{7}^{2} - 80 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - 40)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} - 98)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} - 80)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 3240)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} - 4050)^{2} \) Copy content Toggle raw display
$17$ \( (T - 16)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} - 11560)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 80)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 8978)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 92480)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 162)^{2} \) Copy content Toggle raw display
$41$ \( (T + 328)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} - 60840)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 169280)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 331298)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 547560)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} - 693842)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 88360)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 474320)^{2} \) Copy content Toggle raw display
$73$ \( (T - 782)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 184320)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 1000)^{2} \) Copy content Toggle raw display
$89$ \( (T - 510)^{4} \) Copy content Toggle raw display
$97$ \( (T - 1216)^{4} \) Copy content Toggle raw display
show more
show less