Defining parameters
Level: | \( N \) | \(=\) | \( 1024 = 2^{10} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1024.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 16 \) | ||
Sturm bound: | \(512\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1024))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 408 | 100 | 308 |
Cusp forms | 360 | 92 | 268 |
Eisenstein series | 48 | 8 | 40 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||
\(+\) | \(208\) | \(52\) | \(156\) | \(184\) | \(48\) | \(136\) | \(24\) | \(4\) | \(20\) | |||
\(-\) | \(200\) | \(48\) | \(152\) | \(176\) | \(44\) | \(132\) | \(24\) | \(4\) | \(20\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1024))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1024))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1024)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(128))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(256))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(512))\)\(^{\oplus 2}\)