Properties

Label 1024.4.a
Level $1024$
Weight $4$
Character orbit 1024.a
Rep. character $\chi_{1024}(1,\cdot)$
Character field $\Q$
Dimension $92$
Newform subspaces $16$
Sturm bound $512$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1024 = 2^{10} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1024.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 16 \)
Sturm bound: \(512\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(3\), \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1024))\).

Total New Old
Modular forms 408 100 308
Cusp forms 360 92 268
Eisenstein series 48 8 40

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(208\)\(52\)\(156\)\(184\)\(48\)\(136\)\(24\)\(4\)\(20\)
\(-\)\(200\)\(48\)\(152\)\(176\)\(44\)\(132\)\(24\)\(4\)\(20\)

Trace form

\( 92 q + 756 q^{9} + 8 q^{17} + 1900 q^{25} - 8 q^{33} + 3340 q^{49} + 216 q^{57} - 8 q^{65} + 4868 q^{81} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1024))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2
1024.4.a.a 1024.a 1.a $2$ $60.418$ \(\Q(\sqrt{2}) \) None 512.4.e.a \(0\) \(0\) \(0\) \(-16\) $-$ $\mathrm{SU}(2)$ \(q+4\beta q^{3}+\beta q^{5}-8q^{7}+5q^{9}+4\beta q^{11}+\cdots\)
1024.4.a.b 1024.a 1.a $2$ $60.418$ \(\Q(\sqrt{2}) \) \(\Q(\sqrt{-1}) \) 512.4.e.c \(0\) \(0\) \(0\) \(0\) $+$ $N(\mathrm{U}(1))$ \(q+13\beta q^{5}-3^{3}q^{9}+55\beta q^{13}-104q^{17}+\cdots\)
1024.4.a.c 1024.a 1.a $2$ $60.418$ \(\Q(\sqrt{2}) \) \(\Q(\sqrt{-1}) \) 512.4.e.d \(0\) \(0\) \(0\) \(0\) $-$ $N(\mathrm{U}(1))$ \(q-9\beta q^{5}-3^{3}q^{9}+37\beta q^{13}+104q^{17}+\cdots\)
1024.4.a.d 1024.a 1.a $2$ $60.418$ \(\Q(\sqrt{2}) \) None 512.4.e.a \(0\) \(0\) \(0\) \(16\) $-$ $\mathrm{SU}(2)$ \(q+4\beta q^{3}-\beta q^{5}+8q^{7}+5q^{9}+4\beta q^{11}+\cdots\)
1024.4.a.e 1024.a 1.a $4$ $60.418$ \(\Q(\sqrt{2}, \sqrt{43})\) None 256.4.e.a \(0\) \(-12\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+(-3+\beta _{3})q^{3}+(-4\beta _{1}+\beta _{2})q^{5}+\cdots\)
1024.4.a.f 1024.a 1.a $4$ $60.418$ \(\Q(\sqrt{2}, \sqrt{17})\) None 512.4.e.i \(0\) \(0\) \(0\) \(-104\) $+$ $\mathrm{SU}(2)$ \(q+(-3\beta _{1}+\beta _{2})q^{3}+(3\beta _{1}-2\beta _{2})q^{5}+\cdots\)
1024.4.a.g 1024.a 1.a $4$ $60.418$ \(\Q(\sqrt{2}, \sqrt{5})\) None 512.4.e.k \(0\) \(0\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{3}-11\beta _{1}q^{5}+3\beta _{3}q^{7}+13q^{9}+\cdots\)
1024.4.a.h 1024.a 1.a $4$ $60.418$ \(\Q(\sqrt{2}, \sqrt{5})\) None 512.4.e.l \(0\) \(0\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{3}-7\beta _{1}q^{5}-\beta _{3}q^{7}+13q^{9}+\cdots\)
1024.4.a.i 1024.a 1.a $4$ $60.418$ \(\Q(\sqrt{2}, \sqrt{17})\) None 512.4.e.i \(0\) \(0\) \(0\) \(104\) $+$ $\mathrm{SU}(2)$ \(q+(-3\beta _{1}+\beta _{2})q^{3}+(-3\beta _{1}+2\beta _{2}+\cdots)q^{5}+\cdots\)
1024.4.a.j 1024.a 1.a $4$ $60.418$ \(\Q(\sqrt{2}, \sqrt{43})\) None 256.4.e.a \(0\) \(12\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+(3-\beta _{3})q^{3}+(-4\beta _{1}+\beta _{2})q^{5}+(5\beta _{1}+\cdots)q^{7}+\cdots\)
1024.4.a.k 1024.a 1.a $8$ $60.418$ 8.8.\(\cdots\).3 None 256.4.e.c \(0\) \(0\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{5}q^{3}+(\beta _{1}-\beta _{3}+\beta _{6})q^{5}+(-2\beta _{1}+\cdots)q^{7}+\cdots\)
1024.4.a.l 1024.a 1.a $8$ $60.418$ 8.8.\(\cdots\).3 None 256.4.e.c \(0\) \(0\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q-\beta _{5}q^{3}+(\beta _{1}-\beta _{3}+\beta _{6})q^{5}+(2\beta _{1}+\cdots)q^{7}+\cdots\)
1024.4.a.m 1024.a 1.a $10$ $60.418$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 16.4.e.a \(0\) \(0\) \(0\) \(-28\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{7}q^{3}+\beta _{4}q^{5}+(-3-\beta _{2})q^{7}+(6+\cdots)q^{9}+\cdots\)
1024.4.a.n 1024.a 1.a $10$ $60.418$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 16.4.e.a \(0\) \(0\) \(0\) \(28\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{7}q^{3}-\beta _{4}q^{5}+(3+\beta _{2})q^{7}+(6+\beta _{2}+\cdots)q^{9}+\cdots\)
1024.4.a.o 1024.a 1.a $12$ $60.418$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 512.4.e.q \(0\) \(0\) \(-40\) \(0\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{3}q^{3}+(-3+\beta _{7})q^{5}+(\beta _{3}-\beta _{9}+\cdots)q^{7}+\cdots\)
1024.4.a.p 1024.a 1.a $12$ $60.418$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 512.4.e.q \(0\) \(0\) \(40\) \(0\) $+$ $\mathrm{SU}(2)$ \(q-\beta _{3}q^{3}+(3-\beta _{7})q^{5}+(-\beta _{3}+\beta _{9}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1024))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(1024)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 7}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(128))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(256))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(512))\)\(^{\oplus 2}\)