Properties

Label 102.10.a.h.1.3
Level $102$
Weight $10$
Character 102.1
Self dual yes
Analytic conductor $52.534$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [102,10,Mod(1,102)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(102, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("102.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 102 = 2 \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 102.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-64,-324] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.5336552887\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 520688x^{2} - 146431260x - 953767152 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-6.67167\) of defining polynomial
Character \(\chi\) \(=\) 102.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0000 q^{2} -81.0000 q^{3} +256.000 q^{4} +901.022 q^{5} +1296.00 q^{6} -1949.06 q^{7} -4096.00 q^{8} +6561.00 q^{9} -14416.4 q^{10} +25996.5 q^{11} -20736.0 q^{12} -110290. q^{13} +31185.0 q^{14} -72982.8 q^{15} +65536.0 q^{16} -83521.0 q^{17} -104976. q^{18} +116465. q^{19} +230662. q^{20} +157874. q^{21} -415944. q^{22} -287617. q^{23} +331776. q^{24} -1.14128e6 q^{25} +1.76463e6 q^{26} -531441. q^{27} -498960. q^{28} +6.95263e6 q^{29} +1.16772e6 q^{30} +6.21369e6 q^{31} -1.04858e6 q^{32} -2.10572e6 q^{33} +1.33634e6 q^{34} -1.75615e6 q^{35} +1.67962e6 q^{36} +1.41015e7 q^{37} -1.86344e6 q^{38} +8.93346e6 q^{39} -3.69059e6 q^{40} -7.62188e6 q^{41} -2.52599e6 q^{42} -1.02031e7 q^{43} +6.65510e6 q^{44} +5.91161e6 q^{45} +4.60187e6 q^{46} -5.18233e7 q^{47} -5.30842e6 q^{48} -3.65548e7 q^{49} +1.82605e7 q^{50} +6.76520e6 q^{51} -2.82342e7 q^{52} +2.75093e7 q^{53} +8.50306e6 q^{54} +2.34234e7 q^{55} +7.98337e6 q^{56} -9.43365e6 q^{57} -1.11242e8 q^{58} -4.46972e7 q^{59} -1.86836e7 q^{60} +3.36778e7 q^{61} -9.94191e7 q^{62} -1.27878e7 q^{63} +1.67772e7 q^{64} -9.93734e7 q^{65} +3.36915e7 q^{66} -7.61270e7 q^{67} -2.13814e7 q^{68} +2.32970e7 q^{69} +2.80984e7 q^{70} -7.55178e7 q^{71} -2.68739e7 q^{72} -4.10228e8 q^{73} -2.25624e8 q^{74} +9.24440e7 q^{75} +2.98150e7 q^{76} -5.06689e7 q^{77} -1.42935e8 q^{78} +3.46554e8 q^{79} +5.90494e7 q^{80} +4.30467e7 q^{81} +1.21950e8 q^{82} -7.32010e8 q^{83} +4.04158e7 q^{84} -7.52543e7 q^{85} +1.63250e8 q^{86} -5.63163e8 q^{87} -1.06482e8 q^{88} -1.11010e9 q^{89} -9.45857e7 q^{90} +2.14962e8 q^{91} -7.36300e7 q^{92} -5.03309e8 q^{93} +8.29173e8 q^{94} +1.04937e8 q^{95} +8.49347e7 q^{96} -7.90680e8 q^{97} +5.84876e8 q^{98} +1.70563e8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{2} - 324 q^{3} + 1024 q^{4} - 942 q^{5} + 5184 q^{6} - 2084 q^{7} - 16384 q^{8} + 26244 q^{9} + 15072 q^{10} - 68450 q^{11} - 82944 q^{12} + 64722 q^{13} + 33344 q^{14} + 76302 q^{15} + 262144 q^{16}+ \cdots - 449100450 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −16.0000 −0.707107
\(3\) −81.0000 −0.577350
\(4\) 256.000 0.500000
\(5\) 901.022 0.644719 0.322360 0.946617i \(-0.395524\pi\)
0.322360 + 0.946617i \(0.395524\pi\)
\(6\) 1296.00 0.408248
\(7\) −1949.06 −0.306821 −0.153410 0.988163i \(-0.549026\pi\)
−0.153410 + 0.988163i \(0.549026\pi\)
\(8\) −4096.00 −0.353553
\(9\) 6561.00 0.333333
\(10\) −14416.4 −0.455885
\(11\) 25996.5 0.535362 0.267681 0.963508i \(-0.413743\pi\)
0.267681 + 0.963508i \(0.413743\pi\)
\(12\) −20736.0 −0.288675
\(13\) −110290. −1.07100 −0.535500 0.844535i \(-0.679877\pi\)
−0.535500 + 0.844535i \(0.679877\pi\)
\(14\) 31185.0 0.216955
\(15\) −72982.8 −0.372229
\(16\) 65536.0 0.250000
\(17\) −83521.0 −0.242536
\(18\) −104976. −0.235702
\(19\) 116465. 0.205024 0.102512 0.994732i \(-0.467312\pi\)
0.102512 + 0.994732i \(0.467312\pi\)
\(20\) 230662. 0.322360
\(21\) 157874. 0.177143
\(22\) −415944. −0.378558
\(23\) −287617. −0.214309 −0.107154 0.994242i \(-0.534174\pi\)
−0.107154 + 0.994242i \(0.534174\pi\)
\(24\) 331776. 0.204124
\(25\) −1.14128e6 −0.584337
\(26\) 1.76463e6 0.757312
\(27\) −531441. −0.192450
\(28\) −498960. −0.153410
\(29\) 6.95263e6 1.82540 0.912701 0.408629i \(-0.133993\pi\)
0.912701 + 0.408629i \(0.133993\pi\)
\(30\) 1.16772e6 0.263205
\(31\) 6.21369e6 1.20843 0.604216 0.796821i \(-0.293486\pi\)
0.604216 + 0.796821i \(0.293486\pi\)
\(32\) −1.04858e6 −0.176777
\(33\) −2.10572e6 −0.309092
\(34\) 1.33634e6 0.171499
\(35\) −1.75615e6 −0.197813
\(36\) 1.67962e6 0.166667
\(37\) 1.41015e7 1.23697 0.618483 0.785798i \(-0.287748\pi\)
0.618483 + 0.785798i \(0.287748\pi\)
\(38\) −1.86344e6 −0.144974
\(39\) 8.93346e6 0.618343
\(40\) −3.69059e6 −0.227943
\(41\) −7.62188e6 −0.421245 −0.210623 0.977567i \(-0.567549\pi\)
−0.210623 + 0.977567i \(0.567549\pi\)
\(42\) −2.52599e6 −0.125259
\(43\) −1.02031e7 −0.455119 −0.227559 0.973764i \(-0.573075\pi\)
−0.227559 + 0.973764i \(0.573075\pi\)
\(44\) 6.65510e6 0.267681
\(45\) 5.91161e6 0.214906
\(46\) 4.60187e6 0.151539
\(47\) −5.18233e7 −1.54912 −0.774560 0.632500i \(-0.782029\pi\)
−0.774560 + 0.632500i \(0.782029\pi\)
\(48\) −5.30842e6 −0.144338
\(49\) −3.65548e7 −0.905861
\(50\) 1.82605e7 0.413189
\(51\) 6.76520e6 0.140028
\(52\) −2.82342e7 −0.535500
\(53\) 2.75093e7 0.478893 0.239446 0.970910i \(-0.423034\pi\)
0.239446 + 0.970910i \(0.423034\pi\)
\(54\) 8.50306e6 0.136083
\(55\) 2.34234e7 0.345158
\(56\) 7.98337e6 0.108478
\(57\) −9.43365e6 −0.118370
\(58\) −1.11242e8 −1.29075
\(59\) −4.46972e7 −0.480227 −0.240113 0.970745i \(-0.577185\pi\)
−0.240113 + 0.970745i \(0.577185\pi\)
\(60\) −1.86836e7 −0.186114
\(61\) 3.36778e7 0.311430 0.155715 0.987802i \(-0.450232\pi\)
0.155715 + 0.987802i \(0.450232\pi\)
\(62\) −9.94191e7 −0.854491
\(63\) −1.27878e7 −0.102274
\(64\) 1.67772e7 0.125000
\(65\) −9.93734e7 −0.690495
\(66\) 3.36915e7 0.218561
\(67\) −7.61270e7 −0.461533 −0.230766 0.973009i \(-0.574123\pi\)
−0.230766 + 0.973009i \(0.574123\pi\)
\(68\) −2.13814e7 −0.121268
\(69\) 2.32970e7 0.123731
\(70\) 2.80984e7 0.139875
\(71\) −7.55178e7 −0.352685 −0.176342 0.984329i \(-0.556427\pi\)
−0.176342 + 0.984329i \(0.556427\pi\)
\(72\) −2.68739e7 −0.117851
\(73\) −4.10228e8 −1.69072 −0.845361 0.534196i \(-0.820615\pi\)
−0.845361 + 0.534196i \(0.820615\pi\)
\(74\) −2.25624e8 −0.874667
\(75\) 9.24440e7 0.337367
\(76\) 2.98150e7 0.102512
\(77\) −5.06689e7 −0.164260
\(78\) −1.42935e8 −0.437234
\(79\) 3.46554e8 1.00104 0.500518 0.865726i \(-0.333143\pi\)
0.500518 + 0.865726i \(0.333143\pi\)
\(80\) 5.90494e7 0.161180
\(81\) 4.30467e7 0.111111
\(82\) 1.21950e8 0.297865
\(83\) −7.32010e8 −1.69303 −0.846517 0.532362i \(-0.821305\pi\)
−0.846517 + 0.532362i \(0.821305\pi\)
\(84\) 4.04158e7 0.0885716
\(85\) −7.52543e7 −0.156367
\(86\) 1.63250e8 0.321817
\(87\) −5.63163e8 −1.05390
\(88\) −1.06482e8 −0.189279
\(89\) −1.11010e9 −1.87545 −0.937727 0.347374i \(-0.887074\pi\)
−0.937727 + 0.347374i \(0.887074\pi\)
\(90\) −9.45857e7 −0.151962
\(91\) 2.14962e8 0.328605
\(92\) −7.36300e7 −0.107154
\(93\) −5.03309e8 −0.697689
\(94\) 8.29173e8 1.09539
\(95\) 1.04937e8 0.132183
\(96\) 8.49347e7 0.102062
\(97\) −7.90680e8 −0.906834 −0.453417 0.891298i \(-0.649795\pi\)
−0.453417 + 0.891298i \(0.649795\pi\)
\(98\) 5.84876e8 0.640540
\(99\) 1.70563e8 0.178454
\(100\) −2.92169e8 −0.292169
\(101\) −5.38074e8 −0.514512 −0.257256 0.966343i \(-0.582818\pi\)
−0.257256 + 0.966343i \(0.582818\pi\)
\(102\) −1.08243e8 −0.0990148
\(103\) 5.70585e8 0.499520 0.249760 0.968308i \(-0.419648\pi\)
0.249760 + 0.968308i \(0.419648\pi\)
\(104\) 4.51746e8 0.378656
\(105\) 1.42248e8 0.114208
\(106\) −4.40149e8 −0.338628
\(107\) −6.82999e8 −0.503725 −0.251862 0.967763i \(-0.581043\pi\)
−0.251862 + 0.967763i \(0.581043\pi\)
\(108\) −1.36049e8 −0.0962250
\(109\) 5.78817e8 0.392755 0.196378 0.980528i \(-0.437082\pi\)
0.196378 + 0.980528i \(0.437082\pi\)
\(110\) −3.74775e8 −0.244064
\(111\) −1.14222e9 −0.714162
\(112\) −1.27734e8 −0.0767052
\(113\) −1.01384e9 −0.584946 −0.292473 0.956274i \(-0.594478\pi\)
−0.292473 + 0.956274i \(0.594478\pi\)
\(114\) 1.50938e8 0.0837005
\(115\) −2.59149e8 −0.138169
\(116\) 1.77987e9 0.912701
\(117\) −7.23611e8 −0.357000
\(118\) 7.15156e8 0.339572
\(119\) 1.62788e8 0.0744150
\(120\) 2.98938e8 0.131603
\(121\) −1.68213e9 −0.713387
\(122\) −5.38845e8 −0.220214
\(123\) 6.17372e8 0.243206
\(124\) 1.59071e9 0.604216
\(125\) −2.78813e9 −1.02145
\(126\) 2.04605e8 0.0723184
\(127\) 3.67739e9 1.25436 0.627181 0.778873i \(-0.284208\pi\)
0.627181 + 0.778873i \(0.284208\pi\)
\(128\) −2.68435e8 −0.0883883
\(129\) 8.26452e8 0.262763
\(130\) 1.58998e9 0.488253
\(131\) 3.08555e9 0.915403 0.457702 0.889106i \(-0.348673\pi\)
0.457702 + 0.889106i \(0.348673\pi\)
\(132\) −5.39063e8 −0.154546
\(133\) −2.26997e8 −0.0629055
\(134\) 1.21803e9 0.326353
\(135\) −4.78840e8 −0.124076
\(136\) 3.42102e8 0.0857493
\(137\) 2.35433e9 0.570986 0.285493 0.958381i \(-0.407843\pi\)
0.285493 + 0.958381i \(0.407843\pi\)
\(138\) −3.72752e8 −0.0874911
\(139\) 2.80837e9 0.638099 0.319050 0.947738i \(-0.396636\pi\)
0.319050 + 0.947738i \(0.396636\pi\)
\(140\) −4.49575e8 −0.0989067
\(141\) 4.19769e9 0.894385
\(142\) 1.20828e9 0.249386
\(143\) −2.86715e9 −0.573373
\(144\) 4.29982e8 0.0833333
\(145\) 6.26448e9 1.17687
\(146\) 6.56364e9 1.19552
\(147\) 2.96094e9 0.522999
\(148\) 3.60998e9 0.618483
\(149\) −5.55931e9 −0.924023 −0.462011 0.886874i \(-0.652872\pi\)
−0.462011 + 0.886874i \(0.652872\pi\)
\(150\) −1.47910e9 −0.238555
\(151\) −8.79579e9 −1.37682 −0.688412 0.725320i \(-0.741692\pi\)
−0.688412 + 0.725320i \(0.741692\pi\)
\(152\) −4.77040e8 −0.0724868
\(153\) −5.47981e8 −0.0808452
\(154\) 8.10702e8 0.116150
\(155\) 5.59868e9 0.779099
\(156\) 2.28697e9 0.309171
\(157\) 2.22627e9 0.292435 0.146218 0.989252i \(-0.453290\pi\)
0.146218 + 0.989252i \(0.453290\pi\)
\(158\) −5.54487e9 −0.707839
\(159\) −2.22825e9 −0.276489
\(160\) −9.44790e8 −0.113971
\(161\) 5.60584e8 0.0657543
\(162\) −6.88748e8 −0.0785674
\(163\) 4.52424e9 0.501997 0.250999 0.967987i \(-0.419241\pi\)
0.250999 + 0.967987i \(0.419241\pi\)
\(164\) −1.95120e9 −0.210623
\(165\) −1.89730e9 −0.199277
\(166\) 1.17122e10 1.19716
\(167\) 1.76082e8 0.0175182 0.00875912 0.999962i \(-0.497212\pi\)
0.00875912 + 0.999962i \(0.497212\pi\)
\(168\) −6.46653e8 −0.0626296
\(169\) 1.55931e9 0.147042
\(170\) 1.20407e9 0.110568
\(171\) 7.64126e8 0.0683412
\(172\) −2.61200e9 −0.227559
\(173\) −1.90271e10 −1.61497 −0.807486 0.589886i \(-0.799173\pi\)
−0.807486 + 0.589886i \(0.799173\pi\)
\(174\) 9.01061e9 0.745217
\(175\) 2.22444e9 0.179287
\(176\) 1.70371e9 0.133841
\(177\) 3.62048e9 0.277259
\(178\) 1.77616e10 1.32615
\(179\) −1.15308e10 −0.839503 −0.419751 0.907639i \(-0.637883\pi\)
−0.419751 + 0.907639i \(0.637883\pi\)
\(180\) 1.51337e9 0.107453
\(181\) −5.07036e8 −0.0351144 −0.0175572 0.999846i \(-0.505589\pi\)
−0.0175572 + 0.999846i \(0.505589\pi\)
\(182\) −3.43939e9 −0.232359
\(183\) −2.72790e9 −0.179804
\(184\) 1.17808e9 0.0757695
\(185\) 1.27058e10 0.797495
\(186\) 8.05295e9 0.493340
\(187\) −2.17125e9 −0.129844
\(188\) −1.32668e10 −0.774560
\(189\) 1.03581e9 0.0590477
\(190\) −1.67900e9 −0.0934672
\(191\) −1.57949e10 −0.858752 −0.429376 0.903126i \(-0.641266\pi\)
−0.429376 + 0.903126i \(0.641266\pi\)
\(192\) −1.35895e9 −0.0721688
\(193\) −2.43748e10 −1.26454 −0.632272 0.774746i \(-0.717878\pi\)
−0.632272 + 0.774746i \(0.717878\pi\)
\(194\) 1.26509e10 0.641229
\(195\) 8.04925e9 0.398657
\(196\) −9.35802e9 −0.452930
\(197\) −2.45125e10 −1.15955 −0.579775 0.814777i \(-0.696860\pi\)
−0.579775 + 0.814777i \(0.696860\pi\)
\(198\) −2.72901e9 −0.126186
\(199\) 1.29044e10 0.583311 0.291655 0.956523i \(-0.405794\pi\)
0.291655 + 0.956523i \(0.405794\pi\)
\(200\) 4.67470e9 0.206594
\(201\) 6.16629e9 0.266466
\(202\) 8.60918e9 0.363815
\(203\) −1.35511e10 −0.560071
\(204\) 1.73189e9 0.0700140
\(205\) −6.86749e9 −0.271585
\(206\) −9.12936e9 −0.353214
\(207\) −1.88706e9 −0.0714362
\(208\) −7.22794e9 −0.267750
\(209\) 3.02768e9 0.109762
\(210\) −2.27597e9 −0.0807569
\(211\) 3.25664e10 1.13109 0.565547 0.824716i \(-0.308665\pi\)
0.565547 + 0.824716i \(0.308665\pi\)
\(212\) 7.04238e9 0.239446
\(213\) 6.11694e9 0.203623
\(214\) 1.09280e10 0.356187
\(215\) −9.19323e9 −0.293424
\(216\) 2.17678e9 0.0680414
\(217\) −1.21109e10 −0.370772
\(218\) −9.26107e9 −0.277720
\(219\) 3.32284e10 0.976139
\(220\) 5.99640e9 0.172579
\(221\) 9.21150e9 0.259756
\(222\) 1.82755e10 0.504989
\(223\) 2.62532e10 0.710903 0.355451 0.934695i \(-0.384327\pi\)
0.355451 + 0.934695i \(0.384327\pi\)
\(224\) 2.04374e9 0.0542388
\(225\) −7.48796e9 −0.194779
\(226\) 1.62214e10 0.413619
\(227\) −1.97689e10 −0.494158 −0.247079 0.968995i \(-0.579471\pi\)
−0.247079 + 0.968995i \(0.579471\pi\)
\(228\) −2.41502e9 −0.0591852
\(229\) −3.36452e10 −0.808468 −0.404234 0.914656i \(-0.632462\pi\)
−0.404234 + 0.914656i \(0.632462\pi\)
\(230\) 4.14639e9 0.0977001
\(231\) 4.10418e9 0.0948358
\(232\) −2.84780e10 −0.645377
\(233\) 4.57811e9 0.101762 0.0508808 0.998705i \(-0.483797\pi\)
0.0508808 + 0.998705i \(0.483797\pi\)
\(234\) 1.15778e10 0.252437
\(235\) −4.66940e10 −0.998747
\(236\) −1.14425e10 −0.240113
\(237\) −2.80709e10 −0.577948
\(238\) −2.60460e9 −0.0526194
\(239\) −2.38479e9 −0.0472781 −0.0236391 0.999721i \(-0.507525\pi\)
−0.0236391 + 0.999721i \(0.507525\pi\)
\(240\) −4.78300e9 −0.0930572
\(241\) 5.01161e9 0.0956975 0.0478487 0.998855i \(-0.484763\pi\)
0.0478487 + 0.998855i \(0.484763\pi\)
\(242\) 2.69141e10 0.504441
\(243\) −3.48678e9 −0.0641500
\(244\) 8.62153e9 0.155715
\(245\) −3.29366e10 −0.584026
\(246\) −9.87796e9 −0.171973
\(247\) −1.28449e10 −0.219580
\(248\) −2.54513e10 −0.427245
\(249\) 5.92928e10 0.977474
\(250\) 4.46101e10 0.722276
\(251\) −3.75043e10 −0.596416 −0.298208 0.954501i \(-0.596389\pi\)
−0.298208 + 0.954501i \(0.596389\pi\)
\(252\) −3.27368e9 −0.0511368
\(253\) −7.47704e9 −0.114733
\(254\) −5.88383e10 −0.886969
\(255\) 6.09560e9 0.0902787
\(256\) 4.29497e9 0.0625000
\(257\) −1.37923e11 −1.97214 −0.986069 0.166334i \(-0.946807\pi\)
−0.986069 + 0.166334i \(0.946807\pi\)
\(258\) −1.32232e10 −0.185801
\(259\) −2.74847e10 −0.379527
\(260\) −2.54396e10 −0.345247
\(261\) 4.56162e10 0.608467
\(262\) −4.93689e10 −0.647288
\(263\) 7.87614e10 1.01511 0.507554 0.861620i \(-0.330550\pi\)
0.507554 + 0.861620i \(0.330550\pi\)
\(264\) 8.62501e9 0.109280
\(265\) 2.47865e10 0.308751
\(266\) 3.63196e9 0.0444809
\(267\) 8.99179e10 1.08279
\(268\) −1.94885e10 −0.230766
\(269\) −5.59249e10 −0.651209 −0.325604 0.945506i \(-0.605568\pi\)
−0.325604 + 0.945506i \(0.605568\pi\)
\(270\) 7.66144e9 0.0877351
\(271\) −1.74154e11 −1.96142 −0.980711 0.195464i \(-0.937379\pi\)
−0.980711 + 0.195464i \(0.937379\pi\)
\(272\) −5.47363e9 −0.0606339
\(273\) −1.74119e10 −0.189720
\(274\) −3.76694e10 −0.403748
\(275\) −2.96694e10 −0.312832
\(276\) 5.96403e9 0.0618655
\(277\) 7.82075e10 0.798159 0.399080 0.916916i \(-0.369330\pi\)
0.399080 + 0.916916i \(0.369330\pi\)
\(278\) −4.49340e10 −0.451204
\(279\) 4.07680e10 0.402811
\(280\) 7.19319e9 0.0699376
\(281\) 6.59729e9 0.0631229 0.0315614 0.999502i \(-0.489952\pi\)
0.0315614 + 0.999502i \(0.489952\pi\)
\(282\) −6.71631e10 −0.632426
\(283\) −5.51464e10 −0.511067 −0.255534 0.966800i \(-0.582251\pi\)
−0.255534 + 0.966800i \(0.582251\pi\)
\(284\) −1.93326e10 −0.176342
\(285\) −8.49993e9 −0.0763156
\(286\) 4.58743e10 0.405436
\(287\) 1.48555e10 0.129247
\(288\) −6.87971e9 −0.0589256
\(289\) 6.97576e9 0.0588235
\(290\) −1.00232e11 −0.832173
\(291\) 6.40451e10 0.523561
\(292\) −1.05018e11 −0.845361
\(293\) −3.43875e10 −0.272581 −0.136291 0.990669i \(-0.543518\pi\)
−0.136291 + 0.990669i \(0.543518\pi\)
\(294\) −4.73750e10 −0.369816
\(295\) −4.02732e10 −0.309611
\(296\) −5.77597e10 −0.437333
\(297\) −1.38156e10 −0.103031
\(298\) 8.89490e10 0.653383
\(299\) 3.17212e10 0.229525
\(300\) 2.36657e10 0.168684
\(301\) 1.98865e10 0.139640
\(302\) 1.40733e11 0.973562
\(303\) 4.35840e10 0.297054
\(304\) 7.63264e9 0.0512559
\(305\) 3.03445e10 0.200785
\(306\) 8.76770e9 0.0571662
\(307\) 2.53914e11 1.63141 0.815707 0.578465i \(-0.196348\pi\)
0.815707 + 0.578465i \(0.196348\pi\)
\(308\) −1.29712e10 −0.0821302
\(309\) −4.62174e10 −0.288398
\(310\) −8.95788e10 −0.550906
\(311\) −2.55183e10 −0.154679 −0.0773393 0.997005i \(-0.524642\pi\)
−0.0773393 + 0.997005i \(0.524642\pi\)
\(312\) −3.65915e10 −0.218617
\(313\) 5.48416e10 0.322969 0.161484 0.986875i \(-0.448372\pi\)
0.161484 + 0.986875i \(0.448372\pi\)
\(314\) −3.56204e10 −0.206783
\(315\) −1.15221e10 −0.0659378
\(316\) 8.87179e10 0.500518
\(317\) 2.24499e11 1.24867 0.624336 0.781156i \(-0.285370\pi\)
0.624336 + 0.781156i \(0.285370\pi\)
\(318\) 3.56520e10 0.195507
\(319\) 1.80744e11 0.977251
\(320\) 1.51166e10 0.0805899
\(321\) 5.53229e10 0.290826
\(322\) −8.96935e9 −0.0464953
\(323\) −9.72726e9 −0.0497255
\(324\) 1.10200e10 0.0555556
\(325\) 1.25872e11 0.625826
\(326\) −7.23878e10 −0.354966
\(327\) −4.68842e10 −0.226757
\(328\) 3.12192e10 0.148933
\(329\) 1.01007e11 0.475302
\(330\) 3.03568e10 0.140910
\(331\) 2.56771e11 1.17576 0.587881 0.808947i \(-0.299962\pi\)
0.587881 + 0.808947i \(0.299962\pi\)
\(332\) −1.87395e11 −0.846517
\(333\) 9.25199e10 0.412322
\(334\) −2.81731e9 −0.0123873
\(335\) −6.85922e10 −0.297559
\(336\) 1.03464e10 0.0442858
\(337\) 1.12141e11 0.473618 0.236809 0.971556i \(-0.423898\pi\)
0.236809 + 0.971556i \(0.423898\pi\)
\(338\) −2.49490e10 −0.103975
\(339\) 8.21209e10 0.337718
\(340\) −1.92651e10 −0.0781837
\(341\) 1.61534e11 0.646949
\(342\) −1.22260e10 −0.0483245
\(343\) 1.49899e11 0.584758
\(344\) 4.17919e10 0.160909
\(345\) 2.09911e10 0.0797718
\(346\) 3.04434e11 1.14196
\(347\) 3.79942e10 0.140681 0.0703404 0.997523i \(-0.477591\pi\)
0.0703404 + 0.997523i \(0.477591\pi\)
\(348\) −1.44170e11 −0.526948
\(349\) 2.71952e11 0.981246 0.490623 0.871372i \(-0.336769\pi\)
0.490623 + 0.871372i \(0.336769\pi\)
\(350\) −3.55910e10 −0.126775
\(351\) 5.86125e10 0.206114
\(352\) −2.72593e10 −0.0946396
\(353\) 3.27883e11 1.12391 0.561956 0.827167i \(-0.310049\pi\)
0.561956 + 0.827167i \(0.310049\pi\)
\(354\) −5.79276e10 −0.196052
\(355\) −6.80432e10 −0.227383
\(356\) −2.84185e11 −0.937727
\(357\) −1.31858e10 −0.0429635
\(358\) 1.84493e11 0.593618
\(359\) −7.16409e10 −0.227633 −0.113817 0.993502i \(-0.536308\pi\)
−0.113817 + 0.993502i \(0.536308\pi\)
\(360\) −2.42139e10 −0.0759809
\(361\) −3.09124e11 −0.957965
\(362\) 8.11257e9 0.0248296
\(363\) 1.36253e11 0.411874
\(364\) 5.50302e10 0.164303
\(365\) −3.69624e11 −1.09004
\(366\) 4.36465e10 0.127141
\(367\) 2.69983e11 0.776853 0.388427 0.921480i \(-0.373019\pi\)
0.388427 + 0.921480i \(0.373019\pi\)
\(368\) −1.88493e10 −0.0535771
\(369\) −5.00072e10 −0.140415
\(370\) −2.03292e11 −0.563914
\(371\) −5.36174e10 −0.146934
\(372\) −1.28847e11 −0.348844
\(373\) −2.51049e11 −0.671534 −0.335767 0.941945i \(-0.608995\pi\)
−0.335767 + 0.941945i \(0.608995\pi\)
\(374\) 3.47401e10 0.0918139
\(375\) 2.25839e11 0.589736
\(376\) 2.12268e11 0.547697
\(377\) −7.66804e11 −1.95501
\(378\) −1.65730e10 −0.0417530
\(379\) 4.28602e11 1.06703 0.533516 0.845790i \(-0.320870\pi\)
0.533516 + 0.845790i \(0.320870\pi\)
\(380\) 2.68640e10 0.0660913
\(381\) −2.97869e11 −0.724207
\(382\) 2.52719e11 0.607229
\(383\) 3.82563e11 0.908467 0.454233 0.890883i \(-0.349913\pi\)
0.454233 + 0.890883i \(0.349913\pi\)
\(384\) 2.17433e10 0.0510310
\(385\) −4.56538e10 −0.105902
\(386\) 3.89998e11 0.894168
\(387\) −6.69426e10 −0.151706
\(388\) −2.02414e11 −0.453417
\(389\) 6.42384e11 1.42240 0.711200 0.702990i \(-0.248152\pi\)
0.711200 + 0.702990i \(0.248152\pi\)
\(390\) −1.28788e11 −0.281893
\(391\) 2.40221e10 0.0519775
\(392\) 1.49728e11 0.320270
\(393\) −2.49930e11 −0.528508
\(394\) 3.92200e11 0.819926
\(395\) 3.12253e11 0.645387
\(396\) 4.36641e10 0.0892271
\(397\) −7.12935e11 −1.44043 −0.720216 0.693750i \(-0.755957\pi\)
−0.720216 + 0.693750i \(0.755957\pi\)
\(398\) −2.06471e11 −0.412463
\(399\) 1.83868e10 0.0363185
\(400\) −7.47952e10 −0.146084
\(401\) 6.99689e11 1.35131 0.675656 0.737217i \(-0.263861\pi\)
0.675656 + 0.737217i \(0.263861\pi\)
\(402\) −9.86606e10 −0.188420
\(403\) −6.85306e11 −1.29423
\(404\) −1.37747e11 −0.257256
\(405\) 3.87861e10 0.0716354
\(406\) 2.16818e11 0.396030
\(407\) 3.66590e11 0.662225
\(408\) −2.77103e10 −0.0495074
\(409\) −8.73573e11 −1.54363 −0.771817 0.635844i \(-0.780652\pi\)
−0.771817 + 0.635844i \(0.780652\pi\)
\(410\) 1.09880e11 0.192039
\(411\) −1.90701e11 −0.329659
\(412\) 1.46070e11 0.249760
\(413\) 8.71178e10 0.147344
\(414\) 3.01929e10 0.0505130
\(415\) −6.59557e11 −1.09153
\(416\) 1.15647e11 0.189328
\(417\) −2.27478e11 −0.368407
\(418\) −4.84429e10 −0.0776134
\(419\) −8.22467e11 −1.30363 −0.651816 0.758377i \(-0.725993\pi\)
−0.651816 + 0.758377i \(0.725993\pi\)
\(420\) 3.64155e10 0.0571038
\(421\) −5.36358e8 −0.000832118 0 −0.000416059 1.00000i \(-0.500132\pi\)
−0.000416059 1.00000i \(0.500132\pi\)
\(422\) −5.21063e11 −0.799805
\(423\) −3.40013e11 −0.516373
\(424\) −1.12678e11 −0.169314
\(425\) 9.53212e10 0.141723
\(426\) −9.78711e10 −0.143983
\(427\) −6.56403e10 −0.0955531
\(428\) −1.74848e11 −0.251862
\(429\) 2.32239e11 0.331037
\(430\) 1.47092e11 0.207482
\(431\) 1.45550e11 0.203172 0.101586 0.994827i \(-0.467608\pi\)
0.101586 + 0.994827i \(0.467608\pi\)
\(432\) −3.48285e10 −0.0481125
\(433\) −1.25589e11 −0.171695 −0.0858475 0.996308i \(-0.527360\pi\)
−0.0858475 + 0.996308i \(0.527360\pi\)
\(434\) 1.93774e11 0.262176
\(435\) −5.07423e11 −0.679467
\(436\) 1.48177e11 0.196378
\(437\) −3.34973e10 −0.0439383
\(438\) −5.31655e11 −0.690234
\(439\) −1.32851e12 −1.70716 −0.853582 0.520958i \(-0.825575\pi\)
−0.853582 + 0.520958i \(0.825575\pi\)
\(440\) −9.59424e10 −0.122032
\(441\) −2.39836e11 −0.301954
\(442\) −1.47384e11 −0.183675
\(443\) −3.17602e11 −0.391801 −0.195901 0.980624i \(-0.562763\pi\)
−0.195901 + 0.980624i \(0.562763\pi\)
\(444\) −2.92409e11 −0.357081
\(445\) −1.00022e12 −1.20914
\(446\) −4.20051e11 −0.502684
\(447\) 4.50304e11 0.533485
\(448\) −3.26999e10 −0.0383526
\(449\) −5.01367e11 −0.582166 −0.291083 0.956698i \(-0.594016\pi\)
−0.291083 + 0.956698i \(0.594016\pi\)
\(450\) 1.19807e11 0.137730
\(451\) −1.98142e11 −0.225519
\(452\) −2.59542e11 −0.292473
\(453\) 7.12459e11 0.794910
\(454\) 3.16302e11 0.349422
\(455\) 1.93685e11 0.211858
\(456\) 3.86402e10 0.0418502
\(457\) −3.23430e11 −0.346863 −0.173431 0.984846i \(-0.555485\pi\)
−0.173431 + 0.984846i \(0.555485\pi\)
\(458\) 5.38323e11 0.571673
\(459\) 4.43865e10 0.0466760
\(460\) −6.63423e10 −0.0690844
\(461\) 1.34674e12 1.38876 0.694381 0.719607i \(-0.255678\pi\)
0.694381 + 0.719607i \(0.255678\pi\)
\(462\) −6.56668e10 −0.0670590
\(463\) −7.31716e11 −0.739994 −0.369997 0.929033i \(-0.620641\pi\)
−0.369997 + 0.929033i \(0.620641\pi\)
\(464\) 4.55648e11 0.456350
\(465\) −4.53493e11 −0.449813
\(466\) −7.32497e10 −0.0719564
\(467\) 1.60468e12 1.56122 0.780608 0.625021i \(-0.214910\pi\)
0.780608 + 0.625021i \(0.214910\pi\)
\(468\) −1.85244e11 −0.178500
\(469\) 1.48377e11 0.141608
\(470\) 7.47104e11 0.706221
\(471\) −1.80328e11 −0.168838
\(472\) 1.83080e11 0.169786
\(473\) −2.65245e11 −0.243653
\(474\) 4.49135e11 0.408671
\(475\) −1.32919e11 −0.119803
\(476\) 4.16737e10 0.0372075
\(477\) 1.80488e11 0.159631
\(478\) 3.81567e10 0.0334307
\(479\) −2.96397e11 −0.257255 −0.128628 0.991693i \(-0.541057\pi\)
−0.128628 + 0.991693i \(0.541057\pi\)
\(480\) 7.65280e10 0.0658014
\(481\) −1.55525e12 −1.32479
\(482\) −8.01857e10 −0.0676683
\(483\) −4.54073e10 −0.0379633
\(484\) −4.30625e11 −0.356694
\(485\) −7.12420e11 −0.584653
\(486\) 5.57886e10 0.0453609
\(487\) 4.65516e11 0.375020 0.187510 0.982263i \(-0.439958\pi\)
0.187510 + 0.982263i \(0.439958\pi\)
\(488\) −1.37944e11 −0.110107
\(489\) −3.66463e11 −0.289828
\(490\) 5.26986e11 0.412969
\(491\) 2.92693e11 0.227272 0.113636 0.993522i \(-0.463750\pi\)
0.113636 + 0.993522i \(0.463750\pi\)
\(492\) 1.58047e11 0.121603
\(493\) −5.80691e11 −0.442725
\(494\) 2.05518e11 0.155267
\(495\) 1.53681e11 0.115053
\(496\) 4.07221e11 0.302108
\(497\) 1.47189e11 0.108211
\(498\) −9.48685e11 −0.691178
\(499\) 1.78163e12 1.28637 0.643185 0.765711i \(-0.277613\pi\)
0.643185 + 0.765711i \(0.277613\pi\)
\(500\) −7.13762e11 −0.510726
\(501\) −1.42626e10 −0.0101142
\(502\) 6.00069e11 0.421730
\(503\) 1.95659e12 1.36283 0.681417 0.731895i \(-0.261364\pi\)
0.681417 + 0.731895i \(0.261364\pi\)
\(504\) 5.23789e10 0.0361592
\(505\) −4.84816e11 −0.331716
\(506\) 1.19633e11 0.0811283
\(507\) −1.26304e11 −0.0848950
\(508\) 9.41412e11 0.627181
\(509\) 4.54550e11 0.300159 0.150080 0.988674i \(-0.452047\pi\)
0.150080 + 0.988674i \(0.452047\pi\)
\(510\) −9.75295e10 −0.0638367
\(511\) 7.99560e11 0.518749
\(512\) −6.87195e10 −0.0441942
\(513\) −6.18942e10 −0.0394568
\(514\) 2.20677e12 1.39451
\(515\) 5.14110e11 0.322050
\(516\) 2.11572e11 0.131381
\(517\) −1.34723e12 −0.829340
\(518\) 4.39756e11 0.268366
\(519\) 1.54120e12 0.932405
\(520\) 4.07034e11 0.244127
\(521\) 6.91402e11 0.411113 0.205556 0.978645i \(-0.434100\pi\)
0.205556 + 0.978645i \(0.434100\pi\)
\(522\) −7.29860e11 −0.430251
\(523\) −1.96595e12 −1.14899 −0.574493 0.818510i \(-0.694801\pi\)
−0.574493 + 0.818510i \(0.694801\pi\)
\(524\) 7.89902e11 0.457702
\(525\) −1.80179e11 −0.103511
\(526\) −1.26018e12 −0.717790
\(527\) −5.18974e11 −0.293088
\(528\) −1.38000e11 −0.0772729
\(529\) −1.71843e12 −0.954072
\(530\) −3.96584e11 −0.218320
\(531\) −2.93259e11 −0.160076
\(532\) −5.81114e10 −0.0314528
\(533\) 8.40615e11 0.451154
\(534\) −1.43869e12 −0.765651
\(535\) −6.15397e11 −0.324761
\(536\) 3.11816e11 0.163176
\(537\) 9.33998e11 0.484687
\(538\) 8.94799e11 0.460474
\(539\) −9.50296e11 −0.484964
\(540\) −1.22583e11 −0.0620381
\(541\) 6.17722e11 0.310031 0.155015 0.987912i \(-0.450457\pi\)
0.155015 + 0.987912i \(0.450457\pi\)
\(542\) 2.78646e12 1.38693
\(543\) 4.10699e10 0.0202733
\(544\) 8.75781e10 0.0428746
\(545\) 5.21527e11 0.253217
\(546\) 2.78590e11 0.134153
\(547\) −1.45929e12 −0.696946 −0.348473 0.937319i \(-0.613300\pi\)
−0.348473 + 0.937319i \(0.613300\pi\)
\(548\) 6.02710e11 0.285493
\(549\) 2.20960e11 0.103810
\(550\) 4.74710e11 0.221206
\(551\) 8.09737e11 0.374250
\(552\) −9.54245e10 −0.0437455
\(553\) −6.75457e11 −0.307139
\(554\) −1.25132e12 −0.564384
\(555\) −1.02917e12 −0.460434
\(556\) 7.18944e11 0.319050
\(557\) −2.73089e12 −1.20214 −0.601072 0.799195i \(-0.705259\pi\)
−0.601072 + 0.799195i \(0.705259\pi\)
\(558\) −6.52289e11 −0.284830
\(559\) 1.12530e12 0.487432
\(560\) −1.15091e11 −0.0494533
\(561\) 1.75872e11 0.0749657
\(562\) −1.05557e11 −0.0446346
\(563\) −1.46442e12 −0.614297 −0.307148 0.951662i \(-0.599375\pi\)
−0.307148 + 0.951662i \(0.599375\pi\)
\(564\) 1.07461e12 0.447192
\(565\) −9.13490e11 −0.377126
\(566\) 8.82342e11 0.361379
\(567\) −8.39008e10 −0.0340912
\(568\) 3.09321e11 0.124693
\(569\) 1.20243e12 0.480898 0.240449 0.970662i \(-0.422705\pi\)
0.240449 + 0.970662i \(0.422705\pi\)
\(570\) 1.35999e11 0.0539633
\(571\) 2.17441e12 0.856010 0.428005 0.903776i \(-0.359217\pi\)
0.428005 + 0.903776i \(0.359217\pi\)
\(572\) −7.33989e11 −0.286687
\(573\) 1.27939e12 0.495801
\(574\) −2.37689e11 −0.0913913
\(575\) 3.28253e11 0.125228
\(576\) 1.10075e11 0.0416667
\(577\) −2.34293e12 −0.879972 −0.439986 0.898005i \(-0.645017\pi\)
−0.439986 + 0.898005i \(0.645017\pi\)
\(578\) −1.11612e11 −0.0415945
\(579\) 1.97436e12 0.730085
\(580\) 1.60371e12 0.588435
\(581\) 1.42673e12 0.519458
\(582\) −1.02472e12 −0.370214
\(583\) 7.15145e11 0.256381
\(584\) 1.68029e12 0.597760
\(585\) −6.51989e11 −0.230165
\(586\) 5.50200e11 0.192744
\(587\) 3.53091e12 1.22748 0.613740 0.789508i \(-0.289664\pi\)
0.613740 + 0.789508i \(0.289664\pi\)
\(588\) 7.57999e11 0.261500
\(589\) 7.23677e11 0.247757
\(590\) 6.44371e11 0.218928
\(591\) 1.98551e12 0.669467
\(592\) 9.24156e11 0.309241
\(593\) −2.00254e12 −0.665021 −0.332510 0.943100i \(-0.607896\pi\)
−0.332510 + 0.943100i \(0.607896\pi\)
\(594\) 2.21050e11 0.0728536
\(595\) 1.46675e11 0.0479768
\(596\) −1.42318e12 −0.462011
\(597\) −1.04526e12 −0.336775
\(598\) −5.07539e11 −0.162298
\(599\) 2.63623e12 0.836686 0.418343 0.908289i \(-0.362611\pi\)
0.418343 + 0.908289i \(0.362611\pi\)
\(600\) −3.78651e11 −0.119277
\(601\) 3.41223e12 1.06685 0.533425 0.845847i \(-0.320904\pi\)
0.533425 + 0.845847i \(0.320904\pi\)
\(602\) −3.18184e11 −0.0987403
\(603\) −4.99470e11 −0.153844
\(604\) −2.25172e12 −0.688412
\(605\) −1.51564e12 −0.459934
\(606\) −6.97343e11 −0.210049
\(607\) 1.20751e12 0.361028 0.180514 0.983572i \(-0.442224\pi\)
0.180514 + 0.983572i \(0.442224\pi\)
\(608\) −1.22122e11 −0.0362434
\(609\) 1.09764e12 0.323357
\(610\) −4.85512e11 −0.141976
\(611\) 5.71558e12 1.65911
\(612\) −1.40283e11 −0.0404226
\(613\) −2.91601e12 −0.834099 −0.417049 0.908884i \(-0.636936\pi\)
−0.417049 + 0.908884i \(0.636936\pi\)
\(614\) −4.06263e12 −1.15358
\(615\) 5.56266e11 0.156800
\(616\) 2.07540e11 0.0580748
\(617\) −5.62865e11 −0.156358 −0.0781792 0.996939i \(-0.524911\pi\)
−0.0781792 + 0.996939i \(0.524911\pi\)
\(618\) 7.39478e11 0.203928
\(619\) −2.45987e12 −0.673447 −0.336724 0.941604i \(-0.609319\pi\)
−0.336724 + 0.941604i \(0.609319\pi\)
\(620\) 1.43326e12 0.389550
\(621\) 1.52852e11 0.0412437
\(622\) 4.08293e11 0.109374
\(623\) 2.16365e12 0.575428
\(624\) 5.85463e11 0.154586
\(625\) −2.83098e11 −0.0742125
\(626\) −8.77466e11 −0.228373
\(627\) −2.45242e11 −0.0633710
\(628\) 5.69926e11 0.146218
\(629\) −1.17777e12 −0.300008
\(630\) 1.84354e11 0.0466250
\(631\) −3.46216e12 −0.869390 −0.434695 0.900578i \(-0.643144\pi\)
−0.434695 + 0.900578i \(0.643144\pi\)
\(632\) −1.41949e12 −0.353920
\(633\) −2.63788e12 −0.653038
\(634\) −3.59199e12 −0.882944
\(635\) 3.31341e12 0.808712
\(636\) −5.70433e11 −0.138244
\(637\) 4.03161e12 0.970178
\(638\) −2.89191e12 −0.691021
\(639\) −4.95472e11 −0.117562
\(640\) −2.41866e11 −0.0569857
\(641\) −4.24397e12 −0.992912 −0.496456 0.868062i \(-0.665366\pi\)
−0.496456 + 0.868062i \(0.665366\pi\)
\(642\) −8.85167e11 −0.205645
\(643\) 7.91930e12 1.82699 0.913497 0.406844i \(-0.133371\pi\)
0.913497 + 0.406844i \(0.133371\pi\)
\(644\) 1.43510e11 0.0328772
\(645\) 7.44652e11 0.169408
\(646\) 1.55636e11 0.0351612
\(647\) 2.49395e11 0.0559523 0.0279762 0.999609i \(-0.491094\pi\)
0.0279762 + 0.999609i \(0.491094\pi\)
\(648\) −1.76319e11 −0.0392837
\(649\) −1.16197e12 −0.257095
\(650\) −2.01395e12 −0.442526
\(651\) 9.80982e11 0.214065
\(652\) 1.15821e12 0.250999
\(653\) 1.63163e12 0.351167 0.175583 0.984465i \(-0.443819\pi\)
0.175583 + 0.984465i \(0.443819\pi\)
\(654\) 7.50147e11 0.160342
\(655\) 2.78015e12 0.590178
\(656\) −4.99508e11 −0.105311
\(657\) −2.69150e12 −0.563574
\(658\) −1.61611e12 −0.336090
\(659\) −4.22978e12 −0.873641 −0.436820 0.899549i \(-0.643896\pi\)
−0.436820 + 0.899549i \(0.643896\pi\)
\(660\) −4.85708e11 −0.0996386
\(661\) −2.12817e12 −0.433611 −0.216806 0.976215i \(-0.569564\pi\)
−0.216806 + 0.976215i \(0.569564\pi\)
\(662\) −4.10833e12 −0.831390
\(663\) −7.46132e11 −0.149970
\(664\) 2.99831e12 0.598578
\(665\) −2.04530e11 −0.0405564
\(666\) −1.48032e12 −0.291556
\(667\) −1.99970e12 −0.391199
\(668\) 4.50770e10 0.00875912
\(669\) −2.12651e12 −0.410440
\(670\) 1.09747e12 0.210406
\(671\) 8.75506e11 0.166728
\(672\) −1.65543e11 −0.0313148
\(673\) 4.23872e12 0.796465 0.398232 0.917285i \(-0.369624\pi\)
0.398232 + 0.917285i \(0.369624\pi\)
\(674\) −1.79425e12 −0.334898
\(675\) 6.06525e11 0.112456
\(676\) 3.99184e11 0.0735212
\(677\) −7.17586e12 −1.31288 −0.656440 0.754378i \(-0.727939\pi\)
−0.656440 + 0.754378i \(0.727939\pi\)
\(678\) −1.31393e12 −0.238803
\(679\) 1.54109e12 0.278236
\(680\) 3.08242e11 0.0552842
\(681\) 1.60128e12 0.285302
\(682\) −2.58455e12 −0.457462
\(683\) −8.19336e12 −1.44068 −0.720342 0.693619i \(-0.756015\pi\)
−0.720342 + 0.693619i \(0.756015\pi\)
\(684\) 1.95616e11 0.0341706
\(685\) 2.12131e12 0.368126
\(686\) −2.39839e12 −0.413486
\(687\) 2.72526e12 0.466769
\(688\) −6.68671e11 −0.113780
\(689\) −3.03399e12 −0.512894
\(690\) −3.35858e11 −0.0564072
\(691\) 8.75619e12 1.46105 0.730523 0.682888i \(-0.239276\pi\)
0.730523 + 0.682888i \(0.239276\pi\)
\(692\) −4.87094e12 −0.807486
\(693\) −3.32438e11 −0.0547535
\(694\) −6.07908e11 −0.0994764
\(695\) 2.53041e12 0.411395
\(696\) 2.30672e12 0.372608
\(697\) 6.36587e11 0.102167
\(698\) −4.35123e12 −0.693846
\(699\) −3.70827e11 −0.0587521
\(700\) 5.69456e11 0.0896435
\(701\) −8.05440e12 −1.25980 −0.629901 0.776675i \(-0.716905\pi\)
−0.629901 + 0.776675i \(0.716905\pi\)
\(702\) −9.37799e11 −0.145745
\(703\) 1.64233e12 0.253607
\(704\) 4.36149e11 0.0669203
\(705\) 3.78221e12 0.576627
\(706\) −5.24612e12 −0.794725
\(707\) 1.04874e12 0.157863
\(708\) 9.26842e11 0.138630
\(709\) −5.52069e12 −0.820513 −0.410257 0.911970i \(-0.634561\pi\)
−0.410257 + 0.911970i \(0.634561\pi\)
\(710\) 1.08869e12 0.160784
\(711\) 2.27374e12 0.333679
\(712\) 4.54696e12 0.663073
\(713\) −1.78716e12 −0.258977
\(714\) 2.10973e11 0.0303798
\(715\) −2.58336e12 −0.369665
\(716\) −2.95189e12 −0.419751
\(717\) 1.93168e11 0.0272960
\(718\) 1.14625e12 0.160961
\(719\) 1.33634e13 1.86483 0.932413 0.361393i \(-0.117699\pi\)
0.932413 + 0.361393i \(0.117699\pi\)
\(720\) 3.87423e11 0.0537266
\(721\) −1.11211e12 −0.153263
\(722\) 4.94598e12 0.677384
\(723\) −4.05940e11 −0.0552510
\(724\) −1.29801e11 −0.0175572
\(725\) −7.93493e12 −1.06665
\(726\) −2.18004e12 −0.291239
\(727\) −2.50036e12 −0.331969 −0.165985 0.986128i \(-0.553080\pi\)
−0.165985 + 0.986128i \(0.553080\pi\)
\(728\) −8.80483e11 −0.116180
\(729\) 2.82430e11 0.0370370
\(730\) 5.91399e12 0.770775
\(731\) 8.52174e11 0.110382
\(732\) −6.98344e11 −0.0899020
\(733\) 1.29133e12 0.165222 0.0826110 0.996582i \(-0.473674\pi\)
0.0826110 + 0.996582i \(0.473674\pi\)
\(734\) −4.31973e12 −0.549318
\(735\) 2.66787e12 0.337187
\(736\) 3.01588e11 0.0378848
\(737\) −1.97904e12 −0.247087
\(738\) 8.00115e11 0.0992884
\(739\) 4.95427e12 0.611054 0.305527 0.952183i \(-0.401167\pi\)
0.305527 + 0.952183i \(0.401167\pi\)
\(740\) 3.25268e12 0.398748
\(741\) 1.04043e12 0.126775
\(742\) 8.57878e11 0.103898
\(743\) −6.63545e12 −0.798768 −0.399384 0.916784i \(-0.630776\pi\)
−0.399384 + 0.916784i \(0.630776\pi\)
\(744\) 2.06155e12 0.246670
\(745\) −5.00906e12 −0.595735
\(746\) 4.01678e12 0.474846
\(747\) −4.80272e12 −0.564345
\(748\) −5.55841e11 −0.0649222
\(749\) 1.33121e12 0.154553
\(750\) −3.61342e12 −0.417006
\(751\) 1.26932e13 1.45610 0.728049 0.685525i \(-0.240427\pi\)
0.728049 + 0.685525i \(0.240427\pi\)
\(752\) −3.39629e12 −0.387280
\(753\) 3.03785e12 0.344341
\(754\) 1.22689e13 1.38240
\(755\) −7.92520e12 −0.887665
\(756\) 2.65168e11 0.0295239
\(757\) 3.41823e12 0.378329 0.189165 0.981945i \(-0.439422\pi\)
0.189165 + 0.981945i \(0.439422\pi\)
\(758\) −6.85762e12 −0.754505
\(759\) 6.05640e11 0.0662410
\(760\) −4.29824e11 −0.0467336
\(761\) −1.74328e13 −1.88424 −0.942119 0.335278i \(-0.891170\pi\)
−0.942119 + 0.335278i \(0.891170\pi\)
\(762\) 4.76590e12 0.512092
\(763\) −1.12815e12 −0.120506
\(764\) −4.04350e12 −0.429376
\(765\) −4.93743e11 −0.0521224
\(766\) −6.12101e12 −0.642383
\(767\) 4.92964e12 0.514323
\(768\) −3.47892e11 −0.0360844
\(769\) −9.93254e12 −1.02422 −0.512108 0.858921i \(-0.671135\pi\)
−0.512108 + 0.858921i \(0.671135\pi\)
\(770\) 7.30460e11 0.0748839
\(771\) 1.11718e13 1.13861
\(772\) −6.23996e12 −0.632272
\(773\) 1.05153e13 1.05928 0.529642 0.848221i \(-0.322326\pi\)
0.529642 + 0.848221i \(0.322326\pi\)
\(774\) 1.07108e12 0.107272
\(775\) −7.09159e12 −0.706132
\(776\) 3.23863e12 0.320614
\(777\) 2.22626e12 0.219120
\(778\) −1.02782e13 −1.00579
\(779\) −8.87681e11 −0.0863652
\(780\) 2.06061e12 0.199329
\(781\) −1.96320e12 −0.188814
\(782\) −3.84353e11 −0.0367536
\(783\) −3.69491e12 −0.351299
\(784\) −2.39565e12 −0.226465
\(785\) 2.00592e12 0.188539
\(786\) 3.99888e12 0.373712
\(787\) 7.04956e12 0.655052 0.327526 0.944842i \(-0.393785\pi\)
0.327526 + 0.944842i \(0.393785\pi\)
\(788\) −6.27520e12 −0.579775
\(789\) −6.37967e12 −0.586073
\(790\) −4.99605e12 −0.456357
\(791\) 1.97603e12 0.179474
\(792\) −6.98626e11 −0.0630931
\(793\) −3.71432e12 −0.333541
\(794\) 1.14070e13 1.01854
\(795\) −2.00771e12 −0.178258
\(796\) 3.30353e12 0.291655
\(797\) −4.59176e12 −0.403104 −0.201552 0.979478i \(-0.564598\pi\)
−0.201552 + 0.979478i \(0.564598\pi\)
\(798\) −2.94189e11 −0.0256811
\(799\) 4.32834e12 0.375717
\(800\) 1.19672e12 0.103297
\(801\) −7.28335e12 −0.625151
\(802\) −1.11950e13 −0.955521
\(803\) −1.06645e13 −0.905149
\(804\) 1.57857e12 0.133233
\(805\) 5.05099e11 0.0423931
\(806\) 1.09649e13 0.915160
\(807\) 4.52992e12 0.375976
\(808\) 2.20395e12 0.181907
\(809\) −5.10874e12 −0.419320 −0.209660 0.977774i \(-0.567236\pi\)
−0.209660 + 0.977774i \(0.567236\pi\)
\(810\) −6.20577e11 −0.0506539
\(811\) 8.88852e12 0.721499 0.360749 0.932663i \(-0.382521\pi\)
0.360749 + 0.932663i \(0.382521\pi\)
\(812\) −3.46909e12 −0.280036
\(813\) 1.41065e13 1.13243
\(814\) −5.86543e12 −0.468263
\(815\) 4.07644e12 0.323647
\(816\) 4.43364e11 0.0350070
\(817\) −1.18830e12 −0.0933100
\(818\) 1.39772e13 1.09151
\(819\) 1.41036e12 0.109535
\(820\) −1.75808e12 −0.135792
\(821\) −7.63232e12 −0.586290 −0.293145 0.956068i \(-0.594702\pi\)
−0.293145 + 0.956068i \(0.594702\pi\)
\(822\) 3.05122e12 0.233104
\(823\) −7.82102e12 −0.594243 −0.297121 0.954840i \(-0.596027\pi\)
−0.297121 + 0.954840i \(0.596027\pi\)
\(824\) −2.33712e12 −0.176607
\(825\) 2.40322e12 0.180614
\(826\) −1.39388e12 −0.104188
\(827\) −1.90083e13 −1.41308 −0.706542 0.707671i \(-0.749746\pi\)
−0.706542 + 0.707671i \(0.749746\pi\)
\(828\) −4.83086e11 −0.0357181
\(829\) 1.50064e13 1.10352 0.551760 0.834003i \(-0.313956\pi\)
0.551760 + 0.834003i \(0.313956\pi\)
\(830\) 1.05529e13 0.771829
\(831\) −6.33481e12 −0.460818
\(832\) −1.85035e12 −0.133875
\(833\) 3.05309e12 0.219704
\(834\) 3.63965e12 0.260503
\(835\) 1.58654e11 0.0112943
\(836\) 7.75086e11 0.0548809
\(837\) −3.30221e12 −0.232563
\(838\) 1.31595e13 0.921807
\(839\) 1.90184e13 1.32509 0.662544 0.749023i \(-0.269477\pi\)
0.662544 + 0.749023i \(0.269477\pi\)
\(840\) −5.82649e11 −0.0403785
\(841\) 3.38320e13 2.33209
\(842\) 8.58172e9 0.000588396 0
\(843\) −5.34380e11 −0.0364440
\(844\) 8.33701e12 0.565547
\(845\) 1.40497e12 0.0948011
\(846\) 5.44021e12 0.365131
\(847\) 3.27858e12 0.218882
\(848\) 1.80285e12 0.119723
\(849\) 4.46686e12 0.295065
\(850\) −1.52514e12 −0.100213
\(851\) −4.05583e12 −0.265092
\(852\) 1.56594e12 0.101811
\(853\) −1.02067e13 −0.660107 −0.330054 0.943962i \(-0.607067\pi\)
−0.330054 + 0.943962i \(0.607067\pi\)
\(854\) 1.05024e12 0.0675663
\(855\) 6.88494e11 0.0440609
\(856\) 2.79756e12 0.178094
\(857\) 1.39075e12 0.0880716 0.0440358 0.999030i \(-0.485978\pi\)
0.0440358 + 0.999030i \(0.485978\pi\)
\(858\) −3.71582e12 −0.234079
\(859\) −2.42866e13 −1.52194 −0.760971 0.648786i \(-0.775277\pi\)
−0.760971 + 0.648786i \(0.775277\pi\)
\(860\) −2.35347e12 −0.146712
\(861\) −1.20330e12 −0.0746207
\(862\) −2.32879e12 −0.143664
\(863\) 2.50537e12 0.153753 0.0768764 0.997041i \(-0.475505\pi\)
0.0768764 + 0.997041i \(0.475505\pi\)
\(864\) 5.57256e11 0.0340207
\(865\) −1.71438e13 −1.04120
\(866\) 2.00943e12 0.121407
\(867\) −5.65036e11 −0.0339618
\(868\) −3.10039e12 −0.185386
\(869\) 9.00920e12 0.535917
\(870\) 8.11876e12 0.480456
\(871\) 8.39603e12 0.494302
\(872\) −2.37083e12 −0.138860
\(873\) −5.18765e12 −0.302278
\(874\) 5.35957e11 0.0310691
\(875\) 5.43425e12 0.313403
\(876\) 8.50648e12 0.488069
\(877\) 1.34515e13 0.767845 0.383922 0.923365i \(-0.374573\pi\)
0.383922 + 0.923365i \(0.374573\pi\)
\(878\) 2.12562e13 1.20715
\(879\) 2.78539e12 0.157375
\(880\) 1.53508e12 0.0862896
\(881\) 2.43085e13 1.35946 0.679729 0.733464i \(-0.262097\pi\)
0.679729 + 0.733464i \(0.262097\pi\)
\(882\) 3.83737e12 0.213513
\(883\) 5.45854e11 0.0302171 0.0151086 0.999886i \(-0.495191\pi\)
0.0151086 + 0.999886i \(0.495191\pi\)
\(884\) 2.35814e12 0.129878
\(885\) 3.26213e12 0.178754
\(886\) 5.08163e12 0.277045
\(887\) −2.37122e12 −0.128622 −0.0643111 0.997930i \(-0.520485\pi\)
−0.0643111 + 0.997930i \(0.520485\pi\)
\(888\) 4.67854e12 0.252494
\(889\) −7.16747e12 −0.384865
\(890\) 1.60036e13 0.854992
\(891\) 1.11906e12 0.0594847
\(892\) 6.72082e12 0.355451
\(893\) −6.03560e12 −0.317606
\(894\) −7.20487e12 −0.377231
\(895\) −1.03895e13 −0.541243
\(896\) 5.23198e11 0.0271194
\(897\) −2.56942e12 −0.132516
\(898\) 8.02187e12 0.411654
\(899\) 4.32015e13 2.20587
\(900\) −1.91692e12 −0.0973896
\(901\) −2.29760e12 −0.116148
\(902\) 3.17028e12 0.159466
\(903\) −1.61081e12 −0.0806211
\(904\) 4.15268e12 0.206809
\(905\) −4.56850e11 −0.0226389
\(906\) −1.13993e13 −0.562086
\(907\) 4.55246e12 0.223364 0.111682 0.993744i \(-0.464376\pi\)
0.111682 + 0.993744i \(0.464376\pi\)
\(908\) −5.06083e12 −0.247079
\(909\) −3.53030e12 −0.171504
\(910\) −3.09896e12 −0.149806
\(911\) −2.30228e13 −1.10746 −0.553728 0.832698i \(-0.686795\pi\)
−0.553728 + 0.832698i \(0.686795\pi\)
\(912\) −6.18244e11 −0.0295926
\(913\) −1.90297e13 −0.906387
\(914\) 5.17488e12 0.245269
\(915\) −2.45790e12 −0.115923
\(916\) −8.61316e12 −0.404234
\(917\) −6.01395e12 −0.280865
\(918\) −7.10184e11 −0.0330049
\(919\) 2.72003e13 1.25792 0.628961 0.777437i \(-0.283480\pi\)
0.628961 + 0.777437i \(0.283480\pi\)
\(920\) 1.06148e12 0.0488500
\(921\) −2.05670e13 −0.941897
\(922\) −2.15478e13 −0.982004
\(923\) 8.32883e12 0.377726
\(924\) 1.05067e12 0.0474179
\(925\) −1.60938e13 −0.722805
\(926\) 1.17075e13 0.523255
\(927\) 3.74361e12 0.166507
\(928\) −7.29036e12 −0.322688
\(929\) 3.68488e13 1.62313 0.811563 0.584265i \(-0.198617\pi\)
0.811563 + 0.584265i \(0.198617\pi\)
\(930\) 7.25589e12 0.318066
\(931\) −4.25734e12 −0.185723
\(932\) 1.17200e12 0.0508808
\(933\) 2.06698e12 0.0893038
\(934\) −2.56749e13 −1.10395
\(935\) −1.95635e12 −0.0837132
\(936\) 2.96391e12 0.126219
\(937\) 4.24848e13 1.80055 0.900275 0.435321i \(-0.143365\pi\)
0.900275 + 0.435321i \(0.143365\pi\)
\(938\) −2.37402e12 −0.100132
\(939\) −4.44217e12 −0.186466
\(940\) −1.19537e13 −0.499374
\(941\) −3.52687e13 −1.46635 −0.733173 0.680043i \(-0.761961\pi\)
−0.733173 + 0.680043i \(0.761961\pi\)
\(942\) 2.88525e12 0.119386
\(943\) 2.19218e12 0.0902764
\(944\) −2.92928e12 −0.120057
\(945\) 9.33290e11 0.0380692
\(946\) 4.24392e12 0.172289
\(947\) −7.57599e12 −0.306101 −0.153050 0.988218i \(-0.548910\pi\)
−0.153050 + 0.988218i \(0.548910\pi\)
\(948\) −7.18615e12 −0.288974
\(949\) 4.52439e13 1.81076
\(950\) 2.12671e12 0.0847134
\(951\) −1.81844e13 −0.720921
\(952\) −6.66779e11 −0.0263097
\(953\) −3.20452e13 −1.25848 −0.629239 0.777212i \(-0.716633\pi\)
−0.629239 + 0.777212i \(0.716633\pi\)
\(954\) −2.88782e12 −0.112876
\(955\) −1.42316e13 −0.553654
\(956\) −6.10507e11 −0.0236391
\(957\) −1.46403e13 −0.564216
\(958\) 4.74236e12 0.181907
\(959\) −4.58875e12 −0.175191
\(960\) −1.22445e12 −0.0465286
\(961\) 1.21704e13 0.460308
\(962\) 2.48840e13 0.936768
\(963\) −4.48116e12 −0.167908
\(964\) 1.28297e12 0.0478487
\(965\) −2.19623e13 −0.815276
\(966\) 7.26517e11 0.0268441
\(967\) −4.96666e13 −1.82661 −0.913305 0.407277i \(-0.866478\pi\)
−0.913305 + 0.407277i \(0.866478\pi\)
\(968\) 6.89000e12 0.252220
\(969\) 7.87908e11 0.0287090
\(970\) 1.13987e13 0.413412
\(971\) −3.98179e13 −1.43745 −0.718724 0.695296i \(-0.755273\pi\)
−0.718724 + 0.695296i \(0.755273\pi\)
\(972\) −8.92617e11 −0.0320750
\(973\) −5.47370e12 −0.195782
\(974\) −7.44826e12 −0.265179
\(975\) −1.01956e13 −0.361321
\(976\) 2.20711e12 0.0778574
\(977\) 1.62538e13 0.570729 0.285365 0.958419i \(-0.407885\pi\)
0.285365 + 0.958419i \(0.407885\pi\)
\(978\) 5.86341e12 0.204940
\(979\) −2.88587e13 −1.00405
\(980\) −8.43178e12 −0.292013
\(981\) 3.79762e12 0.130918
\(982\) −4.68309e12 −0.160705
\(983\) 3.45100e13 1.17884 0.589419 0.807828i \(-0.299357\pi\)
0.589419 + 0.807828i \(0.299357\pi\)
\(984\) −2.52876e12 −0.0859863
\(985\) −2.20863e13 −0.747584
\(986\) 9.29105e12 0.313054
\(987\) −8.18157e12 −0.274416
\(988\) −3.28829e12 −0.109790
\(989\) 2.93459e12 0.0975358
\(990\) −2.45890e12 −0.0813546
\(991\) −3.69472e12 −0.121689 −0.0608443 0.998147i \(-0.519379\pi\)
−0.0608443 + 0.998147i \(0.519379\pi\)
\(992\) −6.51553e12 −0.213623
\(993\) −2.07984e13 −0.678827
\(994\) −2.35503e12 −0.0765168
\(995\) 1.16272e13 0.376072
\(996\) 1.51790e13 0.488737
\(997\) −5.00400e13 −1.60394 −0.801971 0.597363i \(-0.796215\pi\)
−0.801971 + 0.597363i \(0.796215\pi\)
\(998\) −2.85061e13 −0.909601
\(999\) −7.49411e12 −0.238054
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 102.10.a.h.1.3 4
3.2 odd 2 306.10.a.m.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
102.10.a.h.1.3 4 1.1 even 1 trivial
306.10.a.m.1.2 4 3.2 odd 2