Properties

Label 102.10.a.h
Level $102$
Weight $10$
Character orbit 102.a
Self dual yes
Analytic conductor $52.534$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [102,10,Mod(1,102)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(102, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("102.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 102 = 2 \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 102.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-64,-324] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.5336552887\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 520688x^{2} - 146431260x - 953767152 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{5}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 16 q^{2} - 81 q^{3} + 256 q^{4} + ( - \beta_1 - 236) q^{5} + 1296 q^{6} + ( - \beta_{3} - 3 \beta_1 - 522) q^{7} - 4096 q^{8} + 6561 q^{9} + (16 \beta_1 + 3776) q^{10} + (10 \beta_{3} - 5 \beta_{2} + \cdots - 17110) q^{11}+ \cdots + (65610 \beta_{3} - 32805 \beta_{2} + \cdots - 112258710) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 64 q^{2} - 324 q^{3} + 1024 q^{4} - 942 q^{5} + 5184 q^{6} - 2084 q^{7} - 16384 q^{8} + 26244 q^{9} + 15072 q^{10} - 68450 q^{11} - 82944 q^{12} + 64722 q^{13} + 33344 q^{14} + 76302 q^{15} + 262144 q^{16}+ \cdots - 449100450 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 520688x^{2} - 146431260x - 953767152 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{3} + 553\nu^{2} + 184628\nu - 33817968 ) / 30804 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 553\nu^{2} + 307844\nu - 33838504 ) / 10268 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -127\nu^{3} + 49695\nu^{2} + 45729316\nu + 1048010256 ) / 154020 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 3\beta _1 + 2 ) / 12 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -90\beta_{3} + 1085\beta_{2} - 969\beta _1 + 3124234 ) / 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -49770\beta_{3} + 784633\beta_{2} - 1459389\beta _1 + 1322255042 ) / 12 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−429.767
−398.110
−6.67167
835.549
−16.0000 −81.0000 256.000 −2454.93 1296.00 −11429.5 −4096.00 6561.00 39278.8
1.2 −16.0000 −81.0000 256.000 −1645.64 1296.00 3480.01 −4096.00 6561.00 26330.3
1.3 −16.0000 −81.0000 256.000 901.022 1296.00 −1949.06 −4096.00 6561.00 −14416.4
1.4 −16.0000 −81.0000 256.000 2257.54 1296.00 7814.54 −4096.00 6561.00 −36120.7
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 102.10.a.h 4
3.b odd 2 1 306.10.a.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
102.10.a.h 4 1.a even 1 1 trivial
306.10.a.m 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 942T_{5}^{3} - 6877887T_{5}^{2} - 4419421676T_{5} + 8217602109120 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(102))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 16)^{4} \) Copy content Toggle raw display
$3$ \( (T + 81)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 8217602109120 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 605810903968704 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 97\!\cdots\!00 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 72\!\cdots\!60 \) Copy content Toggle raw display
$17$ \( (T + 83521)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 39\!\cdots\!76 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots - 20\!\cdots\!64 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 66\!\cdots\!76 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 59\!\cdots\!56 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 22\!\cdots\!76 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 31\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 16\!\cdots\!92 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 42\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 89\!\cdots\!52 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 74\!\cdots\!36 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 11\!\cdots\!48 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 76\!\cdots\!08 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 48\!\cdots\!88 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 20\!\cdots\!32 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 46\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 12\!\cdots\!40 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 27\!\cdots\!32 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 32\!\cdots\!52 \) Copy content Toggle raw display
show more
show less