Properties

Label 1011.4.a.c.1.18
Level $1011$
Weight $4$
Character 1011.1
Self dual yes
Analytic conductor $59.651$
Analytic rank $0$
Dimension $46$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1011,4,Mod(1,1011)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1011.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1011, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1011 = 3 \cdot 337 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1011.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [46] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.6509310158\)
Analytic rank: \(0\)
Dimension: \(46\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.18
Character \(\chi\) \(=\) 1011.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.34241 q^{2} -3.00000 q^{3} -6.19794 q^{4} +12.1140 q^{5} +4.02723 q^{6} -29.9968 q^{7} +19.0594 q^{8} +9.00000 q^{9} -16.2620 q^{10} -69.4805 q^{11} +18.5938 q^{12} -87.1823 q^{13} +40.2679 q^{14} -36.3421 q^{15} +23.9980 q^{16} +35.5007 q^{17} -12.0817 q^{18} -6.22423 q^{19} -75.0821 q^{20} +89.9903 q^{21} +93.2712 q^{22} -101.725 q^{23} -57.1783 q^{24} +21.7499 q^{25} +117.034 q^{26} -27.0000 q^{27} +185.918 q^{28} -190.141 q^{29} +48.7860 q^{30} -291.491 q^{31} -184.691 q^{32} +208.441 q^{33} -47.6565 q^{34} -363.382 q^{35} -55.7815 q^{36} +177.937 q^{37} +8.35547 q^{38} +261.547 q^{39} +230.887 q^{40} -285.777 q^{41} -120.804 q^{42} +337.844 q^{43} +430.636 q^{44} +109.026 q^{45} +136.557 q^{46} +347.892 q^{47} -71.9939 q^{48} +556.806 q^{49} -29.1972 q^{50} -106.502 q^{51} +540.350 q^{52} -99.4021 q^{53} +36.2450 q^{54} -841.689 q^{55} -571.722 q^{56} +18.6727 q^{57} +255.246 q^{58} -827.088 q^{59} +225.246 q^{60} -657.687 q^{61} +391.300 q^{62} -269.971 q^{63} +55.9464 q^{64} -1056.13 q^{65} -279.813 q^{66} -237.729 q^{67} -220.031 q^{68} +305.176 q^{69} +487.807 q^{70} -871.171 q^{71} +171.535 q^{72} -308.793 q^{73} -238.864 q^{74} -65.2497 q^{75} +38.5774 q^{76} +2084.19 q^{77} -351.103 q^{78} +188.201 q^{79} +290.712 q^{80} +81.0000 q^{81} +383.629 q^{82} -1092.18 q^{83} -557.755 q^{84} +430.057 q^{85} -453.525 q^{86} +570.422 q^{87} -1324.26 q^{88} +488.104 q^{89} -146.358 q^{90} +2615.19 q^{91} +630.488 q^{92} +874.474 q^{93} -467.013 q^{94} -75.4006 q^{95} +554.072 q^{96} -263.482 q^{97} -747.462 q^{98} -625.324 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 46 q + 7 q^{2} - 138 q^{3} + 207 q^{4} + 42 q^{5} - 21 q^{6} - 72 q^{7} + 105 q^{8} + 414 q^{9} - 32 q^{10} + 126 q^{11} - 621 q^{12} + 114 q^{13} + 111 q^{14} - 126 q^{15} + 915 q^{16} + 154 q^{17} + 63 q^{18}+ \cdots + 1134 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.34241 −0.474613 −0.237307 0.971435i \(-0.576265\pi\)
−0.237307 + 0.971435i \(0.576265\pi\)
\(3\) −3.00000 −0.577350
\(4\) −6.19794 −0.774742
\(5\) 12.1140 1.08351 0.541756 0.840536i \(-0.317760\pi\)
0.541756 + 0.840536i \(0.317760\pi\)
\(6\) 4.02723 0.274018
\(7\) −29.9968 −1.61967 −0.809837 0.586655i \(-0.800444\pi\)
−0.809837 + 0.586655i \(0.800444\pi\)
\(8\) 19.0594 0.842316
\(9\) 9.00000 0.333333
\(10\) −16.2620 −0.514249
\(11\) −69.4805 −1.90447 −0.952234 0.305369i \(-0.901220\pi\)
−0.952234 + 0.305369i \(0.901220\pi\)
\(12\) 18.5938 0.447298
\(13\) −87.1823 −1.86000 −0.930000 0.367559i \(-0.880194\pi\)
−0.930000 + 0.367559i \(0.880194\pi\)
\(14\) 40.2679 0.768718
\(15\) −36.3421 −0.625566
\(16\) 23.9980 0.374968
\(17\) 35.5007 0.506482 0.253241 0.967403i \(-0.418503\pi\)
0.253241 + 0.967403i \(0.418503\pi\)
\(18\) −12.0817 −0.158204
\(19\) −6.22423 −0.0751546 −0.0375773 0.999294i \(-0.511964\pi\)
−0.0375773 + 0.999294i \(0.511964\pi\)
\(20\) −75.0821 −0.839443
\(21\) 89.9903 0.935119
\(22\) 93.2712 0.903885
\(23\) −101.725 −0.922227 −0.461114 0.887341i \(-0.652550\pi\)
−0.461114 + 0.887341i \(0.652550\pi\)
\(24\) −57.1783 −0.486311
\(25\) 21.7499 0.173999
\(26\) 117.034 0.882780
\(27\) −27.0000 −0.192450
\(28\) 185.918 1.25483
\(29\) −190.141 −1.21753 −0.608763 0.793352i \(-0.708334\pi\)
−0.608763 + 0.793352i \(0.708334\pi\)
\(30\) 48.7860 0.296902
\(31\) −291.491 −1.68882 −0.844409 0.535699i \(-0.820048\pi\)
−0.844409 + 0.535699i \(0.820048\pi\)
\(32\) −184.691 −1.02028
\(33\) 208.441 1.09955
\(34\) −47.6565 −0.240383
\(35\) −363.382 −1.75494
\(36\) −55.7815 −0.258247
\(37\) 177.937 0.790613 0.395307 0.918549i \(-0.370638\pi\)
0.395307 + 0.918549i \(0.370638\pi\)
\(38\) 8.35547 0.0356694
\(39\) 261.547 1.07387
\(40\) 230.887 0.912660
\(41\) −285.777 −1.08856 −0.544279 0.838905i \(-0.683197\pi\)
−0.544279 + 0.838905i \(0.683197\pi\)
\(42\) −120.804 −0.443820
\(43\) 337.844 1.19816 0.599079 0.800690i \(-0.295534\pi\)
0.599079 + 0.800690i \(0.295534\pi\)
\(44\) 430.636 1.47547
\(45\) 109.026 0.361171
\(46\) 136.557 0.437701
\(47\) 347.892 1.07969 0.539843 0.841766i \(-0.318484\pi\)
0.539843 + 0.841766i \(0.318484\pi\)
\(48\) −71.9939 −0.216488
\(49\) 556.806 1.62334
\(50\) −29.1972 −0.0825823
\(51\) −106.502 −0.292417
\(52\) 540.350 1.44102
\(53\) −99.4021 −0.257621 −0.128811 0.991669i \(-0.541116\pi\)
−0.128811 + 0.991669i \(0.541116\pi\)
\(54\) 36.2450 0.0913393
\(55\) −841.689 −2.06351
\(56\) −571.722 −1.36428
\(57\) 18.6727 0.0433905
\(58\) 255.246 0.577853
\(59\) −827.088 −1.82505 −0.912523 0.409025i \(-0.865869\pi\)
−0.912523 + 0.409025i \(0.865869\pi\)
\(60\) 225.246 0.484653
\(61\) −657.687 −1.38046 −0.690231 0.723589i \(-0.742491\pi\)
−0.690231 + 0.723589i \(0.742491\pi\)
\(62\) 391.300 0.801535
\(63\) −269.971 −0.539891
\(64\) 55.9464 0.109270
\(65\) −1056.13 −2.01533
\(66\) −279.813 −0.521858
\(67\) −237.729 −0.433480 −0.216740 0.976229i \(-0.569542\pi\)
−0.216740 + 0.976229i \(0.569542\pi\)
\(68\) −220.031 −0.392393
\(69\) 305.176 0.532448
\(70\) 487.807 0.832916
\(71\) −871.171 −1.45618 −0.728092 0.685480i \(-0.759592\pi\)
−0.728092 + 0.685480i \(0.759592\pi\)
\(72\) 171.535 0.280772
\(73\) −308.793 −0.495088 −0.247544 0.968877i \(-0.579624\pi\)
−0.247544 + 0.968877i \(0.579624\pi\)
\(74\) −238.864 −0.375235
\(75\) −65.2497 −0.100458
\(76\) 38.5774 0.0582255
\(77\) 2084.19 3.08462
\(78\) −351.103 −0.509674
\(79\) 188.201 0.268029 0.134014 0.990979i \(-0.457213\pi\)
0.134014 + 0.990979i \(0.457213\pi\)
\(80\) 290.712 0.406283
\(81\) 81.0000 0.111111
\(82\) 383.629 0.516643
\(83\) −1092.18 −1.44437 −0.722186 0.691699i \(-0.756863\pi\)
−0.722186 + 0.691699i \(0.756863\pi\)
\(84\) −557.755 −0.724476
\(85\) 430.057 0.548779
\(86\) −453.525 −0.568661
\(87\) 570.422 0.702939
\(88\) −1324.26 −1.60416
\(89\) 488.104 0.581336 0.290668 0.956824i \(-0.406123\pi\)
0.290668 + 0.956824i \(0.406123\pi\)
\(90\) −146.358 −0.171416
\(91\) 2615.19 3.01259
\(92\) 630.488 0.714489
\(93\) 874.474 0.975040
\(94\) −467.013 −0.512433
\(95\) −75.4006 −0.0814309
\(96\) 554.072 0.589059
\(97\) −263.482 −0.275799 −0.137899 0.990446i \(-0.544035\pi\)
−0.137899 + 0.990446i \(0.544035\pi\)
\(98\) −747.462 −0.770460
\(99\) −625.324 −0.634823
\(100\) −134.805 −0.134805
\(101\) −13.7034 −0.0135004 −0.00675022 0.999977i \(-0.502149\pi\)
−0.00675022 + 0.999977i \(0.502149\pi\)
\(102\) 142.969 0.138785
\(103\) −867.497 −0.829874 −0.414937 0.909850i \(-0.636196\pi\)
−0.414937 + 0.909850i \(0.636196\pi\)
\(104\) −1661.64 −1.56671
\(105\) 1090.15 1.01321
\(106\) 133.438 0.122270
\(107\) 1476.00 1.33356 0.666778 0.745256i \(-0.267673\pi\)
0.666778 + 0.745256i \(0.267673\pi\)
\(108\) 167.344 0.149099
\(109\) −912.433 −0.801791 −0.400895 0.916124i \(-0.631301\pi\)
−0.400895 + 0.916124i \(0.631301\pi\)
\(110\) 1129.89 0.979371
\(111\) −533.811 −0.456461
\(112\) −719.862 −0.607326
\(113\) 646.940 0.538575 0.269287 0.963060i \(-0.413212\pi\)
0.269287 + 0.963060i \(0.413212\pi\)
\(114\) −25.0664 −0.0205937
\(115\) −1232.31 −0.999245
\(116\) 1178.48 0.943269
\(117\) −784.640 −0.620000
\(118\) 1110.29 0.866191
\(119\) −1064.91 −0.820335
\(120\) −692.660 −0.526924
\(121\) 3496.54 2.62700
\(122\) 882.884 0.655185
\(123\) 857.331 0.628479
\(124\) 1806.64 1.30840
\(125\) −1250.78 −0.894982
\(126\) 362.411 0.256239
\(127\) 489.275 0.341859 0.170930 0.985283i \(-0.445323\pi\)
0.170930 + 0.985283i \(0.445323\pi\)
\(128\) 1402.42 0.968420
\(129\) −1013.53 −0.691757
\(130\) 1417.76 0.956504
\(131\) −66.4457 −0.0443159 −0.0221580 0.999754i \(-0.507054\pi\)
−0.0221580 + 0.999754i \(0.507054\pi\)
\(132\) −1291.91 −0.851864
\(133\) 186.707 0.121726
\(134\) 319.129 0.205735
\(135\) −327.079 −0.208522
\(136\) 676.624 0.426618
\(137\) 259.736 0.161976 0.0809881 0.996715i \(-0.474192\pi\)
0.0809881 + 0.996715i \(0.474192\pi\)
\(138\) −409.671 −0.252707
\(139\) 1018.37 0.621418 0.310709 0.950505i \(-0.399434\pi\)
0.310709 + 0.950505i \(0.399434\pi\)
\(140\) 2252.22 1.35962
\(141\) −1043.67 −0.623357
\(142\) 1169.47 0.691124
\(143\) 6057.46 3.54231
\(144\) 215.982 0.124989
\(145\) −2303.37 −1.31920
\(146\) 414.526 0.234975
\(147\) −1670.42 −0.937237
\(148\) −1102.84 −0.612522
\(149\) 2490.24 1.36918 0.684592 0.728926i \(-0.259980\pi\)
0.684592 + 0.728926i \(0.259980\pi\)
\(150\) 87.5917 0.0476789
\(151\) 2397.91 1.29231 0.646155 0.763206i \(-0.276376\pi\)
0.646155 + 0.763206i \(0.276376\pi\)
\(152\) −118.630 −0.0633039
\(153\) 319.507 0.168827
\(154\) −2797.83 −1.46400
\(155\) −3531.14 −1.82986
\(156\) −1621.05 −0.831974
\(157\) 3004.75 1.52742 0.763712 0.645558i \(-0.223375\pi\)
0.763712 + 0.645558i \(0.223375\pi\)
\(158\) −252.643 −0.127210
\(159\) 298.206 0.148738
\(160\) −2237.35 −1.10549
\(161\) 3051.44 1.49371
\(162\) −108.735 −0.0527348
\(163\) −2158.96 −1.03744 −0.518721 0.854944i \(-0.673592\pi\)
−0.518721 + 0.854944i \(0.673592\pi\)
\(164\) 1771.23 0.843351
\(165\) 2525.07 1.19137
\(166\) 1466.16 0.685518
\(167\) −3254.32 −1.50794 −0.753972 0.656906i \(-0.771865\pi\)
−0.753972 + 0.656906i \(0.771865\pi\)
\(168\) 1715.16 0.787666
\(169\) 5403.75 2.45960
\(170\) −577.312 −0.260458
\(171\) −56.0181 −0.0250515
\(172\) −2093.94 −0.928264
\(173\) 1682.34 0.739342 0.369671 0.929163i \(-0.379470\pi\)
0.369671 + 0.929163i \(0.379470\pi\)
\(174\) −765.739 −0.333624
\(175\) −652.427 −0.281822
\(176\) −1667.39 −0.714115
\(177\) 2481.27 1.05369
\(178\) −655.234 −0.275910
\(179\) 451.358 0.188470 0.0942349 0.995550i \(-0.469960\pi\)
0.0942349 + 0.995550i \(0.469960\pi\)
\(180\) −675.739 −0.279814
\(181\) 2835.14 1.16428 0.582138 0.813090i \(-0.302216\pi\)
0.582138 + 0.813090i \(0.302216\pi\)
\(182\) −3510.65 −1.42982
\(183\) 1973.06 0.797010
\(184\) −1938.83 −0.776807
\(185\) 2155.54 0.856639
\(186\) −1173.90 −0.462767
\(187\) −2466.61 −0.964578
\(188\) −2156.21 −0.836478
\(189\) 809.913 0.311706
\(190\) 101.218 0.0386482
\(191\) 1918.87 0.726933 0.363467 0.931607i \(-0.381593\pi\)
0.363467 + 0.931607i \(0.381593\pi\)
\(192\) −167.839 −0.0630872
\(193\) −2908.50 −1.08476 −0.542379 0.840134i \(-0.682476\pi\)
−0.542379 + 0.840134i \(0.682476\pi\)
\(194\) 353.700 0.130898
\(195\) 3168.39 1.16355
\(196\) −3451.05 −1.25767
\(197\) −757.805 −0.274068 −0.137034 0.990566i \(-0.543757\pi\)
−0.137034 + 0.990566i \(0.543757\pi\)
\(198\) 839.440 0.301295
\(199\) 790.988 0.281767 0.140884 0.990026i \(-0.455006\pi\)
0.140884 + 0.990026i \(0.455006\pi\)
\(200\) 414.541 0.146562
\(201\) 713.186 0.250270
\(202\) 18.3956 0.00640748
\(203\) 5703.61 1.97199
\(204\) 660.094 0.226548
\(205\) −3461.91 −1.17947
\(206\) 1164.54 0.393869
\(207\) −915.529 −0.307409
\(208\) −2092.20 −0.697441
\(209\) 432.463 0.143130
\(210\) −1463.42 −0.480884
\(211\) 10.3337 0.00337156 0.00168578 0.999999i \(-0.499463\pi\)
0.00168578 + 0.999999i \(0.499463\pi\)
\(212\) 616.088 0.199590
\(213\) 2613.51 0.840728
\(214\) −1981.40 −0.632923
\(215\) 4092.66 1.29822
\(216\) −514.605 −0.162104
\(217\) 8743.80 2.73533
\(218\) 1224.86 0.380540
\(219\) 926.378 0.285839
\(220\) 5216.74 1.59869
\(221\) −3095.03 −0.942056
\(222\) 716.593 0.216642
\(223\) −4984.39 −1.49677 −0.748384 0.663266i \(-0.769170\pi\)
−0.748384 + 0.663266i \(0.769170\pi\)
\(224\) 5540.12 1.65252
\(225\) 195.749 0.0579997
\(226\) −868.457 −0.255615
\(227\) −4896.81 −1.43178 −0.715888 0.698216i \(-0.753978\pi\)
−0.715888 + 0.698216i \(0.753978\pi\)
\(228\) −115.732 −0.0336165
\(229\) −2997.38 −0.864946 −0.432473 0.901647i \(-0.642359\pi\)
−0.432473 + 0.901647i \(0.642359\pi\)
\(230\) 1654.26 0.474255
\(231\) −6252.57 −1.78090
\(232\) −3623.97 −1.02554
\(233\) 3159.51 0.888354 0.444177 0.895939i \(-0.353496\pi\)
0.444177 + 0.895939i \(0.353496\pi\)
\(234\) 1053.31 0.294260
\(235\) 4214.37 1.16985
\(236\) 5126.24 1.41394
\(237\) −564.603 −0.154746
\(238\) 1429.54 0.389342
\(239\) 223.747 0.0605566 0.0302783 0.999542i \(-0.490361\pi\)
0.0302783 + 0.999542i \(0.490361\pi\)
\(240\) −872.137 −0.234568
\(241\) −2612.37 −0.698246 −0.349123 0.937077i \(-0.613520\pi\)
−0.349123 + 0.937077i \(0.613520\pi\)
\(242\) −4693.78 −1.24681
\(243\) −243.000 −0.0641500
\(244\) 4076.30 1.06950
\(245\) 6745.17 1.75891
\(246\) −1150.89 −0.298284
\(247\) 542.643 0.139788
\(248\) −5555.66 −1.42252
\(249\) 3276.55 0.833909
\(250\) 1679.05 0.424770
\(251\) 1610.97 0.405114 0.202557 0.979270i \(-0.435075\pi\)
0.202557 + 0.979270i \(0.435075\pi\)
\(252\) 1673.26 0.418277
\(253\) 7067.94 1.75635
\(254\) −656.806 −0.162251
\(255\) −1290.17 −0.316838
\(256\) −2330.19 −0.568895
\(257\) −4936.17 −1.19809 −0.599047 0.800714i \(-0.704454\pi\)
−0.599047 + 0.800714i \(0.704454\pi\)
\(258\) 1360.58 0.328317
\(259\) −5337.54 −1.28054
\(260\) 6545.82 1.56136
\(261\) −1711.27 −0.405842
\(262\) 89.1973 0.0210329
\(263\) 1327.34 0.311205 0.155603 0.987820i \(-0.450268\pi\)
0.155603 + 0.987820i \(0.450268\pi\)
\(264\) 3972.78 0.926164
\(265\) −1204.16 −0.279136
\(266\) −250.637 −0.0577727
\(267\) −1464.31 −0.335634
\(268\) 1473.43 0.335836
\(269\) 8351.21 1.89287 0.946435 0.322894i \(-0.104656\pi\)
0.946435 + 0.322894i \(0.104656\pi\)
\(270\) 439.074 0.0989673
\(271\) −3726.99 −0.835419 −0.417709 0.908581i \(-0.637167\pi\)
−0.417709 + 0.908581i \(0.637167\pi\)
\(272\) 851.945 0.189915
\(273\) −7845.56 −1.73932
\(274\) −348.672 −0.0768760
\(275\) −1511.19 −0.331376
\(276\) −1891.47 −0.412510
\(277\) −7111.92 −1.54265 −0.771324 0.636442i \(-0.780405\pi\)
−0.771324 + 0.636442i \(0.780405\pi\)
\(278\) −1367.07 −0.294933
\(279\) −2623.42 −0.562939
\(280\) −6925.86 −1.47821
\(281\) −1497.37 −0.317885 −0.158942 0.987288i \(-0.550808\pi\)
−0.158942 + 0.987288i \(0.550808\pi\)
\(282\) 1401.04 0.295853
\(283\) −2974.87 −0.624869 −0.312434 0.949939i \(-0.601144\pi\)
−0.312434 + 0.949939i \(0.601144\pi\)
\(284\) 5399.47 1.12817
\(285\) 226.202 0.0470142
\(286\) −8131.59 −1.68123
\(287\) 8572.38 1.76311
\(288\) −1662.21 −0.340094
\(289\) −3652.70 −0.743476
\(290\) 3092.06 0.626111
\(291\) 790.445 0.159233
\(292\) 1913.88 0.383566
\(293\) −2500.94 −0.498656 −0.249328 0.968419i \(-0.580210\pi\)
−0.249328 + 0.968419i \(0.580210\pi\)
\(294\) 2242.39 0.444825
\(295\) −10019.4 −1.97746
\(296\) 3391.38 0.665946
\(297\) 1875.97 0.366515
\(298\) −3342.92 −0.649833
\(299\) 8868.66 1.71534
\(300\) 404.414 0.0778294
\(301\) −10134.2 −1.94062
\(302\) −3218.97 −0.613347
\(303\) 41.1103 0.00779448
\(304\) −149.369 −0.0281806
\(305\) −7967.24 −1.49575
\(306\) −428.908 −0.0801276
\(307\) −6043.40 −1.12350 −0.561751 0.827307i \(-0.689872\pi\)
−0.561751 + 0.827307i \(0.689872\pi\)
\(308\) −12917.7 −2.38978
\(309\) 2602.49 0.479128
\(310\) 4740.23 0.868473
\(311\) −3121.96 −0.569228 −0.284614 0.958642i \(-0.591866\pi\)
−0.284614 + 0.958642i \(0.591866\pi\)
\(312\) 4984.93 0.904539
\(313\) 1095.54 0.197839 0.0989193 0.995095i \(-0.468461\pi\)
0.0989193 + 0.995095i \(0.468461\pi\)
\(314\) −4033.61 −0.724935
\(315\) −3270.44 −0.584979
\(316\) −1166.46 −0.207653
\(317\) 9615.47 1.70365 0.851827 0.523823i \(-0.175495\pi\)
0.851827 + 0.523823i \(0.175495\pi\)
\(318\) −400.314 −0.0705928
\(319\) 13211.1 2.31874
\(320\) 677.736 0.118396
\(321\) −4428.01 −0.769929
\(322\) −4096.27 −0.708933
\(323\) −220.965 −0.0380644
\(324\) −502.033 −0.0860825
\(325\) −1896.20 −0.323638
\(326\) 2898.21 0.492384
\(327\) 2737.30 0.462914
\(328\) −5446.74 −0.916909
\(329\) −10435.6 −1.74874
\(330\) −3389.67 −0.565440
\(331\) 11503.7 1.91027 0.955137 0.296164i \(-0.0957075\pi\)
0.955137 + 0.296164i \(0.0957075\pi\)
\(332\) 6769.30 1.11902
\(333\) 1601.43 0.263538
\(334\) 4368.62 0.715690
\(335\) −2879.85 −0.469681
\(336\) 2159.59 0.350640
\(337\) −337.000 −0.0544735
\(338\) −7254.03 −1.16736
\(339\) −1940.82 −0.310946
\(340\) −2665.47 −0.425163
\(341\) 20252.9 3.21630
\(342\) 75.1992 0.0118898
\(343\) −6413.50 −1.00961
\(344\) 6439.12 1.00923
\(345\) 3696.92 0.576914
\(346\) −2258.39 −0.350901
\(347\) −8974.64 −1.38843 −0.694213 0.719770i \(-0.744247\pi\)
−0.694213 + 0.719770i \(0.744247\pi\)
\(348\) −3535.44 −0.544596
\(349\) −2003.54 −0.307298 −0.153649 0.988125i \(-0.549102\pi\)
−0.153649 + 0.988125i \(0.549102\pi\)
\(350\) 875.823 0.133756
\(351\) 2353.92 0.357957
\(352\) 12832.4 1.94309
\(353\) −8053.02 −1.21422 −0.607109 0.794619i \(-0.707671\pi\)
−0.607109 + 0.794619i \(0.707671\pi\)
\(354\) −3330.87 −0.500095
\(355\) −10553.4 −1.57779
\(356\) −3025.24 −0.450385
\(357\) 3194.72 0.473621
\(358\) −605.907 −0.0894503
\(359\) −11942.4 −1.75570 −0.877850 0.478935i \(-0.841023\pi\)
−0.877850 + 0.478935i \(0.841023\pi\)
\(360\) 2077.98 0.304220
\(361\) −6820.26 −0.994352
\(362\) −3805.91 −0.552581
\(363\) −10489.6 −1.51670
\(364\) −16208.8 −2.33398
\(365\) −3740.72 −0.536434
\(366\) −2648.65 −0.378271
\(367\) −4427.03 −0.629670 −0.314835 0.949146i \(-0.601949\pi\)
−0.314835 + 0.949146i \(0.601949\pi\)
\(368\) −2441.21 −0.345806
\(369\) −2571.99 −0.362852
\(370\) −2893.61 −0.406572
\(371\) 2981.74 0.417262
\(372\) −5419.93 −0.755405
\(373\) 12835.7 1.78179 0.890896 0.454208i \(-0.150078\pi\)
0.890896 + 0.454208i \(0.150078\pi\)
\(374\) 3311.19 0.457801
\(375\) 3752.33 0.516718
\(376\) 6630.62 0.909436
\(377\) 16576.9 2.26460
\(378\) −1087.23 −0.147940
\(379\) −6995.26 −0.948080 −0.474040 0.880503i \(-0.657205\pi\)
−0.474040 + 0.880503i \(0.657205\pi\)
\(380\) 467.328 0.0630880
\(381\) −1467.82 −0.197372
\(382\) −2575.90 −0.345012
\(383\) −6310.56 −0.841918 −0.420959 0.907080i \(-0.638306\pi\)
−0.420959 + 0.907080i \(0.638306\pi\)
\(384\) −4207.26 −0.559117
\(385\) 25248.0 3.34222
\(386\) 3904.40 0.514841
\(387\) 3040.60 0.399386
\(388\) 1633.04 0.213673
\(389\) 804.581 0.104869 0.0524343 0.998624i \(-0.483302\pi\)
0.0524343 + 0.998624i \(0.483302\pi\)
\(390\) −4253.27 −0.552238
\(391\) −3611.33 −0.467091
\(392\) 10612.4 1.36737
\(393\) 199.337 0.0255858
\(394\) 1017.28 0.130076
\(395\) 2279.87 0.290412
\(396\) 3875.72 0.491824
\(397\) −5647.08 −0.713901 −0.356951 0.934123i \(-0.616184\pi\)
−0.356951 + 0.934123i \(0.616184\pi\)
\(398\) −1061.83 −0.133730
\(399\) −560.121 −0.0702785
\(400\) 521.953 0.0652442
\(401\) −7121.98 −0.886920 −0.443460 0.896294i \(-0.646249\pi\)
−0.443460 + 0.896294i \(0.646249\pi\)
\(402\) −957.387 −0.118781
\(403\) 25412.9 3.14120
\(404\) 84.9331 0.0104594
\(405\) 981.237 0.120390
\(406\) −7656.57 −0.935934
\(407\) −12363.2 −1.50570
\(408\) −2029.87 −0.246308
\(409\) 5989.22 0.724078 0.362039 0.932163i \(-0.382081\pi\)
0.362039 + 0.932163i \(0.382081\pi\)
\(410\) 4647.30 0.559790
\(411\) −779.207 −0.0935169
\(412\) 5376.69 0.642938
\(413\) 24810.0 2.95598
\(414\) 1229.01 0.145900
\(415\) −13230.8 −1.56499
\(416\) 16101.7 1.89772
\(417\) −3055.11 −0.358776
\(418\) −580.542 −0.0679311
\(419\) −13695.5 −1.59683 −0.798414 0.602110i \(-0.794327\pi\)
−0.798414 + 0.602110i \(0.794327\pi\)
\(420\) −6756.66 −0.784979
\(421\) 10907.5 1.26270 0.631350 0.775498i \(-0.282501\pi\)
0.631350 + 0.775498i \(0.282501\pi\)
\(422\) −13.8720 −0.00160019
\(423\) 3131.02 0.359895
\(424\) −1894.55 −0.216998
\(425\) 772.137 0.0881274
\(426\) −3508.40 −0.399020
\(427\) 19728.5 2.23590
\(428\) −9148.17 −1.03316
\(429\) −18172.4 −2.04515
\(430\) −5494.02 −0.616151
\(431\) −8364.30 −0.934789 −0.467394 0.884049i \(-0.654807\pi\)
−0.467394 + 0.884049i \(0.654807\pi\)
\(432\) −647.945 −0.0721627
\(433\) −4468.44 −0.495934 −0.247967 0.968768i \(-0.579763\pi\)
−0.247967 + 0.968768i \(0.579763\pi\)
\(434\) −11737.7 −1.29823
\(435\) 6910.11 0.761643
\(436\) 5655.20 0.621182
\(437\) 633.163 0.0693096
\(438\) −1243.58 −0.135663
\(439\) 6787.27 0.737901 0.368951 0.929449i \(-0.379717\pi\)
0.368951 + 0.929449i \(0.379717\pi\)
\(440\) −16042.1 −1.73813
\(441\) 5011.26 0.541114
\(442\) 4154.80 0.447112
\(443\) −3252.95 −0.348876 −0.174438 0.984668i \(-0.555811\pi\)
−0.174438 + 0.984668i \(0.555811\pi\)
\(444\) 3308.53 0.353639
\(445\) 5912.91 0.629885
\(446\) 6691.08 0.710385
\(447\) −7470.73 −0.790499
\(448\) −1678.21 −0.176982
\(449\) 11894.2 1.25016 0.625079 0.780562i \(-0.285067\pi\)
0.625079 + 0.780562i \(0.285067\pi\)
\(450\) −262.775 −0.0275274
\(451\) 19855.9 2.07312
\(452\) −4009.69 −0.417257
\(453\) −7193.72 −0.746116
\(454\) 6573.52 0.679539
\(455\) 31680.5 3.26418
\(456\) 355.891 0.0365485
\(457\) −8808.13 −0.901591 −0.450795 0.892627i \(-0.648860\pi\)
−0.450795 + 0.892627i \(0.648860\pi\)
\(458\) 4023.71 0.410514
\(459\) −958.520 −0.0974725
\(460\) 7637.76 0.774157
\(461\) 5879.71 0.594025 0.297013 0.954874i \(-0.404010\pi\)
0.297013 + 0.954874i \(0.404010\pi\)
\(462\) 8393.50 0.845240
\(463\) −4277.60 −0.429367 −0.214684 0.976684i \(-0.568872\pi\)
−0.214684 + 0.976684i \(0.568872\pi\)
\(464\) −4562.99 −0.456533
\(465\) 10593.4 1.05647
\(466\) −4241.36 −0.421625
\(467\) −5701.47 −0.564952 −0.282476 0.959274i \(-0.591156\pi\)
−0.282476 + 0.959274i \(0.591156\pi\)
\(468\) 4863.15 0.480340
\(469\) 7131.09 0.702097
\(470\) −5657.41 −0.555227
\(471\) −9014.26 −0.881858
\(472\) −15763.8 −1.53727
\(473\) −23473.6 −2.28185
\(474\) 757.928 0.0734447
\(475\) −135.376 −0.0130768
\(476\) 6600.23 0.635548
\(477\) −894.618 −0.0858737
\(478\) −300.361 −0.0287409
\(479\) 2191.74 0.209067 0.104533 0.994521i \(-0.466665\pi\)
0.104533 + 0.994521i \(0.466665\pi\)
\(480\) 6712.04 0.638253
\(481\) −15513.0 −1.47054
\(482\) 3506.86 0.331397
\(483\) −9154.31 −0.862392
\(484\) −21671.3 −2.03525
\(485\) −3191.83 −0.298832
\(486\) 326.205 0.0304464
\(487\) 6949.86 0.646670 0.323335 0.946285i \(-0.395196\pi\)
0.323335 + 0.946285i \(0.395196\pi\)
\(488\) −12535.1 −1.16278
\(489\) 6476.89 0.598967
\(490\) −9054.78 −0.834802
\(491\) −4846.12 −0.445423 −0.222711 0.974884i \(-0.571491\pi\)
−0.222711 + 0.974884i \(0.571491\pi\)
\(492\) −5313.68 −0.486909
\(493\) −6750.13 −0.616654
\(494\) −728.448 −0.0663450
\(495\) −7575.20 −0.687838
\(496\) −6995.20 −0.633253
\(497\) 26132.3 2.35854
\(498\) −4398.47 −0.395784
\(499\) −5100.46 −0.457571 −0.228786 0.973477i \(-0.573476\pi\)
−0.228786 + 0.973477i \(0.573476\pi\)
\(500\) 7752.23 0.693381
\(501\) 9762.95 0.870612
\(502\) −2162.58 −0.192272
\(503\) 1129.97 0.100165 0.0500826 0.998745i \(-0.484052\pi\)
0.0500826 + 0.998745i \(0.484052\pi\)
\(504\) −5145.49 −0.454759
\(505\) −166.004 −0.0146279
\(506\) −9488.06 −0.833588
\(507\) −16211.2 −1.42005
\(508\) −3032.49 −0.264853
\(509\) 8755.93 0.762475 0.381237 0.924477i \(-0.375498\pi\)
0.381237 + 0.924477i \(0.375498\pi\)
\(510\) 1731.94 0.150375
\(511\) 9262.78 0.801881
\(512\) −8091.30 −0.698415
\(513\) 168.054 0.0144635
\(514\) 6626.36 0.568631
\(515\) −10508.9 −0.899179
\(516\) 6281.82 0.535933
\(517\) −24171.7 −2.05623
\(518\) 7165.16 0.607759
\(519\) −5047.03 −0.426859
\(520\) −20129.2 −1.69755
\(521\) −1646.47 −0.138451 −0.0692256 0.997601i \(-0.522053\pi\)
−0.0692256 + 0.997601i \(0.522053\pi\)
\(522\) 2297.22 0.192618
\(523\) 10277.1 0.859251 0.429626 0.903007i \(-0.358646\pi\)
0.429626 + 0.903007i \(0.358646\pi\)
\(524\) 411.827 0.0343334
\(525\) 1957.28 0.162710
\(526\) −1781.83 −0.147702
\(527\) −10348.1 −0.855356
\(528\) 5002.17 0.412295
\(529\) −1818.92 −0.149496
\(530\) 1616.47 0.132481
\(531\) −7443.80 −0.608349
\(532\) −1157.20 −0.0943062
\(533\) 24914.7 2.02472
\(534\) 1965.70 0.159296
\(535\) 17880.3 1.44492
\(536\) −4530.97 −0.365127
\(537\) −1354.07 −0.108813
\(538\) −11210.7 −0.898381
\(539\) −38687.2 −3.09160
\(540\) 2027.22 0.161551
\(541\) 13415.1 1.06610 0.533050 0.846084i \(-0.321046\pi\)
0.533050 + 0.846084i \(0.321046\pi\)
\(542\) 5003.14 0.396501
\(543\) −8505.41 −0.672195
\(544\) −6556.65 −0.516754
\(545\) −11053.2 −0.868750
\(546\) 10531.9 0.825505
\(547\) −6975.72 −0.545265 −0.272633 0.962118i \(-0.587894\pi\)
−0.272633 + 0.962118i \(0.587894\pi\)
\(548\) −1609.83 −0.125490
\(549\) −5919.18 −0.460154
\(550\) 2028.64 0.157275
\(551\) 1183.48 0.0915026
\(552\) 5816.49 0.448490
\(553\) −5645.42 −0.434119
\(554\) 9547.10 0.732161
\(555\) −6466.61 −0.494581
\(556\) −6311.80 −0.481439
\(557\) 11985.4 0.911741 0.455870 0.890046i \(-0.349328\pi\)
0.455870 + 0.890046i \(0.349328\pi\)
\(558\) 3521.70 0.267178
\(559\) −29454.0 −2.22857
\(560\) −8720.43 −0.658046
\(561\) 7399.82 0.556900
\(562\) 2010.08 0.150872
\(563\) −354.616 −0.0265458 −0.0132729 0.999912i \(-0.504225\pi\)
−0.0132729 + 0.999912i \(0.504225\pi\)
\(564\) 6468.63 0.482941
\(565\) 7837.05 0.583553
\(566\) 3993.49 0.296571
\(567\) −2429.74 −0.179964
\(568\) −16604.0 −1.22657
\(569\) −1274.82 −0.0939246 −0.0469623 0.998897i \(-0.514954\pi\)
−0.0469623 + 0.998897i \(0.514954\pi\)
\(570\) −303.655 −0.0223135
\(571\) −22145.5 −1.62305 −0.811525 0.584318i \(-0.801362\pi\)
−0.811525 + 0.584318i \(0.801362\pi\)
\(572\) −37543.8 −2.74438
\(573\) −5756.60 −0.419695
\(574\) −11507.6 −0.836794
\(575\) −2212.52 −0.160467
\(576\) 503.517 0.0364234
\(577\) −15098.2 −1.08934 −0.544668 0.838652i \(-0.683344\pi\)
−0.544668 + 0.838652i \(0.683344\pi\)
\(578\) 4903.41 0.352864
\(579\) 8725.50 0.626286
\(580\) 14276.2 1.02204
\(581\) 32762.0 2.33941
\(582\) −1061.10 −0.0755739
\(583\) 6906.50 0.490631
\(584\) −5885.41 −0.417021
\(585\) −9505.16 −0.671778
\(586\) 3357.28 0.236669
\(587\) −27927.4 −1.96369 −0.981846 0.189681i \(-0.939255\pi\)
−0.981846 + 0.189681i \(0.939255\pi\)
\(588\) 10353.2 0.726117
\(589\) 1814.31 0.126922
\(590\) 13450.1 0.938528
\(591\) 2273.41 0.158233
\(592\) 4270.13 0.296455
\(593\) −5027.62 −0.348161 −0.174081 0.984731i \(-0.555695\pi\)
−0.174081 + 0.984731i \(0.555695\pi\)
\(594\) −2518.32 −0.173953
\(595\) −12900.3 −0.888843
\(596\) −15434.4 −1.06077
\(597\) −2372.97 −0.162678
\(598\) −11905.4 −0.814124
\(599\) 7596.56 0.518175 0.259088 0.965854i \(-0.416578\pi\)
0.259088 + 0.965854i \(0.416578\pi\)
\(600\) −1243.62 −0.0846178
\(601\) 15089.4 1.02414 0.512071 0.858943i \(-0.328879\pi\)
0.512071 + 0.858943i \(0.328879\pi\)
\(602\) 13604.3 0.921046
\(603\) −2139.56 −0.144493
\(604\) −14862.1 −1.00121
\(605\) 42357.2 2.84639
\(606\) −55.1869 −0.00369936
\(607\) −172.631 −0.0115435 −0.00577173 0.999983i \(-0.501837\pi\)
−0.00577173 + 0.999983i \(0.501837\pi\)
\(608\) 1149.56 0.0766788
\(609\) −17110.8 −1.13853
\(610\) 10695.3 0.709901
\(611\) −30330.0 −2.00822
\(612\) −1980.28 −0.130798
\(613\) −6661.19 −0.438896 −0.219448 0.975624i \(-0.570426\pi\)
−0.219448 + 0.975624i \(0.570426\pi\)
\(614\) 8112.71 0.533229
\(615\) 10385.7 0.680965
\(616\) 39723.5 2.59822
\(617\) 7878.39 0.514055 0.257028 0.966404i \(-0.417257\pi\)
0.257028 + 0.966404i \(0.417257\pi\)
\(618\) −3493.61 −0.227400
\(619\) −15153.5 −0.983957 −0.491979 0.870607i \(-0.663726\pi\)
−0.491979 + 0.870607i \(0.663726\pi\)
\(620\) 21885.8 1.41767
\(621\) 2746.59 0.177483
\(622\) 4190.94 0.270163
\(623\) −14641.5 −0.941574
\(624\) 6276.59 0.402668
\(625\) −17870.7 −1.14372
\(626\) −1470.66 −0.0938968
\(627\) −1297.39 −0.0826359
\(628\) −18623.3 −1.18336
\(629\) 6316.90 0.400431
\(630\) 4390.26 0.277639
\(631\) 15566.8 0.982102 0.491051 0.871131i \(-0.336613\pi\)
0.491051 + 0.871131i \(0.336613\pi\)
\(632\) 3587.00 0.225765
\(633\) −31.0010 −0.00194657
\(634\) −12907.9 −0.808577
\(635\) 5927.09 0.370409
\(636\) −1848.26 −0.115233
\(637\) −48543.6 −3.01942
\(638\) −17734.6 −1.10050
\(639\) −7840.54 −0.485394
\(640\) 16989.0 1.04929
\(641\) −30078.1 −1.85338 −0.926688 0.375831i \(-0.877357\pi\)
−0.926688 + 0.375831i \(0.877357\pi\)
\(642\) 5944.19 0.365418
\(643\) 21515.5 1.31958 0.659790 0.751450i \(-0.270645\pi\)
0.659790 + 0.751450i \(0.270645\pi\)
\(644\) −18912.6 −1.15724
\(645\) −12278.0 −0.749527
\(646\) 296.625 0.0180659
\(647\) 12175.7 0.739838 0.369919 0.929064i \(-0.379385\pi\)
0.369919 + 0.929064i \(0.379385\pi\)
\(648\) 1543.81 0.0935907
\(649\) 57466.5 3.47574
\(650\) 2545.48 0.153603
\(651\) −26231.4 −1.57925
\(652\) 13381.1 0.803750
\(653\) −15615.8 −0.935822 −0.467911 0.883775i \(-0.654993\pi\)
−0.467911 + 0.883775i \(0.654993\pi\)
\(654\) −3674.57 −0.219705
\(655\) −804.926 −0.0480169
\(656\) −6858.06 −0.408174
\(657\) −2779.13 −0.165029
\(658\) 14008.9 0.829974
\(659\) 7235.86 0.427722 0.213861 0.976864i \(-0.431396\pi\)
0.213861 + 0.976864i \(0.431396\pi\)
\(660\) −15650.2 −0.923006
\(661\) −15772.9 −0.928131 −0.464065 0.885801i \(-0.653610\pi\)
−0.464065 + 0.885801i \(0.653610\pi\)
\(662\) −15442.7 −0.906641
\(663\) 9285.10 0.543896
\(664\) −20816.4 −1.21662
\(665\) 2261.78 0.131892
\(666\) −2149.78 −0.125078
\(667\) 19342.2 1.12284
\(668\) 20170.1 1.16827
\(669\) 14953.2 0.864159
\(670\) 3865.94 0.222917
\(671\) 45696.4 2.62904
\(672\) −16620.4 −0.954084
\(673\) −2763.32 −0.158274 −0.0791368 0.996864i \(-0.525216\pi\)
−0.0791368 + 0.996864i \(0.525216\pi\)
\(674\) 452.392 0.0258538
\(675\) −587.247 −0.0334861
\(676\) −33492.1 −1.90556
\(677\) 16000.3 0.908331 0.454165 0.890917i \(-0.349938\pi\)
0.454165 + 0.890917i \(0.349938\pi\)
\(678\) 2605.37 0.147579
\(679\) 7903.60 0.446704
\(680\) 8196.64 0.462246
\(681\) 14690.4 0.826636
\(682\) −27187.7 −1.52650
\(683\) 19766.2 1.10737 0.553683 0.832727i \(-0.313222\pi\)
0.553683 + 0.832727i \(0.313222\pi\)
\(684\) 347.197 0.0194085
\(685\) 3146.45 0.175503
\(686\) 8609.54 0.479175
\(687\) 8992.14 0.499377
\(688\) 8107.58 0.449271
\(689\) 8666.10 0.479176
\(690\) −4962.78 −0.273811
\(691\) 406.016 0.0223525 0.0111762 0.999938i \(-0.496442\pi\)
0.0111762 + 0.999938i \(0.496442\pi\)
\(692\) −10427.1 −0.572800
\(693\) 18757.7 1.02821
\(694\) 12047.6 0.658965
\(695\) 12336.6 0.673314
\(696\) 10871.9 0.592096
\(697\) −10145.3 −0.551334
\(698\) 2689.57 0.145848
\(699\) −9478.54 −0.512892
\(700\) 4043.70 0.218339
\(701\) 8241.31 0.444037 0.222019 0.975042i \(-0.428735\pi\)
0.222019 + 0.975042i \(0.428735\pi\)
\(702\) −3159.92 −0.169891
\(703\) −1107.52 −0.0594182
\(704\) −3887.18 −0.208102
\(705\) −12643.1 −0.675415
\(706\) 10810.4 0.576284
\(707\) 411.059 0.0218663
\(708\) −15378.7 −0.816339
\(709\) −33227.1 −1.76004 −0.880022 0.474934i \(-0.842472\pi\)
−0.880022 + 0.474934i \(0.842472\pi\)
\(710\) 14167.0 0.748841
\(711\) 1693.81 0.0893429
\(712\) 9302.98 0.489668
\(713\) 29652.1 1.55747
\(714\) −4288.62 −0.224787
\(715\) 73380.3 3.83814
\(716\) −2797.49 −0.146016
\(717\) −671.242 −0.0349624
\(718\) 16031.6 0.833279
\(719\) 16537.9 0.857803 0.428901 0.903351i \(-0.358901\pi\)
0.428901 + 0.903351i \(0.358901\pi\)
\(720\) 2616.41 0.135428
\(721\) 26022.1 1.34412
\(722\) 9155.57 0.471932
\(723\) 7837.10 0.403133
\(724\) −17572.0 −0.902014
\(725\) −4135.54 −0.211848
\(726\) 14081.3 0.719845
\(727\) 10475.4 0.534405 0.267203 0.963640i \(-0.413901\pi\)
0.267203 + 0.963640i \(0.413901\pi\)
\(728\) 49844.0 2.53756
\(729\) 729.000 0.0370370
\(730\) 5021.58 0.254599
\(731\) 11993.7 0.606845
\(732\) −12228.9 −0.617477
\(733\) −11111.7 −0.559917 −0.279958 0.960012i \(-0.590321\pi\)
−0.279958 + 0.960012i \(0.590321\pi\)
\(734\) 5942.88 0.298850
\(735\) −20235.5 −1.01551
\(736\) 18787.7 0.940931
\(737\) 16517.5 0.825549
\(738\) 3452.66 0.172214
\(739\) 22630.9 1.12651 0.563254 0.826283i \(-0.309549\pi\)
0.563254 + 0.826283i \(0.309549\pi\)
\(740\) −13359.9 −0.663675
\(741\) −1627.93 −0.0807064
\(742\) −4002.71 −0.198038
\(743\) −23438.8 −1.15731 −0.578657 0.815571i \(-0.696423\pi\)
−0.578657 + 0.815571i \(0.696423\pi\)
\(744\) 16667.0 0.821291
\(745\) 30166.9 1.48353
\(746\) −17230.8 −0.845661
\(747\) −9829.66 −0.481457
\(748\) 15287.9 0.747300
\(749\) −44275.3 −2.15993
\(750\) −5037.16 −0.245241
\(751\) 1928.93 0.0937254 0.0468627 0.998901i \(-0.485078\pi\)
0.0468627 + 0.998901i \(0.485078\pi\)
\(752\) 8348.69 0.404848
\(753\) −4832.91 −0.233893
\(754\) −22253.0 −1.07481
\(755\) 29048.3 1.40023
\(756\) −5019.79 −0.241492
\(757\) 10573.0 0.507639 0.253820 0.967252i \(-0.418313\pi\)
0.253820 + 0.967252i \(0.418313\pi\)
\(758\) 9390.50 0.449971
\(759\) −21203.8 −1.01403
\(760\) −1437.09 −0.0685906
\(761\) −23685.4 −1.12825 −0.564123 0.825691i \(-0.690786\pi\)
−0.564123 + 0.825691i \(0.690786\pi\)
\(762\) 1970.42 0.0936755
\(763\) 27370.0 1.29864
\(764\) −11893.0 −0.563186
\(765\) 3870.51 0.182926
\(766\) 8471.35 0.399585
\(767\) 72107.4 3.39459
\(768\) 6990.58 0.328452
\(769\) −32885.3 −1.54210 −0.771050 0.636775i \(-0.780268\pi\)
−0.771050 + 0.636775i \(0.780268\pi\)
\(770\) −33893.1 −1.58626
\(771\) 14808.5 0.691720
\(772\) 18026.7 0.840409
\(773\) −10521.8 −0.489578 −0.244789 0.969576i \(-0.578719\pi\)
−0.244789 + 0.969576i \(0.578719\pi\)
\(774\) −4081.73 −0.189554
\(775\) −6339.90 −0.293853
\(776\) −5021.81 −0.232310
\(777\) 16012.6 0.739317
\(778\) −1080.08 −0.0497720
\(779\) 1778.74 0.0818101
\(780\) −19637.5 −0.901454
\(781\) 60529.4 2.77325
\(782\) 4847.88 0.221688
\(783\) 5133.80 0.234313
\(784\) 13362.2 0.608702
\(785\) 36399.7 1.65498
\(786\) −267.592 −0.0121434
\(787\) −27581.8 −1.24928 −0.624641 0.780912i \(-0.714755\pi\)
−0.624641 + 0.780912i \(0.714755\pi\)
\(788\) 4696.83 0.212332
\(789\) −3982.01 −0.179674
\(790\) −3060.52 −0.137833
\(791\) −19406.1 −0.872316
\(792\) −11918.3 −0.534721
\(793\) 57338.6 2.56766
\(794\) 7580.69 0.338827
\(795\) 3612.48 0.161159
\(796\) −4902.50 −0.218297
\(797\) −467.263 −0.0207670 −0.0103835 0.999946i \(-0.503305\pi\)
−0.0103835 + 0.999946i \(0.503305\pi\)
\(798\) 751.911 0.0333551
\(799\) 12350.4 0.546841
\(800\) −4017.00 −0.177528
\(801\) 4392.93 0.193779
\(802\) 9560.61 0.420944
\(803\) 21455.1 0.942880
\(804\) −4420.28 −0.193895
\(805\) 36965.2 1.61845
\(806\) −34114.4 −1.49086
\(807\) −25053.6 −1.09285
\(808\) −261.180 −0.0113716
\(809\) −18801.0 −0.817068 −0.408534 0.912743i \(-0.633960\pi\)
−0.408534 + 0.912743i \(0.633960\pi\)
\(810\) −1317.22 −0.0571388
\(811\) −768.197 −0.0332615 −0.0166307 0.999862i \(-0.505294\pi\)
−0.0166307 + 0.999862i \(0.505294\pi\)
\(812\) −35350.6 −1.52779
\(813\) 11181.0 0.482329
\(814\) 16596.4 0.714624
\(815\) −26153.8 −1.12408
\(816\) −2555.84 −0.109647
\(817\) −2102.82 −0.0900471
\(818\) −8039.98 −0.343657
\(819\) 23536.7 1.00420
\(820\) 21456.7 0.913782
\(821\) −24759.2 −1.05250 −0.526249 0.850330i \(-0.676402\pi\)
−0.526249 + 0.850330i \(0.676402\pi\)
\(822\) 1046.01 0.0443844
\(823\) 33400.5 1.41467 0.707333 0.706881i \(-0.249898\pi\)
0.707333 + 0.706881i \(0.249898\pi\)
\(824\) −16534.0 −0.699016
\(825\) 4533.58 0.191320
\(826\) −33305.1 −1.40295
\(827\) −42365.6 −1.78138 −0.890688 0.454616i \(-0.849777\pi\)
−0.890688 + 0.454616i \(0.849777\pi\)
\(828\) 5674.40 0.238163
\(829\) −2213.76 −0.0927469 −0.0463735 0.998924i \(-0.514766\pi\)
−0.0463735 + 0.998924i \(0.514766\pi\)
\(830\) 17761.1 0.742767
\(831\) 21335.8 0.890649
\(832\) −4877.53 −0.203243
\(833\) 19767.0 0.822193
\(834\) 4101.21 0.170280
\(835\) −39422.9 −1.63388
\(836\) −2680.38 −0.110889
\(837\) 7870.26 0.325013
\(838\) 18385.0 0.757875
\(839\) −25581.3 −1.05264 −0.526319 0.850287i \(-0.676428\pi\)
−0.526319 + 0.850287i \(0.676428\pi\)
\(840\) 20777.6 0.853445
\(841\) 11764.5 0.482368
\(842\) −14642.3 −0.599294
\(843\) 4492.11 0.183531
\(844\) −64.0475 −0.00261209
\(845\) 65461.2 2.66501
\(846\) −4203.11 −0.170811
\(847\) −104885. −4.25488
\(848\) −2385.45 −0.0965998
\(849\) 8924.62 0.360768
\(850\) −1036.52 −0.0418264
\(851\) −18100.7 −0.729125
\(852\) −16198.4 −0.651347
\(853\) −48112.0 −1.93121 −0.965605 0.260013i \(-0.916273\pi\)
−0.965605 + 0.260013i \(0.916273\pi\)
\(854\) −26483.7 −1.06119
\(855\) −678.605 −0.0271436
\(856\) 28131.8 1.12328
\(857\) −18720.2 −0.746172 −0.373086 0.927797i \(-0.621700\pi\)
−0.373086 + 0.927797i \(0.621700\pi\)
\(858\) 24394.8 0.970657
\(859\) −1989.65 −0.0790292 −0.0395146 0.999219i \(-0.512581\pi\)
−0.0395146 + 0.999219i \(0.512581\pi\)
\(860\) −25366.1 −1.00579
\(861\) −25717.1 −1.01793
\(862\) 11228.3 0.443663
\(863\) −20736.1 −0.817921 −0.408960 0.912552i \(-0.634109\pi\)
−0.408960 + 0.912552i \(0.634109\pi\)
\(864\) 4986.64 0.196353
\(865\) 20380.0 0.801086
\(866\) 5998.47 0.235377
\(867\) 10958.1 0.429246
\(868\) −54193.5 −2.11918
\(869\) −13076.3 −0.510452
\(870\) −9276.19 −0.361486
\(871\) 20725.7 0.806274
\(872\) −17390.5 −0.675361
\(873\) −2371.33 −0.0919330
\(874\) −849.964 −0.0328953
\(875\) 37519.2 1.44958
\(876\) −5741.63 −0.221452
\(877\) −46349.3 −1.78461 −0.892306 0.451430i \(-0.850914\pi\)
−0.892306 + 0.451430i \(0.850914\pi\)
\(878\) −9111.28 −0.350217
\(879\) 7502.81 0.287899
\(880\) −20198.8 −0.773753
\(881\) −12201.1 −0.466590 −0.233295 0.972406i \(-0.574951\pi\)
−0.233295 + 0.972406i \(0.574951\pi\)
\(882\) −6727.16 −0.256820
\(883\) −25393.0 −0.967773 −0.483887 0.875131i \(-0.660775\pi\)
−0.483887 + 0.875131i \(0.660775\pi\)
\(884\) 19182.8 0.729851
\(885\) 30058.1 1.14169
\(886\) 4366.78 0.165581
\(887\) 1362.08 0.0515607 0.0257803 0.999668i \(-0.491793\pi\)
0.0257803 + 0.999668i \(0.491793\pi\)
\(888\) −10174.1 −0.384484
\(889\) −14676.7 −0.553700
\(890\) −7937.53 −0.298951
\(891\) −5627.92 −0.211608
\(892\) 30892.9 1.15961
\(893\) −2165.36 −0.0811433
\(894\) 10028.8 0.375181
\(895\) 5467.77 0.204209
\(896\) −42068.1 −1.56852
\(897\) −26606.0 −0.990354
\(898\) −15966.8 −0.593341
\(899\) 55424.3 2.05618
\(900\) −1213.24 −0.0449348
\(901\) −3528.84 −0.130480
\(902\) −26654.7 −0.983931
\(903\) 30402.7 1.12042
\(904\) 12330.3 0.453650
\(905\) 34344.9 1.26151
\(906\) 9656.91 0.354116
\(907\) −46545.5 −1.70399 −0.851994 0.523552i \(-0.824607\pi\)
−0.851994 + 0.523552i \(0.824607\pi\)
\(908\) 30350.2 1.10926
\(909\) −123.331 −0.00450014
\(910\) −42528.1 −1.54922
\(911\) −555.003 −0.0201845 −0.0100922 0.999949i \(-0.503213\pi\)
−0.0100922 + 0.999949i \(0.503213\pi\)
\(912\) 448.107 0.0162701
\(913\) 75885.5 2.75076
\(914\) 11824.1 0.427907
\(915\) 23901.7 0.863570
\(916\) 18577.6 0.670110
\(917\) 1993.16 0.0717774
\(918\) 1286.72 0.0462617
\(919\) 18763.0 0.673486 0.336743 0.941597i \(-0.390675\pi\)
0.336743 + 0.941597i \(0.390675\pi\)
\(920\) −23487.1 −0.841680
\(921\) 18130.2 0.648654
\(922\) −7892.98 −0.281932
\(923\) 75950.7 2.70850
\(924\) 38753.0 1.37974
\(925\) 3870.11 0.137566
\(926\) 5742.29 0.203783
\(927\) −7807.47 −0.276625
\(928\) 35117.2 1.24222
\(929\) −27203.0 −0.960712 −0.480356 0.877074i \(-0.659493\pi\)
−0.480356 + 0.877074i \(0.659493\pi\)
\(930\) −14220.7 −0.501413
\(931\) −3465.69 −0.122002
\(932\) −19582.5 −0.688246
\(933\) 9365.88 0.328644
\(934\) 7653.71 0.268134
\(935\) −29880.6 −1.04513
\(936\) −14954.8 −0.522236
\(937\) −28889.8 −1.00725 −0.503623 0.863924i \(-0.668000\pi\)
−0.503623 + 0.863924i \(0.668000\pi\)
\(938\) −9572.84 −0.333224
\(939\) −3286.61 −0.114222
\(940\) −26120.4 −0.906334
\(941\) 27867.8 0.965425 0.482712 0.875779i \(-0.339652\pi\)
0.482712 + 0.875779i \(0.339652\pi\)
\(942\) 12100.8 0.418541
\(943\) 29070.8 1.00390
\(944\) −19848.4 −0.684335
\(945\) 9811.31 0.337738
\(946\) 31511.1 1.08300
\(947\) 27727.4 0.951445 0.475722 0.879595i \(-0.342187\pi\)
0.475722 + 0.879595i \(0.342187\pi\)
\(948\) 3499.37 0.119889
\(949\) 26921.2 0.920864
\(950\) 181.730 0.00620644
\(951\) −28846.4 −0.983605
\(952\) −20296.5 −0.690981
\(953\) 7462.86 0.253668 0.126834 0.991924i \(-0.459518\pi\)
0.126834 + 0.991924i \(0.459518\pi\)
\(954\) 1200.94 0.0407568
\(955\) 23245.2 0.787641
\(956\) −1386.77 −0.0469158
\(957\) −39633.2 −1.33872
\(958\) −2942.21 −0.0992259
\(959\) −7791.24 −0.262348
\(960\) −2033.21 −0.0683558
\(961\) 55176.1 1.85211
\(962\) 20824.7 0.697938
\(963\) 13284.0 0.444519
\(964\) 16191.3 0.540961
\(965\) −35233.7 −1.17535
\(966\) 12288.8 0.409303
\(967\) 49419.6 1.64346 0.821730 0.569877i \(-0.193009\pi\)
0.821730 + 0.569877i \(0.193009\pi\)
\(968\) 66642.0 2.21276
\(969\) 662.894 0.0219765
\(970\) 4284.73 0.141829
\(971\) 20757.1 0.686021 0.343011 0.939332i \(-0.388553\pi\)
0.343011 + 0.939332i \(0.388553\pi\)
\(972\) 1506.10 0.0496998
\(973\) −30547.8 −1.00649
\(974\) −9329.55 −0.306918
\(975\) 5688.61 0.186853
\(976\) −15783.1 −0.517629
\(977\) 15254.1 0.499510 0.249755 0.968309i \(-0.419650\pi\)
0.249755 + 0.968309i \(0.419650\pi\)
\(978\) −8694.63 −0.284278
\(979\) −33913.7 −1.10714
\(980\) −41806.2 −1.36270
\(981\) −8211.90 −0.267264
\(982\) 6505.48 0.211403
\(983\) −3303.04 −0.107173 −0.0535863 0.998563i \(-0.517065\pi\)
−0.0535863 + 0.998563i \(0.517065\pi\)
\(984\) 16340.2 0.529378
\(985\) −9180.07 −0.296956
\(986\) 9061.43 0.292672
\(987\) 31306.9 1.00963
\(988\) −3363.27 −0.108299
\(989\) −34367.4 −1.10497
\(990\) 10169.0 0.326457
\(991\) −31497.2 −1.00963 −0.504814 0.863228i \(-0.668439\pi\)
−0.504814 + 0.863228i \(0.668439\pi\)
\(992\) 53835.7 1.72307
\(993\) −34511.1 −1.10290
\(994\) −35080.3 −1.11939
\(995\) 9582.06 0.305298
\(996\) −20307.9 −0.646064
\(997\) 1822.10 0.0578800 0.0289400 0.999581i \(-0.490787\pi\)
0.0289400 + 0.999581i \(0.490787\pi\)
\(998\) 6846.91 0.217169
\(999\) −4804.30 −0.152154
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1011.4.a.c.1.18 46
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1011.4.a.c.1.18 46 1.1 even 1 trivial