Properties

Label 1011.4.a.c.1.17
Level $1011$
Weight $4$
Character 1011.1
Self dual yes
Analytic conductor $59.651$
Analytic rank $0$
Dimension $46$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1011,4,Mod(1,1011)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1011.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1011, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1011 = 3 \cdot 337 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1011.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [46] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.6509310158\)
Analytic rank: \(0\)
Dimension: \(46\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.17
Character \(\chi\) \(=\) 1011.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.67739 q^{2} -3.00000 q^{3} -5.18636 q^{4} -10.3096 q^{5} +5.03218 q^{6} -14.8478 q^{7} +22.1187 q^{8} +9.00000 q^{9} +17.2932 q^{10} -9.93668 q^{11} +15.5591 q^{12} +39.2709 q^{13} +24.9055 q^{14} +30.9287 q^{15} +4.38915 q^{16} +2.80710 q^{17} -15.0965 q^{18} -122.197 q^{19} +53.4692 q^{20} +44.5433 q^{21} +16.6677 q^{22} -99.2053 q^{23} -66.3561 q^{24} -18.7125 q^{25} -65.8726 q^{26} -27.0000 q^{27} +77.0059 q^{28} -250.263 q^{29} -51.8796 q^{30} +10.2296 q^{31} -184.312 q^{32} +29.8100 q^{33} -4.70861 q^{34} +153.074 q^{35} -46.6772 q^{36} -404.701 q^{37} +204.973 q^{38} -117.813 q^{39} -228.034 q^{40} -188.392 q^{41} -74.7166 q^{42} -58.2207 q^{43} +51.5351 q^{44} -92.7862 q^{45} +166.406 q^{46} -71.4635 q^{47} -13.1675 q^{48} -122.543 q^{49} +31.3883 q^{50} -8.42131 q^{51} -203.673 q^{52} -292.903 q^{53} +45.2896 q^{54} +102.443 q^{55} -328.413 q^{56} +366.592 q^{57} +419.789 q^{58} +189.031 q^{59} -160.408 q^{60} +566.690 q^{61} -17.1590 q^{62} -133.630 q^{63} +274.050 q^{64} -404.866 q^{65} -50.0031 q^{66} -798.385 q^{67} -14.5586 q^{68} +297.616 q^{69} -256.766 q^{70} +44.2663 q^{71} +199.068 q^{72} +1054.89 q^{73} +678.841 q^{74} +56.1376 q^{75} +633.760 q^{76} +147.538 q^{77} +197.618 q^{78} -1228.53 q^{79} -45.2503 q^{80} +81.0000 q^{81} +316.007 q^{82} +264.482 q^{83} -231.018 q^{84} -28.9401 q^{85} +97.6590 q^{86} +750.790 q^{87} -219.786 q^{88} -657.630 q^{89} +155.639 q^{90} -583.085 q^{91} +514.514 q^{92} -30.6887 q^{93} +119.872 q^{94} +1259.80 q^{95} +552.935 q^{96} +279.854 q^{97} +205.553 q^{98} -89.4301 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 46 q + 7 q^{2} - 138 q^{3} + 207 q^{4} + 42 q^{5} - 21 q^{6} - 72 q^{7} + 105 q^{8} + 414 q^{9} - 32 q^{10} + 126 q^{11} - 621 q^{12} + 114 q^{13} + 111 q^{14} - 126 q^{15} + 915 q^{16} + 154 q^{17} + 63 q^{18}+ \cdots + 1134 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.67739 −0.593048 −0.296524 0.955025i \(-0.595827\pi\)
−0.296524 + 0.955025i \(0.595827\pi\)
\(3\) −3.00000 −0.577350
\(4\) −5.18636 −0.648295
\(5\) −10.3096 −0.922117 −0.461058 0.887370i \(-0.652530\pi\)
−0.461058 + 0.887370i \(0.652530\pi\)
\(6\) 5.03218 0.342396
\(7\) −14.8478 −0.801705 −0.400852 0.916143i \(-0.631286\pi\)
−0.400852 + 0.916143i \(0.631286\pi\)
\(8\) 22.1187 0.977517
\(9\) 9.00000 0.333333
\(10\) 17.2932 0.546859
\(11\) −9.93668 −0.272365 −0.136183 0.990684i \(-0.543483\pi\)
−0.136183 + 0.990684i \(0.543483\pi\)
\(12\) 15.5591 0.374293
\(13\) 39.2709 0.837829 0.418915 0.908026i \(-0.362411\pi\)
0.418915 + 0.908026i \(0.362411\pi\)
\(14\) 24.9055 0.475449
\(15\) 30.9287 0.532384
\(16\) 4.38915 0.0685805
\(17\) 2.80710 0.0400484 0.0200242 0.999799i \(-0.493626\pi\)
0.0200242 + 0.999799i \(0.493626\pi\)
\(18\) −15.0965 −0.197683
\(19\) −122.197 −1.47547 −0.737737 0.675088i \(-0.764106\pi\)
−0.737737 + 0.675088i \(0.764106\pi\)
\(20\) 53.4692 0.597803
\(21\) 44.5433 0.462865
\(22\) 16.6677 0.161526
\(23\) −99.2053 −0.899379 −0.449690 0.893185i \(-0.648465\pi\)
−0.449690 + 0.893185i \(0.648465\pi\)
\(24\) −66.3561 −0.564370
\(25\) −18.7125 −0.149700
\(26\) −65.8726 −0.496873
\(27\) −27.0000 −0.192450
\(28\) 77.0059 0.519741
\(29\) −250.263 −1.60251 −0.801254 0.598325i \(-0.795833\pi\)
−0.801254 + 0.598325i \(0.795833\pi\)
\(30\) −51.8796 −0.315729
\(31\) 10.2296 0.0592672 0.0296336 0.999561i \(-0.490566\pi\)
0.0296336 + 0.999561i \(0.490566\pi\)
\(32\) −184.312 −1.01819
\(33\) 29.8100 0.157250
\(34\) −4.70861 −0.0237506
\(35\) 153.074 0.739266
\(36\) −46.6772 −0.216098
\(37\) −404.701 −1.79817 −0.899086 0.437772i \(-0.855768\pi\)
−0.899086 + 0.437772i \(0.855768\pi\)
\(38\) 204.973 0.875027
\(39\) −117.813 −0.483721
\(40\) −228.034 −0.901385
\(41\) −188.392 −0.717606 −0.358803 0.933413i \(-0.616815\pi\)
−0.358803 + 0.933413i \(0.616815\pi\)
\(42\) −74.7166 −0.274501
\(43\) −58.2207 −0.206479 −0.103239 0.994657i \(-0.532921\pi\)
−0.103239 + 0.994657i \(0.532921\pi\)
\(44\) 51.5351 0.176573
\(45\) −92.7862 −0.307372
\(46\) 166.406 0.533375
\(47\) −71.4635 −0.221788 −0.110894 0.993832i \(-0.535371\pi\)
−0.110894 + 0.993832i \(0.535371\pi\)
\(48\) −13.1675 −0.0395950
\(49\) −122.543 −0.357269
\(50\) 31.3883 0.0887794
\(51\) −8.42131 −0.0231219
\(52\) −203.673 −0.543160
\(53\) −292.903 −0.759119 −0.379560 0.925167i \(-0.623924\pi\)
−0.379560 + 0.925167i \(0.623924\pi\)
\(54\) 45.2896 0.114132
\(55\) 102.443 0.251153
\(56\) −328.413 −0.783680
\(57\) 366.592 0.851866
\(58\) 419.789 0.950363
\(59\) 189.031 0.417114 0.208557 0.978010i \(-0.433123\pi\)
0.208557 + 0.978010i \(0.433123\pi\)
\(60\) −160.408 −0.345142
\(61\) 566.690 1.18946 0.594731 0.803925i \(-0.297259\pi\)
0.594731 + 0.803925i \(0.297259\pi\)
\(62\) −17.1590 −0.0351483
\(63\) −133.630 −0.267235
\(64\) 274.050 0.535254
\(65\) −404.866 −0.772576
\(66\) −50.0031 −0.0932569
\(67\) −798.385 −1.45579 −0.727897 0.685686i \(-0.759502\pi\)
−0.727897 + 0.685686i \(0.759502\pi\)
\(68\) −14.5586 −0.0259631
\(69\) 297.616 0.519257
\(70\) −256.766 −0.438420
\(71\) 44.2663 0.0739921 0.0369961 0.999315i \(-0.488221\pi\)
0.0369961 + 0.999315i \(0.488221\pi\)
\(72\) 199.068 0.325839
\(73\) 1054.89 1.69131 0.845654 0.533732i \(-0.179211\pi\)
0.845654 + 0.533732i \(0.179211\pi\)
\(74\) 678.841 1.06640
\(75\) 56.1376 0.0864295
\(76\) 633.760 0.956542
\(77\) 147.538 0.218357
\(78\) 197.618 0.286869
\(79\) −1228.53 −1.74962 −0.874811 0.484464i \(-0.839015\pi\)
−0.874811 + 0.484464i \(0.839015\pi\)
\(80\) −45.2503 −0.0632393
\(81\) 81.0000 0.111111
\(82\) 316.007 0.425575
\(83\) 264.482 0.349767 0.174883 0.984589i \(-0.444045\pi\)
0.174883 + 0.984589i \(0.444045\pi\)
\(84\) −231.018 −0.300073
\(85\) −28.9401 −0.0369293
\(86\) 97.6590 0.122452
\(87\) 750.790 0.925208
\(88\) −219.786 −0.266242
\(89\) −657.630 −0.783244 −0.391622 0.920126i \(-0.628086\pi\)
−0.391622 + 0.920126i \(0.628086\pi\)
\(90\) 155.639 0.182286
\(91\) −583.085 −0.671692
\(92\) 514.514 0.583063
\(93\) −30.6887 −0.0342180
\(94\) 119.872 0.131531
\(95\) 1259.80 1.36056
\(96\) 552.935 0.587851
\(97\) 279.854 0.292937 0.146469 0.989215i \(-0.453209\pi\)
0.146469 + 0.989215i \(0.453209\pi\)
\(98\) 205.553 0.211878
\(99\) −89.4301 −0.0907885
\(100\) 97.0499 0.0970499
\(101\) −903.486 −0.890102 −0.445051 0.895505i \(-0.646814\pi\)
−0.445051 + 0.895505i \(0.646814\pi\)
\(102\) 14.1258 0.0137124
\(103\) −370.383 −0.354320 −0.177160 0.984182i \(-0.556691\pi\)
−0.177160 + 0.984182i \(0.556691\pi\)
\(104\) 868.620 0.818992
\(105\) −459.223 −0.426815
\(106\) 491.313 0.450194
\(107\) 507.110 0.458170 0.229085 0.973406i \(-0.426427\pi\)
0.229085 + 0.973406i \(0.426427\pi\)
\(108\) 140.032 0.124764
\(109\) −574.293 −0.504654 −0.252327 0.967642i \(-0.581196\pi\)
−0.252327 + 0.967642i \(0.581196\pi\)
\(110\) −171.837 −0.148946
\(111\) 1214.10 1.03817
\(112\) −65.1692 −0.0549814
\(113\) 732.656 0.609934 0.304967 0.952363i \(-0.401355\pi\)
0.304967 + 0.952363i \(0.401355\pi\)
\(114\) −614.919 −0.505197
\(115\) 1022.76 0.829333
\(116\) 1297.95 1.03890
\(117\) 353.438 0.279276
\(118\) −317.079 −0.247369
\(119\) −41.6792 −0.0321070
\(120\) 684.103 0.520415
\(121\) −1232.26 −0.925817
\(122\) −950.561 −0.705408
\(123\) 565.176 0.414310
\(124\) −53.0542 −0.0384226
\(125\) 1481.62 1.06016
\(126\) 224.150 0.158483
\(127\) −1753.99 −1.22552 −0.612762 0.790268i \(-0.709941\pi\)
−0.612762 + 0.790268i \(0.709941\pi\)
\(128\) 1014.81 0.700758
\(129\) 174.662 0.119210
\(130\) 679.119 0.458175
\(131\) 533.223 0.355633 0.177816 0.984064i \(-0.443097\pi\)
0.177816 + 0.984064i \(0.443097\pi\)
\(132\) −154.605 −0.101945
\(133\) 1814.36 1.18290
\(134\) 1339.20 0.863355
\(135\) 278.359 0.177461
\(136\) 62.0894 0.0391480
\(137\) −2311.02 −1.44120 −0.720599 0.693352i \(-0.756133\pi\)
−0.720599 + 0.693352i \(0.756133\pi\)
\(138\) −499.218 −0.307944
\(139\) −898.490 −0.548265 −0.274133 0.961692i \(-0.588391\pi\)
−0.274133 + 0.961692i \(0.588391\pi\)
\(140\) −793.899 −0.479262
\(141\) 214.391 0.128049
\(142\) −74.2519 −0.0438808
\(143\) −390.222 −0.228196
\(144\) 39.5024 0.0228602
\(145\) 2580.11 1.47770
\(146\) −1769.46 −1.00303
\(147\) 367.630 0.206270
\(148\) 2098.92 1.16575
\(149\) 422.041 0.232047 0.116023 0.993246i \(-0.462985\pi\)
0.116023 + 0.993246i \(0.462985\pi\)
\(150\) −94.1648 −0.0512568
\(151\) 1461.28 0.787532 0.393766 0.919211i \(-0.371172\pi\)
0.393766 + 0.919211i \(0.371172\pi\)
\(152\) −2702.85 −1.44230
\(153\) 25.2639 0.0133495
\(154\) −247.478 −0.129496
\(155\) −105.463 −0.0546513
\(156\) 611.018 0.313594
\(157\) 2090.82 1.06284 0.531418 0.847110i \(-0.321659\pi\)
0.531418 + 0.847110i \(0.321659\pi\)
\(158\) 2060.72 1.03761
\(159\) 878.709 0.438278
\(160\) 1900.18 0.938889
\(161\) 1472.98 0.721037
\(162\) −135.869 −0.0658942
\(163\) −2844.26 −1.36675 −0.683373 0.730070i \(-0.739488\pi\)
−0.683373 + 0.730070i \(0.739488\pi\)
\(164\) 977.067 0.465220
\(165\) −307.329 −0.145003
\(166\) −443.640 −0.207428
\(167\) −733.777 −0.340008 −0.170004 0.985443i \(-0.554378\pi\)
−0.170004 + 0.985443i \(0.554378\pi\)
\(168\) 985.240 0.452458
\(169\) −654.799 −0.298042
\(170\) 48.5438 0.0219008
\(171\) −1099.78 −0.491825
\(172\) 301.953 0.133859
\(173\) 2538.76 1.11571 0.557856 0.829938i \(-0.311624\pi\)
0.557856 + 0.829938i \(0.311624\pi\)
\(174\) −1259.37 −0.548692
\(175\) 277.840 0.120015
\(176\) −43.6136 −0.0186790
\(177\) −567.093 −0.240821
\(178\) 1103.10 0.464501
\(179\) 349.609 0.145983 0.0729915 0.997333i \(-0.476745\pi\)
0.0729915 + 0.997333i \(0.476745\pi\)
\(180\) 481.223 0.199268
\(181\) 1200.84 0.493137 0.246569 0.969125i \(-0.420697\pi\)
0.246569 + 0.969125i \(0.420697\pi\)
\(182\) 978.062 0.398345
\(183\) −1700.07 −0.686736
\(184\) −2194.29 −0.879159
\(185\) 4172.29 1.65812
\(186\) 51.4770 0.0202929
\(187\) −27.8933 −0.0109078
\(188\) 370.635 0.143784
\(189\) 400.890 0.154288
\(190\) −2113.19 −0.806877
\(191\) −3451.97 −1.30773 −0.653864 0.756613i \(-0.726853\pi\)
−0.653864 + 0.756613i \(0.726853\pi\)
\(192\) −822.150 −0.309029
\(193\) −3582.35 −1.33608 −0.668039 0.744127i \(-0.732866\pi\)
−0.668039 + 0.744127i \(0.732866\pi\)
\(194\) −469.425 −0.173726
\(195\) 1214.60 0.446047
\(196\) 635.554 0.231616
\(197\) 3982.18 1.44019 0.720097 0.693873i \(-0.244097\pi\)
0.720097 + 0.693873i \(0.244097\pi\)
\(198\) 150.009 0.0538419
\(199\) −3523.06 −1.25499 −0.627495 0.778620i \(-0.715920\pi\)
−0.627495 + 0.778620i \(0.715920\pi\)
\(200\) −413.897 −0.146335
\(201\) 2395.15 0.840503
\(202\) 1515.50 0.527872
\(203\) 3715.85 1.28474
\(204\) 43.6759 0.0149898
\(205\) 1942.24 0.661717
\(206\) 621.278 0.210128
\(207\) −892.847 −0.299793
\(208\) 172.366 0.0574588
\(209\) 1214.24 0.401868
\(210\) 770.297 0.253122
\(211\) −2467.00 −0.804907 −0.402453 0.915441i \(-0.631842\pi\)
−0.402453 + 0.915441i \(0.631842\pi\)
\(212\) 1519.10 0.492133
\(213\) −132.799 −0.0427194
\(214\) −850.622 −0.271716
\(215\) 600.231 0.190397
\(216\) −597.205 −0.188123
\(217\) −151.886 −0.0475148
\(218\) 963.314 0.299284
\(219\) −3164.67 −0.976477
\(220\) −531.306 −0.162821
\(221\) 110.237 0.0335537
\(222\) −2036.52 −0.615687
\(223\) −1435.66 −0.431116 −0.215558 0.976491i \(-0.569157\pi\)
−0.215558 + 0.976491i \(0.569157\pi\)
\(224\) 2736.62 0.816287
\(225\) −168.413 −0.0499001
\(226\) −1228.95 −0.361720
\(227\) 925.185 0.270514 0.135257 0.990811i \(-0.456814\pi\)
0.135257 + 0.990811i \(0.456814\pi\)
\(228\) −1901.28 −0.552260
\(229\) 1467.31 0.423418 0.211709 0.977333i \(-0.432097\pi\)
0.211709 + 0.977333i \(0.432097\pi\)
\(230\) −1715.58 −0.491834
\(231\) −442.613 −0.126068
\(232\) −5535.49 −1.56648
\(233\) 4658.93 1.30994 0.654972 0.755654i \(-0.272681\pi\)
0.654972 + 0.755654i \(0.272681\pi\)
\(234\) −592.854 −0.165624
\(235\) 736.759 0.204514
\(236\) −980.382 −0.270413
\(237\) 3685.58 1.01014
\(238\) 69.9124 0.0190410
\(239\) 3336.14 0.902915 0.451457 0.892293i \(-0.350904\pi\)
0.451457 + 0.892293i \(0.350904\pi\)
\(240\) 135.751 0.0365112
\(241\) −750.819 −0.200682 −0.100341 0.994953i \(-0.531993\pi\)
−0.100341 + 0.994953i \(0.531993\pi\)
\(242\) 2066.99 0.549054
\(243\) −243.000 −0.0641500
\(244\) −2939.06 −0.771122
\(245\) 1263.37 0.329444
\(246\) −948.021 −0.245706
\(247\) −4798.80 −1.23620
\(248\) 226.265 0.0579347
\(249\) −793.446 −0.201938
\(250\) −2485.25 −0.628724
\(251\) −2760.11 −0.694089 −0.347045 0.937849i \(-0.612815\pi\)
−0.347045 + 0.937849i \(0.612815\pi\)
\(252\) 693.053 0.173247
\(253\) 985.770 0.244960
\(254\) 2942.13 0.726793
\(255\) 86.8202 0.0213211
\(256\) −3894.63 −0.950836
\(257\) 3728.44 0.904957 0.452478 0.891775i \(-0.350540\pi\)
0.452478 + 0.891775i \(0.350540\pi\)
\(258\) −292.977 −0.0706975
\(259\) 6008.90 1.44160
\(260\) 2099.78 0.500857
\(261\) −2252.37 −0.534169
\(262\) −894.423 −0.210907
\(263\) 7182.76 1.68406 0.842030 0.539431i \(-0.181360\pi\)
0.842030 + 0.539431i \(0.181360\pi\)
\(264\) 659.359 0.153715
\(265\) 3019.71 0.699997
\(266\) −3043.39 −0.701513
\(267\) 1972.89 0.452206
\(268\) 4140.71 0.943784
\(269\) 4576.70 1.03735 0.518673 0.854973i \(-0.326426\pi\)
0.518673 + 0.854973i \(0.326426\pi\)
\(270\) −466.917 −0.105243
\(271\) 8063.66 1.80750 0.903750 0.428062i \(-0.140803\pi\)
0.903750 + 0.428062i \(0.140803\pi\)
\(272\) 12.3208 0.00274654
\(273\) 1749.26 0.387801
\(274\) 3876.49 0.854699
\(275\) 185.940 0.0407732
\(276\) −1543.54 −0.336631
\(277\) 4195.49 0.910045 0.455022 0.890480i \(-0.349631\pi\)
0.455022 + 0.890480i \(0.349631\pi\)
\(278\) 1507.12 0.325147
\(279\) 92.0661 0.0197557
\(280\) 3385.80 0.722645
\(281\) −432.551 −0.0918286 −0.0459143 0.998945i \(-0.514620\pi\)
−0.0459143 + 0.998945i \(0.514620\pi\)
\(282\) −359.617 −0.0759393
\(283\) −3895.82 −0.818312 −0.409156 0.912464i \(-0.634177\pi\)
−0.409156 + 0.912464i \(0.634177\pi\)
\(284\) −229.581 −0.0479687
\(285\) −3779.41 −0.785520
\(286\) 654.555 0.135331
\(287\) 2797.20 0.575309
\(288\) −1658.81 −0.339396
\(289\) −4905.12 −0.998396
\(290\) −4327.85 −0.876346
\(291\) −839.563 −0.169127
\(292\) −5471.03 −1.09647
\(293\) 1402.46 0.279633 0.139816 0.990177i \(-0.455349\pi\)
0.139816 + 0.990177i \(0.455349\pi\)
\(294\) −616.660 −0.122328
\(295\) −1948.83 −0.384628
\(296\) −8951.44 −1.75774
\(297\) 268.290 0.0524168
\(298\) −707.928 −0.137615
\(299\) −3895.88 −0.753526
\(300\) −291.150 −0.0560318
\(301\) 864.449 0.165535
\(302\) −2451.14 −0.467044
\(303\) 2710.46 0.513900
\(304\) −536.344 −0.101189
\(305\) −5842.34 −1.09682
\(306\) −42.3775 −0.00791686
\(307\) 8422.83 1.56585 0.782926 0.622115i \(-0.213726\pi\)
0.782926 + 0.622115i \(0.213726\pi\)
\(308\) −765.183 −0.141559
\(309\) 1111.15 0.204567
\(310\) 176.902 0.0324108
\(311\) 435.936 0.0794844 0.0397422 0.999210i \(-0.487346\pi\)
0.0397422 + 0.999210i \(0.487346\pi\)
\(312\) −2605.86 −0.472845
\(313\) −5933.81 −1.07156 −0.535781 0.844357i \(-0.679983\pi\)
−0.535781 + 0.844357i \(0.679983\pi\)
\(314\) −3507.12 −0.630312
\(315\) 1377.67 0.246422
\(316\) 6371.58 1.13427
\(317\) 1004.04 0.177894 0.0889471 0.996036i \(-0.471650\pi\)
0.0889471 + 0.996036i \(0.471650\pi\)
\(318\) −1473.94 −0.259919
\(319\) 2486.78 0.436468
\(320\) −2825.34 −0.493567
\(321\) −1521.33 −0.264524
\(322\) −2470.76 −0.427609
\(323\) −343.021 −0.0590904
\(324\) −420.095 −0.0720327
\(325\) −734.858 −0.125423
\(326\) 4770.94 0.810545
\(327\) 1722.88 0.291362
\(328\) −4166.98 −0.701473
\(329\) 1061.07 0.177808
\(330\) 515.511 0.0859938
\(331\) −1332.75 −0.221313 −0.110656 0.993859i \(-0.535295\pi\)
−0.110656 + 0.993859i \(0.535295\pi\)
\(332\) −1371.70 −0.226752
\(333\) −3642.30 −0.599391
\(334\) 1230.83 0.201641
\(335\) 8231.01 1.34241
\(336\) 195.508 0.0317435
\(337\) −337.000 −0.0544735
\(338\) 1098.35 0.176753
\(339\) −2197.97 −0.352145
\(340\) 150.093 0.0239411
\(341\) −101.648 −0.0161424
\(342\) 1844.76 0.291676
\(343\) 6912.29 1.08813
\(344\) −1287.77 −0.201836
\(345\) −3068.29 −0.478816
\(346\) −4258.49 −0.661671
\(347\) −2790.26 −0.431668 −0.215834 0.976430i \(-0.569247\pi\)
−0.215834 + 0.976430i \(0.569247\pi\)
\(348\) −3893.86 −0.599807
\(349\) −6308.64 −0.967604 −0.483802 0.875178i \(-0.660744\pi\)
−0.483802 + 0.875178i \(0.660744\pi\)
\(350\) −466.046 −0.0711749
\(351\) −1060.31 −0.161240
\(352\) 1831.45 0.277319
\(353\) −2857.22 −0.430806 −0.215403 0.976525i \(-0.569106\pi\)
−0.215403 + 0.976525i \(0.569106\pi\)
\(354\) 951.237 0.142818
\(355\) −456.367 −0.0682294
\(356\) 3410.71 0.507773
\(357\) 125.038 0.0185370
\(358\) −586.431 −0.0865749
\(359\) −1084.64 −0.159457 −0.0797286 0.996817i \(-0.525405\pi\)
−0.0797286 + 0.996817i \(0.525405\pi\)
\(360\) −2052.31 −0.300462
\(361\) 8073.22 1.17703
\(362\) −2014.28 −0.292454
\(363\) 3696.79 0.534521
\(364\) 3024.09 0.435454
\(365\) −10875.5 −1.55958
\(366\) 2851.68 0.407267
\(367\) −2979.41 −0.423771 −0.211886 0.977294i \(-0.567960\pi\)
−0.211886 + 0.977294i \(0.567960\pi\)
\(368\) −435.427 −0.0616799
\(369\) −1695.53 −0.239202
\(370\) −6998.57 −0.983347
\(371\) 4348.96 0.608590
\(372\) 159.163 0.0221833
\(373\) −5011.19 −0.695629 −0.347814 0.937563i \(-0.613076\pi\)
−0.347814 + 0.937563i \(0.613076\pi\)
\(374\) 46.7879 0.00646884
\(375\) −4444.85 −0.612083
\(376\) −1580.68 −0.216801
\(377\) −9828.05 −1.34263
\(378\) −672.450 −0.0915002
\(379\) −2861.64 −0.387843 −0.193921 0.981017i \(-0.562121\pi\)
−0.193921 + 0.981017i \(0.562121\pi\)
\(380\) −6533.80 −0.882044
\(381\) 5261.97 0.707556
\(382\) 5790.31 0.775544
\(383\) −11653.6 −1.55476 −0.777378 0.629034i \(-0.783451\pi\)
−0.777378 + 0.629034i \(0.783451\pi\)
\(384\) −3044.42 −0.404583
\(385\) −1521.05 −0.201350
\(386\) 6009.00 0.792357
\(387\) −523.987 −0.0688262
\(388\) −1451.42 −0.189910
\(389\) −1537.25 −0.200364 −0.100182 0.994969i \(-0.531943\pi\)
−0.100182 + 0.994969i \(0.531943\pi\)
\(390\) −2037.36 −0.264527
\(391\) −278.479 −0.0360187
\(392\) −2710.50 −0.349237
\(393\) −1599.67 −0.205325
\(394\) −6679.67 −0.854104
\(395\) 12665.6 1.61336
\(396\) 463.816 0.0588577
\(397\) −7284.28 −0.920875 −0.460438 0.887692i \(-0.652308\pi\)
−0.460438 + 0.887692i \(0.652308\pi\)
\(398\) 5909.55 0.744269
\(399\) −5443.08 −0.682945
\(400\) −82.1322 −0.0102665
\(401\) 11860.3 1.47699 0.738497 0.674256i \(-0.235536\pi\)
0.738497 + 0.674256i \(0.235536\pi\)
\(402\) −4017.61 −0.498458
\(403\) 401.724 0.0496558
\(404\) 4685.80 0.577048
\(405\) −835.076 −0.102457
\(406\) −6232.94 −0.761911
\(407\) 4021.38 0.489760
\(408\) −186.268 −0.0226021
\(409\) −7975.44 −0.964206 −0.482103 0.876115i \(-0.660127\pi\)
−0.482103 + 0.876115i \(0.660127\pi\)
\(410\) −3257.90 −0.392430
\(411\) 6933.07 0.832076
\(412\) 1920.94 0.229704
\(413\) −2806.69 −0.334403
\(414\) 1497.65 0.177792
\(415\) −2726.70 −0.322526
\(416\) −7238.09 −0.853068
\(417\) 2695.47 0.316541
\(418\) −2036.75 −0.238327
\(419\) 12976.6 1.51301 0.756504 0.653989i \(-0.226906\pi\)
0.756504 + 0.653989i \(0.226906\pi\)
\(420\) 2381.70 0.276702
\(421\) 7259.84 0.840435 0.420217 0.907423i \(-0.361954\pi\)
0.420217 + 0.907423i \(0.361954\pi\)
\(422\) 4138.13 0.477348
\(423\) −643.172 −0.0739293
\(424\) −6478.63 −0.742052
\(425\) −52.5280 −0.00599525
\(426\) 222.756 0.0253346
\(427\) −8414.09 −0.953598
\(428\) −2630.05 −0.297029
\(429\) 1170.67 0.131749
\(430\) −1006.82 −0.112915
\(431\) 16859.3 1.88419 0.942094 0.335349i \(-0.108854\pi\)
0.942094 + 0.335349i \(0.108854\pi\)
\(432\) −118.507 −0.0131983
\(433\) 13152.3 1.45972 0.729860 0.683597i \(-0.239585\pi\)
0.729860 + 0.683597i \(0.239585\pi\)
\(434\) 254.773 0.0281786
\(435\) −7740.33 −0.853150
\(436\) 2978.49 0.327164
\(437\) 12122.6 1.32701
\(438\) 5308.39 0.579097
\(439\) −5870.42 −0.638222 −0.319111 0.947717i \(-0.603384\pi\)
−0.319111 + 0.947717i \(0.603384\pi\)
\(440\) 2265.90 0.245506
\(441\) −1102.89 −0.119090
\(442\) −184.911 −0.0198989
\(443\) −13722.5 −1.47173 −0.735866 0.677127i \(-0.763225\pi\)
−0.735866 + 0.677127i \(0.763225\pi\)
\(444\) −6296.76 −0.673043
\(445\) 6779.89 0.722242
\(446\) 2408.17 0.255672
\(447\) −1266.12 −0.133972
\(448\) −4069.03 −0.429115
\(449\) 294.858 0.0309915 0.0154958 0.999880i \(-0.495067\pi\)
0.0154958 + 0.999880i \(0.495067\pi\)
\(450\) 282.494 0.0295931
\(451\) 1871.99 0.195451
\(452\) −3799.82 −0.395417
\(453\) −4383.84 −0.454682
\(454\) −1551.90 −0.160428
\(455\) 6011.36 0.619378
\(456\) 8108.54 0.832713
\(457\) −16523.7 −1.69135 −0.845675 0.533698i \(-0.820802\pi\)
−0.845675 + 0.533698i \(0.820802\pi\)
\(458\) −2461.26 −0.251107
\(459\) −75.7918 −0.00770731
\(460\) −5304.42 −0.537652
\(461\) −8895.63 −0.898722 −0.449361 0.893350i \(-0.648348\pi\)
−0.449361 + 0.893350i \(0.648348\pi\)
\(462\) 742.435 0.0747645
\(463\) −3172.94 −0.318486 −0.159243 0.987239i \(-0.550905\pi\)
−0.159243 + 0.987239i \(0.550905\pi\)
\(464\) −1098.44 −0.109901
\(465\) 316.388 0.0315530
\(466\) −7814.85 −0.776858
\(467\) 3365.57 0.333490 0.166745 0.986000i \(-0.446674\pi\)
0.166745 + 0.986000i \(0.446674\pi\)
\(468\) −1833.05 −0.181053
\(469\) 11854.2 1.16712
\(470\) −1235.83 −0.121287
\(471\) −6272.45 −0.613629
\(472\) 4181.12 0.407736
\(473\) 578.521 0.0562376
\(474\) −6182.17 −0.599064
\(475\) 2286.62 0.220879
\(476\) 216.163 0.0208148
\(477\) −2636.13 −0.253040
\(478\) −5596.01 −0.535471
\(479\) −7678.15 −0.732409 −0.366204 0.930534i \(-0.619343\pi\)
−0.366204 + 0.930534i \(0.619343\pi\)
\(480\) −5700.53 −0.542068
\(481\) −15892.9 −1.50656
\(482\) 1259.42 0.119014
\(483\) −4418.93 −0.416291
\(484\) 6390.95 0.600202
\(485\) −2885.18 −0.270122
\(486\) 407.606 0.0380440
\(487\) −11952.6 −1.11217 −0.556083 0.831127i \(-0.687696\pi\)
−0.556083 + 0.831127i \(0.687696\pi\)
\(488\) 12534.4 1.16272
\(489\) 8532.78 0.789091
\(490\) −2119.17 −0.195376
\(491\) 3554.03 0.326662 0.163331 0.986571i \(-0.447776\pi\)
0.163331 + 0.986571i \(0.447776\pi\)
\(492\) −2931.20 −0.268595
\(493\) −702.514 −0.0641778
\(494\) 8049.47 0.733123
\(495\) 921.987 0.0837176
\(496\) 44.8992 0.00406458
\(497\) −657.256 −0.0593198
\(498\) 1330.92 0.119759
\(499\) 6090.93 0.546428 0.273214 0.961953i \(-0.411913\pi\)
0.273214 + 0.961953i \(0.411913\pi\)
\(500\) −7684.19 −0.687295
\(501\) 2201.33 0.196304
\(502\) 4629.78 0.411628
\(503\) −6454.21 −0.572125 −0.286063 0.958211i \(-0.592347\pi\)
−0.286063 + 0.958211i \(0.592347\pi\)
\(504\) −2955.72 −0.261227
\(505\) 9314.57 0.820778
\(506\) −1653.52 −0.145273
\(507\) 1964.40 0.172075
\(508\) 9096.82 0.794500
\(509\) −7226.90 −0.629325 −0.314663 0.949204i \(-0.601891\pi\)
−0.314663 + 0.949204i \(0.601891\pi\)
\(510\) −145.631 −0.0126444
\(511\) −15662.8 −1.35593
\(512\) −1585.63 −0.136867
\(513\) 3299.33 0.283955
\(514\) −6254.06 −0.536682
\(515\) 3818.50 0.326724
\(516\) −905.860 −0.0772835
\(517\) 710.110 0.0604073
\(518\) −10079.3 −0.854939
\(519\) −7616.28 −0.644157
\(520\) −8955.11 −0.755207
\(521\) 8422.91 0.708281 0.354140 0.935192i \(-0.384773\pi\)
0.354140 + 0.935192i \(0.384773\pi\)
\(522\) 3778.10 0.316788
\(523\) −7304.01 −0.610673 −0.305336 0.952245i \(-0.598769\pi\)
−0.305336 + 0.952245i \(0.598769\pi\)
\(524\) −2765.48 −0.230555
\(525\) −833.519 −0.0692910
\(526\) −12048.3 −0.998728
\(527\) 28.7154 0.00237356
\(528\) 130.841 0.0107843
\(529\) −2325.32 −0.191117
\(530\) −5065.23 −0.415131
\(531\) 1701.28 0.139038
\(532\) −9409.92 −0.766865
\(533\) −7398.31 −0.601232
\(534\) −3309.31 −0.268180
\(535\) −5228.09 −0.422486
\(536\) −17659.2 −1.42306
\(537\) −1048.83 −0.0842834
\(538\) −7676.91 −0.615196
\(539\) 1217.67 0.0973078
\(540\) −1443.67 −0.115047
\(541\) −4023.94 −0.319783 −0.159892 0.987135i \(-0.551114\pi\)
−0.159892 + 0.987135i \(0.551114\pi\)
\(542\) −13525.9 −1.07193
\(543\) −3602.52 −0.284713
\(544\) −517.382 −0.0407768
\(545\) 5920.72 0.465350
\(546\) −2934.19 −0.229985
\(547\) −3153.61 −0.246506 −0.123253 0.992375i \(-0.539333\pi\)
−0.123253 + 0.992375i \(0.539333\pi\)
\(548\) 11985.8 0.934321
\(549\) 5100.21 0.396487
\(550\) −311.895 −0.0241804
\(551\) 30581.5 2.36446
\(552\) 6582.87 0.507583
\(553\) 18240.9 1.40268
\(554\) −7037.47 −0.539700
\(555\) −12516.9 −0.957319
\(556\) 4659.89 0.355438
\(557\) 5787.37 0.440249 0.220124 0.975472i \(-0.429354\pi\)
0.220124 + 0.975472i \(0.429354\pi\)
\(558\) −154.431 −0.0117161
\(559\) −2286.38 −0.172994
\(560\) 671.867 0.0506992
\(561\) 83.6798 0.00629762
\(562\) 725.557 0.0544587
\(563\) 3285.38 0.245936 0.122968 0.992411i \(-0.460759\pi\)
0.122968 + 0.992411i \(0.460759\pi\)
\(564\) −1111.91 −0.0830136
\(565\) −7553.38 −0.562430
\(566\) 6534.81 0.485298
\(567\) −1202.67 −0.0890783
\(568\) 979.112 0.0723286
\(569\) −24872.5 −1.83253 −0.916264 0.400576i \(-0.868810\pi\)
−0.916264 + 0.400576i \(0.868810\pi\)
\(570\) 6339.56 0.465851
\(571\) 11114.5 0.814586 0.407293 0.913298i \(-0.366473\pi\)
0.407293 + 0.913298i \(0.366473\pi\)
\(572\) 2023.83 0.147938
\(573\) 10355.9 0.755017
\(574\) −4692.00 −0.341185
\(575\) 1856.38 0.134637
\(576\) 2466.45 0.178418
\(577\) 2805.82 0.202440 0.101220 0.994864i \(-0.467725\pi\)
0.101220 + 0.994864i \(0.467725\pi\)
\(578\) 8227.81 0.592096
\(579\) 10747.0 0.771384
\(580\) −13381.4 −0.957984
\(581\) −3926.97 −0.280410
\(582\) 1408.28 0.100301
\(583\) 2910.48 0.206758
\(584\) 23332.8 1.65328
\(585\) −3643.80 −0.257525
\(586\) −2352.47 −0.165836
\(587\) −2943.89 −0.206997 −0.103498 0.994630i \(-0.533004\pi\)
−0.103498 + 0.994630i \(0.533004\pi\)
\(588\) −1906.66 −0.133723
\(589\) −1250.03 −0.0874473
\(590\) 3268.95 0.228103
\(591\) −11946.5 −0.831497
\(592\) −1776.29 −0.123320
\(593\) −5627.31 −0.389690 −0.194845 0.980834i \(-0.562420\pi\)
−0.194845 + 0.980834i \(0.562420\pi\)
\(594\) −450.028 −0.0310856
\(595\) 429.696 0.0296064
\(596\) −2188.86 −0.150435
\(597\) 10569.2 0.724569
\(598\) 6534.91 0.446877
\(599\) 18078.1 1.23314 0.616571 0.787299i \(-0.288521\pi\)
0.616571 + 0.787299i \(0.288521\pi\)
\(600\) 1241.69 0.0844863
\(601\) 6504.91 0.441499 0.220750 0.975331i \(-0.429150\pi\)
0.220750 + 0.975331i \(0.429150\pi\)
\(602\) −1450.02 −0.0981700
\(603\) −7185.46 −0.485265
\(604\) −7578.72 −0.510553
\(605\) 12704.1 0.853712
\(606\) −4546.50 −0.304767
\(607\) −4167.73 −0.278687 −0.139344 0.990244i \(-0.544499\pi\)
−0.139344 + 0.990244i \(0.544499\pi\)
\(608\) 22522.4 1.50231
\(609\) −11147.6 −0.741744
\(610\) 9799.88 0.650468
\(611\) −2806.43 −0.185820
\(612\) −131.028 −0.00865438
\(613\) −13736.7 −0.905087 −0.452544 0.891742i \(-0.649483\pi\)
−0.452544 + 0.891742i \(0.649483\pi\)
\(614\) −14128.4 −0.928625
\(615\) −5826.72 −0.382043
\(616\) 3263.34 0.213447
\(617\) 20375.6 1.32949 0.664743 0.747072i \(-0.268541\pi\)
0.664743 + 0.747072i \(0.268541\pi\)
\(618\) −1863.83 −0.121318
\(619\) −9457.67 −0.614113 −0.307056 0.951691i \(-0.599344\pi\)
−0.307056 + 0.951691i \(0.599344\pi\)
\(620\) 546.967 0.0354302
\(621\) 2678.54 0.173086
\(622\) −731.235 −0.0471380
\(623\) 9764.35 0.627930
\(624\) −517.098 −0.0331738
\(625\) −12935.8 −0.827890
\(626\) 9953.32 0.635487
\(627\) −3642.71 −0.232019
\(628\) −10843.7 −0.689031
\(629\) −1136.04 −0.0720139
\(630\) −2310.89 −0.146140
\(631\) 26885.1 1.69616 0.848080 0.529868i \(-0.177758\pi\)
0.848080 + 0.529868i \(0.177758\pi\)
\(632\) −27173.4 −1.71029
\(633\) 7401.00 0.464713
\(634\) −1684.17 −0.105500
\(635\) 18082.9 1.13008
\(636\) −4557.30 −0.284133
\(637\) −4812.38 −0.299331
\(638\) −4171.31 −0.258846
\(639\) 398.396 0.0246640
\(640\) −10462.2 −0.646181
\(641\) 17436.6 1.07442 0.537209 0.843449i \(-0.319478\pi\)
0.537209 + 0.843449i \(0.319478\pi\)
\(642\) 2551.87 0.156876
\(643\) −31629.0 −1.93985 −0.969927 0.243396i \(-0.921738\pi\)
−0.969927 + 0.243396i \(0.921738\pi\)
\(644\) −7639.39 −0.467444
\(645\) −1800.69 −0.109926
\(646\) 575.380 0.0350434
\(647\) −23882.5 −1.45119 −0.725593 0.688124i \(-0.758435\pi\)
−0.725593 + 0.688124i \(0.758435\pi\)
\(648\) 1791.61 0.108613
\(649\) −1878.34 −0.113608
\(650\) 1232.64 0.0743820
\(651\) 455.659 0.0274327
\(652\) 14751.3 0.886054
\(653\) −3053.14 −0.182968 −0.0914842 0.995807i \(-0.529161\pi\)
−0.0914842 + 0.995807i \(0.529161\pi\)
\(654\) −2889.94 −0.172792
\(655\) −5497.30 −0.327935
\(656\) −826.881 −0.0492138
\(657\) 9494.00 0.563769
\(658\) −1779.84 −0.105449
\(659\) 11748.7 0.694484 0.347242 0.937776i \(-0.387118\pi\)
0.347242 + 0.937776i \(0.387118\pi\)
\(660\) 1593.92 0.0940048
\(661\) 31859.5 1.87472 0.937361 0.348361i \(-0.113262\pi\)
0.937361 + 0.348361i \(0.113262\pi\)
\(662\) 2235.54 0.131249
\(663\) −330.712 −0.0193722
\(664\) 5849.99 0.341903
\(665\) −18705.3 −1.09077
\(666\) 6109.57 0.355467
\(667\) 24827.4 1.44126
\(668\) 3805.63 0.220426
\(669\) 4306.98 0.248905
\(670\) −13806.6 −0.796115
\(671\) −5631.01 −0.323968
\(672\) −8209.87 −0.471283
\(673\) 19659.2 1.12601 0.563005 0.826453i \(-0.309645\pi\)
0.563005 + 0.826453i \(0.309645\pi\)
\(674\) 565.281 0.0323054
\(675\) 505.238 0.0288098
\(676\) 3396.02 0.193219
\(677\) −17594.9 −0.998857 −0.499428 0.866355i \(-0.666457\pi\)
−0.499428 + 0.866355i \(0.666457\pi\)
\(678\) 3686.85 0.208839
\(679\) −4155.22 −0.234849
\(680\) −640.116 −0.0360990
\(681\) −2775.55 −0.156181
\(682\) 170.503 0.00957318
\(683\) 19842.2 1.11163 0.555814 0.831306i \(-0.312406\pi\)
0.555814 + 0.831306i \(0.312406\pi\)
\(684\) 5703.84 0.318847
\(685\) 23825.7 1.32895
\(686\) −11594.6 −0.645312
\(687\) −4401.94 −0.244461
\(688\) −255.540 −0.0141604
\(689\) −11502.6 −0.636012
\(690\) 5146.73 0.283960
\(691\) −4356.96 −0.239865 −0.119932 0.992782i \(-0.538268\pi\)
−0.119932 + 0.992782i \(0.538268\pi\)
\(692\) −13166.9 −0.723311
\(693\) 1327.84 0.0727856
\(694\) 4680.36 0.256000
\(695\) 9263.05 0.505565
\(696\) 16606.5 0.904407
\(697\) −528.835 −0.0287390
\(698\) 10582.1 0.573835
\(699\) −13976.8 −0.756296
\(700\) −1440.98 −0.0778054
\(701\) 6115.70 0.329511 0.164755 0.986334i \(-0.447317\pi\)
0.164755 + 0.986334i \(0.447317\pi\)
\(702\) 1778.56 0.0956232
\(703\) 49453.4 2.65316
\(704\) −2723.14 −0.145785
\(705\) −2210.28 −0.118076
\(706\) 4792.68 0.255488
\(707\) 13414.8 0.713599
\(708\) 2941.15 0.156123
\(709\) −19043.3 −1.00872 −0.504362 0.863492i \(-0.668272\pi\)
−0.504362 + 0.863492i \(0.668272\pi\)
\(710\) 765.506 0.0404633
\(711\) −11056.7 −0.583207
\(712\) −14545.9 −0.765634
\(713\) −1014.83 −0.0533037
\(714\) −209.737 −0.0109933
\(715\) 4023.02 0.210423
\(716\) −1813.19 −0.0946401
\(717\) −10008.4 −0.521298
\(718\) 1819.37 0.0945657
\(719\) 20187.5 1.04710 0.523551 0.851994i \(-0.324607\pi\)
0.523551 + 0.851994i \(0.324607\pi\)
\(720\) −407.253 −0.0210798
\(721\) 5499.37 0.284060
\(722\) −13542.0 −0.698032
\(723\) 2252.46 0.115864
\(724\) −6227.99 −0.319698
\(725\) 4683.06 0.239896
\(726\) −6200.96 −0.316996
\(727\) −35027.4 −1.78693 −0.893464 0.449136i \(-0.851732\pi\)
−0.893464 + 0.449136i \(0.851732\pi\)
\(728\) −12897.1 −0.656590
\(729\) 729.000 0.0370370
\(730\) 18242.4 0.924907
\(731\) −163.432 −0.00826913
\(732\) 8817.17 0.445208
\(733\) 36071.6 1.81765 0.908823 0.417182i \(-0.136982\pi\)
0.908823 + 0.417182i \(0.136982\pi\)
\(734\) 4997.64 0.251317
\(735\) −3790.11 −0.190205
\(736\) 18284.7 0.915738
\(737\) 7933.29 0.396508
\(738\) 2844.06 0.141858
\(739\) 21964.1 1.09332 0.546659 0.837355i \(-0.315899\pi\)
0.546659 + 0.837355i \(0.315899\pi\)
\(740\) −21639.0 −1.07495
\(741\) 14396.4 0.713718
\(742\) −7294.91 −0.360923
\(743\) −30158.7 −1.48912 −0.744559 0.667557i \(-0.767340\pi\)
−0.744559 + 0.667557i \(0.767340\pi\)
\(744\) −678.794 −0.0334486
\(745\) −4351.07 −0.213974
\(746\) 8405.73 0.412541
\(747\) 2380.34 0.116589
\(748\) 144.664 0.00707146
\(749\) −7529.46 −0.367317
\(750\) 7455.75 0.362994
\(751\) −18943.4 −0.920444 −0.460222 0.887804i \(-0.652230\pi\)
−0.460222 + 0.887804i \(0.652230\pi\)
\(752\) −313.664 −0.0152103
\(753\) 8280.32 0.400733
\(754\) 16485.5 0.796242
\(755\) −15065.2 −0.726197
\(756\) −2079.16 −0.100024
\(757\) 39599.3 1.90127 0.950636 0.310310i \(-0.100433\pi\)
0.950636 + 0.310310i \(0.100433\pi\)
\(758\) 4800.09 0.230009
\(759\) −2957.31 −0.141428
\(760\) 27865.2 1.32997
\(761\) 38833.9 1.84984 0.924920 0.380163i \(-0.124132\pi\)
0.924920 + 0.380163i \(0.124132\pi\)
\(762\) −8826.38 −0.419614
\(763\) 8526.98 0.404584
\(764\) 17903.2 0.847792
\(765\) −260.460 −0.0123098
\(766\) 19547.7 0.922044
\(767\) 7423.41 0.349471
\(768\) 11683.9 0.548966
\(769\) 11997.8 0.562617 0.281309 0.959617i \(-0.409232\pi\)
0.281309 + 0.959617i \(0.409232\pi\)
\(770\) 2551.40 0.119410
\(771\) −11185.3 −0.522477
\(772\) 18579.3 0.866172
\(773\) 15935.3 0.741467 0.370734 0.928739i \(-0.379106\pi\)
0.370734 + 0.928739i \(0.379106\pi\)
\(774\) 878.931 0.0408172
\(775\) −191.421 −0.00887232
\(776\) 6190.01 0.286351
\(777\) −18026.7 −0.832310
\(778\) 2578.57 0.118825
\(779\) 23021.0 1.05881
\(780\) −6299.34 −0.289170
\(781\) −439.860 −0.0201529
\(782\) 467.119 0.0213608
\(783\) 6757.11 0.308403
\(784\) −537.862 −0.0245017
\(785\) −21555.4 −0.980059
\(786\) 2683.27 0.121767
\(787\) −25301.8 −1.14601 −0.573007 0.819550i \(-0.694223\pi\)
−0.573007 + 0.819550i \(0.694223\pi\)
\(788\) −20653.0 −0.933670
\(789\) −21548.3 −0.972293
\(790\) −21245.2 −0.956797
\(791\) −10878.3 −0.488987
\(792\) −1978.08 −0.0887473
\(793\) 22254.4 0.996566
\(794\) 12218.6 0.546123
\(795\) −9059.12 −0.404143
\(796\) 18271.8 0.813604
\(797\) −11994.3 −0.533075 −0.266538 0.963825i \(-0.585880\pi\)
−0.266538 + 0.963825i \(0.585880\pi\)
\(798\) 9130.18 0.405019
\(799\) −200.605 −0.00888224
\(800\) 3448.94 0.152423
\(801\) −5918.67 −0.261081
\(802\) −19894.4 −0.875928
\(803\) −10482.1 −0.460654
\(804\) −12422.1 −0.544894
\(805\) −15185.8 −0.664880
\(806\) −673.849 −0.0294483
\(807\) −13730.1 −0.598912
\(808\) −19983.9 −0.870089
\(809\) 31763.4 1.38040 0.690198 0.723621i \(-0.257523\pi\)
0.690198 + 0.723621i \(0.257523\pi\)
\(810\) 1400.75 0.0607621
\(811\) −24325.7 −1.05326 −0.526628 0.850096i \(-0.676544\pi\)
−0.526628 + 0.850096i \(0.676544\pi\)
\(812\) −19271.7 −0.832889
\(813\) −24191.0 −1.04356
\(814\) −6745.43 −0.290451
\(815\) 29323.1 1.26030
\(816\) −36.9624 −0.00158572
\(817\) 7114.43 0.304654
\(818\) 13377.9 0.571820
\(819\) −5247.77 −0.223897
\(820\) −10073.2 −0.428988
\(821\) −35696.0 −1.51741 −0.758707 0.651432i \(-0.774169\pi\)
−0.758707 + 0.651432i \(0.774169\pi\)
\(822\) −11629.5 −0.493461
\(823\) 30980.4 1.31216 0.656080 0.754691i \(-0.272213\pi\)
0.656080 + 0.754691i \(0.272213\pi\)
\(824\) −8192.39 −0.346354
\(825\) −557.821 −0.0235404
\(826\) 4707.92 0.198317
\(827\) 18030.4 0.758134 0.379067 0.925369i \(-0.376245\pi\)
0.379067 + 0.925369i \(0.376245\pi\)
\(828\) 4630.62 0.194354
\(829\) 2536.56 0.106271 0.0531353 0.998587i \(-0.483079\pi\)
0.0531353 + 0.998587i \(0.483079\pi\)
\(830\) 4573.74 0.191273
\(831\) −12586.5 −0.525414
\(832\) 10762.2 0.448451
\(833\) −343.992 −0.0143081
\(834\) −4521.36 −0.187724
\(835\) 7564.94 0.313528
\(836\) −6297.46 −0.260529
\(837\) −276.198 −0.0114060
\(838\) −21766.9 −0.897286
\(839\) −37150.0 −1.52868 −0.764338 0.644815i \(-0.776934\pi\)
−0.764338 + 0.644815i \(0.776934\pi\)
\(840\) −10157.4 −0.417219
\(841\) 38242.7 1.56803
\(842\) −12177.6 −0.498418
\(843\) 1297.65 0.0530173
\(844\) 12794.7 0.521817
\(845\) 6750.70 0.274830
\(846\) 1078.85 0.0438436
\(847\) 18296.4 0.742232
\(848\) −1285.60 −0.0520608
\(849\) 11687.4 0.472453
\(850\) 88.1100 0.00355547
\(851\) 40148.4 1.61724
\(852\) 688.742 0.0276947
\(853\) −26323.8 −1.05664 −0.528318 0.849047i \(-0.677177\pi\)
−0.528318 + 0.849047i \(0.677177\pi\)
\(854\) 14113.7 0.565529
\(855\) 11338.2 0.453520
\(856\) 11216.6 0.447869
\(857\) 29888.6 1.19134 0.595669 0.803230i \(-0.296887\pi\)
0.595669 + 0.803230i \(0.296887\pi\)
\(858\) −1963.66 −0.0781333
\(859\) 15634.5 0.621003 0.310502 0.950573i \(-0.399503\pi\)
0.310502 + 0.950573i \(0.399503\pi\)
\(860\) −3113.01 −0.123434
\(861\) −8391.60 −0.332155
\(862\) −28279.7 −1.11741
\(863\) −22620.6 −0.892253 −0.446126 0.894970i \(-0.647197\pi\)
−0.446126 + 0.894970i \(0.647197\pi\)
\(864\) 4976.42 0.195950
\(865\) −26173.5 −1.02882
\(866\) −22061.5 −0.865683
\(867\) 14715.4 0.576424
\(868\) 787.737 0.0308036
\(869\) 12207.5 0.476537
\(870\) 12983.6 0.505959
\(871\) −31353.3 −1.21971
\(872\) −12702.6 −0.493308
\(873\) 2518.69 0.0976457
\(874\) −20334.4 −0.786981
\(875\) −21998.7 −0.849934
\(876\) 16413.1 0.633045
\(877\) 9427.94 0.363009 0.181505 0.983390i \(-0.441903\pi\)
0.181505 + 0.983390i \(0.441903\pi\)
\(878\) 9846.99 0.378496
\(879\) −4207.37 −0.161446
\(880\) 449.638 0.0172242
\(881\) 6646.49 0.254172 0.127086 0.991892i \(-0.459438\pi\)
0.127086 + 0.991892i \(0.459438\pi\)
\(882\) 1849.98 0.0706259
\(883\) −17018.2 −0.648592 −0.324296 0.945956i \(-0.605127\pi\)
−0.324296 + 0.945956i \(0.605127\pi\)
\(884\) −571.730 −0.0217527
\(885\) 5846.49 0.222065
\(886\) 23018.1 0.872807
\(887\) −40908.9 −1.54857 −0.774287 0.632834i \(-0.781891\pi\)
−0.774287 + 0.632834i \(0.781891\pi\)
\(888\) 26854.3 1.01483
\(889\) 26042.9 0.982508
\(890\) −11372.5 −0.428324
\(891\) −804.871 −0.0302628
\(892\) 7445.85 0.279490
\(893\) 8732.66 0.327242
\(894\) 2123.79 0.0794519
\(895\) −3604.32 −0.134613
\(896\) −15067.6 −0.561801
\(897\) 11687.6 0.435049
\(898\) −494.592 −0.0183794
\(899\) −2560.08 −0.0949762
\(900\) 873.449 0.0323500
\(901\) −822.209 −0.0304015
\(902\) −3140.06 −0.115912
\(903\) −2593.35 −0.0955716
\(904\) 16205.4 0.596220
\(905\) −12380.2 −0.454730
\(906\) 7353.42 0.269648
\(907\) 16417.0 0.601013 0.300507 0.953780i \(-0.402844\pi\)
0.300507 + 0.953780i \(0.402844\pi\)
\(908\) −4798.34 −0.175373
\(909\) −8131.38 −0.296701
\(910\) −10083.4 −0.367321
\(911\) −26559.1 −0.965906 −0.482953 0.875646i \(-0.660436\pi\)
−0.482953 + 0.875646i \(0.660436\pi\)
\(912\) 1609.03 0.0584214
\(913\) −2628.07 −0.0952644
\(914\) 27716.7 1.00305
\(915\) 17527.0 0.633251
\(916\) −7610.01 −0.274500
\(917\) −7917.17 −0.285112
\(918\) 127.132 0.00457080
\(919\) 19843.6 0.712274 0.356137 0.934434i \(-0.384094\pi\)
0.356137 + 0.934434i \(0.384094\pi\)
\(920\) 22622.2 0.810687
\(921\) −25268.5 −0.904045
\(922\) 14921.5 0.532985
\(923\) 1738.37 0.0619927
\(924\) 2295.55 0.0817294
\(925\) 7572.97 0.269187
\(926\) 5322.26 0.188877
\(927\) −3333.45 −0.118107
\(928\) 46126.5 1.63165
\(929\) 26150.7 0.923548 0.461774 0.886998i \(-0.347213\pi\)
0.461774 + 0.886998i \(0.347213\pi\)
\(930\) −530.706 −0.0187124
\(931\) 14974.5 0.527142
\(932\) −24162.9 −0.849229
\(933\) −1307.81 −0.0458904
\(934\) −5645.38 −0.197776
\(935\) 287.568 0.0100583
\(936\) 7817.58 0.272997
\(937\) −13406.0 −0.467400 −0.233700 0.972309i \(-0.575083\pi\)
−0.233700 + 0.972309i \(0.575083\pi\)
\(938\) −19884.2 −0.692156
\(939\) 17801.4 0.618666
\(940\) −3821.10 −0.132586
\(941\) −19177.3 −0.664358 −0.332179 0.943216i \(-0.607784\pi\)
−0.332179 + 0.943216i \(0.607784\pi\)
\(942\) 10521.4 0.363911
\(943\) 18689.5 0.645400
\(944\) 829.686 0.0286059
\(945\) −4133.01 −0.142272
\(946\) −970.406 −0.0333516
\(947\) −26672.0 −0.915231 −0.457616 0.889150i \(-0.651296\pi\)
−0.457616 + 0.889150i \(0.651296\pi\)
\(948\) −19114.7 −0.654871
\(949\) 41426.4 1.41703
\(950\) −3835.56 −0.130992
\(951\) −3012.12 −0.102707
\(952\) −921.890 −0.0313851
\(953\) 20204.2 0.686756 0.343378 0.939197i \(-0.388429\pi\)
0.343378 + 0.939197i \(0.388429\pi\)
\(954\) 4421.82 0.150065
\(955\) 35588.4 1.20588
\(956\) −17302.4 −0.585355
\(957\) −7460.35 −0.251995
\(958\) 12879.3 0.434353
\(959\) 34313.6 1.15542
\(960\) 8476.02 0.284961
\(961\) −29686.4 −0.996487
\(962\) 26658.7 0.893462
\(963\) 4563.99 0.152723
\(964\) 3894.01 0.130101
\(965\) 36932.5 1.23202
\(966\) 7412.28 0.246880
\(967\) 23770.0 0.790477 0.395239 0.918578i \(-0.370662\pi\)
0.395239 + 0.918578i \(0.370662\pi\)
\(968\) −27256.0 −0.905002
\(969\) 1029.06 0.0341158
\(970\) 4839.58 0.160195
\(971\) −1622.51 −0.0536240 −0.0268120 0.999640i \(-0.508536\pi\)
−0.0268120 + 0.999640i \(0.508536\pi\)
\(972\) 1260.28 0.0415881
\(973\) 13340.6 0.439547
\(974\) 20049.2 0.659567
\(975\) 2204.57 0.0724132
\(976\) 2487.29 0.0815740
\(977\) −6449.51 −0.211196 −0.105598 0.994409i \(-0.533676\pi\)
−0.105598 + 0.994409i \(0.533676\pi\)
\(978\) −14312.8 −0.467968
\(979\) 6534.66 0.213329
\(980\) −6552.29 −0.213577
\(981\) −5168.64 −0.168218
\(982\) −5961.50 −0.193726
\(983\) −13518.8 −0.438641 −0.219320 0.975653i \(-0.570384\pi\)
−0.219320 + 0.975653i \(0.570384\pi\)
\(984\) 12500.9 0.404995
\(985\) −41054.6 −1.32803
\(986\) 1178.39 0.0380605
\(987\) −3183.22 −0.102658
\(988\) 24888.3 0.801419
\(989\) 5775.80 0.185703
\(990\) −1546.53 −0.0496485
\(991\) 16227.1 0.520152 0.260076 0.965588i \(-0.416252\pi\)
0.260076 + 0.965588i \(0.416252\pi\)
\(992\) −1885.43 −0.0603452
\(993\) 3998.25 0.127775
\(994\) 1102.48 0.0351795
\(995\) 36321.3 1.15725
\(996\) 4115.09 0.130915
\(997\) 24179.1 0.768063 0.384032 0.923320i \(-0.374535\pi\)
0.384032 + 0.923320i \(0.374535\pi\)
\(998\) −10216.9 −0.324058
\(999\) 10926.9 0.346058
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1011.4.a.c.1.17 46
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1011.4.a.c.1.17 46 1.1 even 1 trivial