Properties

Label 1011.4.a.c.1.13
Level $1011$
Weight $4$
Character 1011.1
Self dual yes
Analytic conductor $59.651$
Analytic rank $0$
Dimension $46$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1011,4,Mod(1,1011)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1011.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1011, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1011 = 3 \cdot 337 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1011.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [46] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.6509310158\)
Analytic rank: \(0\)
Dimension: \(46\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Character \(\chi\) \(=\) 1011.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.66818 q^{2} -3.00000 q^{3} -0.880817 q^{4} -10.8109 q^{5} +8.00454 q^{6} -4.15190 q^{7} +23.6956 q^{8} +9.00000 q^{9} +28.8455 q^{10} -22.1267 q^{11} +2.64245 q^{12} +58.4419 q^{13} +11.0780 q^{14} +32.4327 q^{15} -56.1776 q^{16} +79.5421 q^{17} -24.0136 q^{18} -16.2762 q^{19} +9.52243 q^{20} +12.4557 q^{21} +59.0381 q^{22} -26.1679 q^{23} -71.0868 q^{24} -8.12423 q^{25} -155.933 q^{26} -27.0000 q^{27} +3.65707 q^{28} +6.99657 q^{29} -86.5364 q^{30} -300.774 q^{31} -39.6729 q^{32} +66.3802 q^{33} -212.233 q^{34} +44.8858 q^{35} -7.92735 q^{36} +260.698 q^{37} +43.4279 q^{38} -175.326 q^{39} -256.171 q^{40} -2.70125 q^{41} -33.2341 q^{42} -180.960 q^{43} +19.4896 q^{44} -97.2982 q^{45} +69.8206 q^{46} -126.474 q^{47} +168.533 q^{48} -325.762 q^{49} +21.6769 q^{50} -238.626 q^{51} -51.4766 q^{52} +502.655 q^{53} +72.0409 q^{54} +239.210 q^{55} -98.3819 q^{56} +48.8286 q^{57} -18.6681 q^{58} -718.446 q^{59} -28.5673 q^{60} -832.049 q^{61} +802.518 q^{62} -37.3671 q^{63} +555.275 q^{64} -631.810 q^{65} -177.114 q^{66} +768.833 q^{67} -70.0620 q^{68} +78.5036 q^{69} -119.763 q^{70} +144.770 q^{71} +213.261 q^{72} -266.808 q^{73} -695.589 q^{74} +24.3727 q^{75} +14.3364 q^{76} +91.8680 q^{77} +467.800 q^{78} -529.783 q^{79} +607.331 q^{80} +81.0000 q^{81} +7.20743 q^{82} -662.364 q^{83} -10.9712 q^{84} -859.923 q^{85} +482.834 q^{86} -20.9897 q^{87} -524.307 q^{88} +811.608 q^{89} +259.609 q^{90} -242.645 q^{91} +23.0491 q^{92} +902.321 q^{93} +337.455 q^{94} +175.961 q^{95} +119.019 q^{96} +1227.70 q^{97} +869.191 q^{98} -199.141 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 46 q + 7 q^{2} - 138 q^{3} + 207 q^{4} + 42 q^{5} - 21 q^{6} - 72 q^{7} + 105 q^{8} + 414 q^{9} - 32 q^{10} + 126 q^{11} - 621 q^{12} + 114 q^{13} + 111 q^{14} - 126 q^{15} + 915 q^{16} + 154 q^{17} + 63 q^{18}+ \cdots + 1134 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.66818 −0.943344 −0.471672 0.881774i \(-0.656349\pi\)
−0.471672 + 0.881774i \(0.656349\pi\)
\(3\) −3.00000 −0.577350
\(4\) −0.880817 −0.110102
\(5\) −10.8109 −0.966957 −0.483479 0.875356i \(-0.660627\pi\)
−0.483479 + 0.875356i \(0.660627\pi\)
\(6\) 8.00454 0.544640
\(7\) −4.15190 −0.224182 −0.112091 0.993698i \(-0.535755\pi\)
−0.112091 + 0.993698i \(0.535755\pi\)
\(8\) 23.6956 1.04721
\(9\) 9.00000 0.333333
\(10\) 28.8455 0.912173
\(11\) −22.1267 −0.606496 −0.303248 0.952912i \(-0.598071\pi\)
−0.303248 + 0.952912i \(0.598071\pi\)
\(12\) 2.64245 0.0635675
\(13\) 58.4419 1.24684 0.623418 0.781889i \(-0.285744\pi\)
0.623418 + 0.781889i \(0.285744\pi\)
\(14\) 11.0780 0.211480
\(15\) 32.4327 0.558273
\(16\) −56.1776 −0.877775
\(17\) 79.5421 1.13481 0.567406 0.823438i \(-0.307947\pi\)
0.567406 + 0.823438i \(0.307947\pi\)
\(18\) −24.0136 −0.314448
\(19\) −16.2762 −0.196527 −0.0982637 0.995160i \(-0.531329\pi\)
−0.0982637 + 0.995160i \(0.531329\pi\)
\(20\) 9.52243 0.106464
\(21\) 12.4557 0.129431
\(22\) 59.0381 0.572135
\(23\) −26.1679 −0.237234 −0.118617 0.992940i \(-0.537846\pi\)
−0.118617 + 0.992940i \(0.537846\pi\)
\(24\) −71.0868 −0.604606
\(25\) −8.12423 −0.0649938
\(26\) −155.933 −1.17620
\(27\) −27.0000 −0.192450
\(28\) 3.65707 0.0246829
\(29\) 6.99657 0.0448010 0.0224005 0.999749i \(-0.492869\pi\)
0.0224005 + 0.999749i \(0.492869\pi\)
\(30\) −86.5364 −0.526643
\(31\) −300.774 −1.74260 −0.871299 0.490753i \(-0.836722\pi\)
−0.871299 + 0.490753i \(0.836722\pi\)
\(32\) −39.6729 −0.219164
\(33\) 66.3802 0.350161
\(34\) −212.233 −1.07052
\(35\) 44.8858 0.216774
\(36\) −7.92735 −0.0367007
\(37\) 260.698 1.15834 0.579168 0.815208i \(-0.303377\pi\)
0.579168 + 0.815208i \(0.303377\pi\)
\(38\) 43.4279 0.185393
\(39\) −175.326 −0.719861
\(40\) −256.171 −1.01261
\(41\) −2.70125 −0.0102894 −0.00514469 0.999987i \(-0.501638\pi\)
−0.00514469 + 0.999987i \(0.501638\pi\)
\(42\) −33.2341 −0.122098
\(43\) −180.960 −0.641771 −0.320885 0.947118i \(-0.603980\pi\)
−0.320885 + 0.947118i \(0.603980\pi\)
\(44\) 19.4896 0.0667765
\(45\) −97.2982 −0.322319
\(46\) 69.8206 0.223793
\(47\) −126.474 −0.392513 −0.196256 0.980553i \(-0.562878\pi\)
−0.196256 + 0.980553i \(0.562878\pi\)
\(48\) 168.533 0.506784
\(49\) −325.762 −0.949743
\(50\) 21.6769 0.0613116
\(51\) −238.626 −0.655184
\(52\) −51.4766 −0.137279
\(53\) 502.655 1.30274 0.651368 0.758762i \(-0.274196\pi\)
0.651368 + 0.758762i \(0.274196\pi\)
\(54\) 72.0409 0.181547
\(55\) 239.210 0.586456
\(56\) −98.3819 −0.234765
\(57\) 48.8286 0.113465
\(58\) −18.6681 −0.0422628
\(59\) −718.446 −1.58532 −0.792659 0.609666i \(-0.791304\pi\)
−0.792659 + 0.609666i \(0.791304\pi\)
\(60\) −28.5673 −0.0614670
\(61\) −832.049 −1.74644 −0.873221 0.487324i \(-0.837973\pi\)
−0.873221 + 0.487324i \(0.837973\pi\)
\(62\) 802.518 1.64387
\(63\) −37.3671 −0.0747272
\(64\) 555.275 1.08452
\(65\) −631.810 −1.20564
\(66\) −177.114 −0.330322
\(67\) 768.833 1.40191 0.700954 0.713206i \(-0.252758\pi\)
0.700954 + 0.713206i \(0.252758\pi\)
\(68\) −70.0620 −0.124945
\(69\) 78.5036 0.136967
\(70\) −119.763 −0.204493
\(71\) 144.770 0.241986 0.120993 0.992653i \(-0.461392\pi\)
0.120993 + 0.992653i \(0.461392\pi\)
\(72\) 213.261 0.349069
\(73\) −266.808 −0.427774 −0.213887 0.976858i \(-0.568612\pi\)
−0.213887 + 0.976858i \(0.568612\pi\)
\(74\) −695.589 −1.09271
\(75\) 24.3727 0.0375242
\(76\) 14.3364 0.0216381
\(77\) 91.8680 0.135965
\(78\) 467.800 0.679077
\(79\) −529.783 −0.754497 −0.377248 0.926112i \(-0.623130\pi\)
−0.377248 + 0.926112i \(0.623130\pi\)
\(80\) 607.331 0.848771
\(81\) 81.0000 0.111111
\(82\) 7.20743 0.00970643
\(83\) −662.364 −0.875950 −0.437975 0.898987i \(-0.644304\pi\)
−0.437975 + 0.898987i \(0.644304\pi\)
\(84\) −10.9712 −0.0142507
\(85\) −859.923 −1.09731
\(86\) 482.834 0.605411
\(87\) −20.9897 −0.0258659
\(88\) −524.307 −0.635128
\(89\) 811.608 0.966633 0.483316 0.875446i \(-0.339432\pi\)
0.483316 + 0.875446i \(0.339432\pi\)
\(90\) 259.609 0.304058
\(91\) −242.645 −0.279518
\(92\) 23.0491 0.0261200
\(93\) 902.321 1.00609
\(94\) 337.455 0.370274
\(95\) 175.961 0.190034
\(96\) 119.019 0.126534
\(97\) 1227.70 1.28509 0.642547 0.766246i \(-0.277878\pi\)
0.642547 + 0.766246i \(0.277878\pi\)
\(98\) 869.191 0.895934
\(99\) −199.141 −0.202165
\(100\) 7.15596 0.00715596
\(101\) 1080.54 1.06453 0.532267 0.846576i \(-0.321340\pi\)
0.532267 + 0.846576i \(0.321340\pi\)
\(102\) 636.698 0.618064
\(103\) −221.040 −0.211453 −0.105727 0.994395i \(-0.533717\pi\)
−0.105727 + 0.994395i \(0.533717\pi\)
\(104\) 1384.82 1.30570
\(105\) −134.658 −0.125155
\(106\) −1341.17 −1.22893
\(107\) −1822.61 −1.64672 −0.823358 0.567522i \(-0.807902\pi\)
−0.823358 + 0.567522i \(0.807902\pi\)
\(108\) 23.7821 0.0211892
\(109\) 1.22945 0.00108037 0.000540184 1.00000i \(-0.499828\pi\)
0.000540184 1.00000i \(0.499828\pi\)
\(110\) −638.256 −0.553230
\(111\) −782.093 −0.668766
\(112\) 233.244 0.196781
\(113\) 1508.05 1.25544 0.627722 0.778437i \(-0.283987\pi\)
0.627722 + 0.778437i \(0.283987\pi\)
\(114\) −130.284 −0.107037
\(115\) 282.899 0.229395
\(116\) −6.16270 −0.00493269
\(117\) 525.977 0.415612
\(118\) 1916.94 1.49550
\(119\) −330.251 −0.254404
\(120\) 768.513 0.584628
\(121\) −841.408 −0.632162
\(122\) 2220.06 1.64750
\(123\) 8.10376 0.00594058
\(124\) 264.926 0.191864
\(125\) 1439.19 1.02980
\(126\) 99.7022 0.0704935
\(127\) −559.576 −0.390979 −0.195489 0.980706i \(-0.562630\pi\)
−0.195489 + 0.980706i \(0.562630\pi\)
\(128\) −1164.19 −0.803914
\(129\) 542.880 0.370526
\(130\) 1685.78 1.13733
\(131\) −696.733 −0.464686 −0.232343 0.972634i \(-0.574639\pi\)
−0.232343 + 0.972634i \(0.574639\pi\)
\(132\) −58.4688 −0.0385535
\(133\) 67.5773 0.0440578
\(134\) −2051.38 −1.32248
\(135\) 291.895 0.186091
\(136\) 1884.80 1.18838
\(137\) 1796.79 1.12051 0.560255 0.828320i \(-0.310703\pi\)
0.560255 + 0.828320i \(0.310703\pi\)
\(138\) −209.462 −0.129207
\(139\) −2587.99 −1.57921 −0.789604 0.613616i \(-0.789714\pi\)
−0.789604 + 0.613616i \(0.789714\pi\)
\(140\) −39.5362 −0.0238673
\(141\) 379.421 0.226617
\(142\) −386.271 −0.228276
\(143\) −1293.13 −0.756201
\(144\) −505.599 −0.292592
\(145\) −75.6393 −0.0433207
\(146\) 711.891 0.403538
\(147\) 977.285 0.548334
\(148\) −229.627 −0.127535
\(149\) −588.204 −0.323406 −0.161703 0.986839i \(-0.551699\pi\)
−0.161703 + 0.986839i \(0.551699\pi\)
\(150\) −65.0307 −0.0353982
\(151\) −1720.92 −0.927458 −0.463729 0.885977i \(-0.653489\pi\)
−0.463729 + 0.885977i \(0.653489\pi\)
\(152\) −385.675 −0.205805
\(153\) 715.879 0.378271
\(154\) −245.120 −0.128262
\(155\) 3251.64 1.68502
\(156\) 154.430 0.0792582
\(157\) −172.709 −0.0877940 −0.0438970 0.999036i \(-0.513977\pi\)
−0.0438970 + 0.999036i \(0.513977\pi\)
\(158\) 1413.56 0.711750
\(159\) −1507.97 −0.752135
\(160\) 428.900 0.211922
\(161\) 108.646 0.0531835
\(162\) −216.123 −0.104816
\(163\) 3902.69 1.87535 0.937675 0.347513i \(-0.112974\pi\)
0.937675 + 0.347513i \(0.112974\pi\)
\(164\) 2.37931 0.00113288
\(165\) −717.630 −0.338591
\(166\) 1767.31 0.826322
\(167\) 1630.47 0.755505 0.377752 0.925907i \(-0.376697\pi\)
0.377752 + 0.925907i \(0.376697\pi\)
\(168\) 295.146 0.135542
\(169\) 1218.45 0.554599
\(170\) 2294.43 1.03514
\(171\) −146.486 −0.0655091
\(172\) 159.393 0.0706603
\(173\) −1152.51 −0.506496 −0.253248 0.967401i \(-0.581499\pi\)
−0.253248 + 0.967401i \(0.581499\pi\)
\(174\) 56.0043 0.0244004
\(175\) 33.7310 0.0145704
\(176\) 1243.03 0.532368
\(177\) 2155.34 0.915283
\(178\) −2165.52 −0.911867
\(179\) 836.909 0.349461 0.174730 0.984616i \(-0.444095\pi\)
0.174730 + 0.984616i \(0.444095\pi\)
\(180\) 85.7019 0.0354880
\(181\) −2895.93 −1.18924 −0.594622 0.804006i \(-0.702698\pi\)
−0.594622 + 0.804006i \(0.702698\pi\)
\(182\) 647.421 0.263681
\(183\) 2496.15 1.00831
\(184\) −620.064 −0.248433
\(185\) −2818.38 −1.12006
\(186\) −2407.55 −0.949088
\(187\) −1760.01 −0.688259
\(188\) 111.400 0.0432165
\(189\) 112.101 0.0431438
\(190\) −469.495 −0.179267
\(191\) 4584.97 1.73695 0.868473 0.495736i \(-0.165102\pi\)
0.868473 + 0.495736i \(0.165102\pi\)
\(192\) −1665.83 −0.626149
\(193\) 3510.75 1.30937 0.654687 0.755900i \(-0.272800\pi\)
0.654687 + 0.755900i \(0.272800\pi\)
\(194\) −3275.73 −1.21229
\(195\) 1895.43 0.696075
\(196\) 286.936 0.104569
\(197\) 1375.03 0.497293 0.248647 0.968594i \(-0.420014\pi\)
0.248647 + 0.968594i \(0.420014\pi\)
\(198\) 531.343 0.190712
\(199\) −272.560 −0.0970917 −0.0485458 0.998821i \(-0.515459\pi\)
−0.0485458 + 0.998821i \(0.515459\pi\)
\(200\) −192.509 −0.0680621
\(201\) −2306.50 −0.809392
\(202\) −2883.08 −1.00422
\(203\) −29.0491 −0.0100436
\(204\) 210.186 0.0721371
\(205\) 29.2030 0.00994940
\(206\) 589.774 0.199473
\(207\) −235.511 −0.0790780
\(208\) −3283.13 −1.09444
\(209\) 360.139 0.119193
\(210\) 359.290 0.118064
\(211\) 2057.02 0.671142 0.335571 0.942015i \(-0.391071\pi\)
0.335571 + 0.942015i \(0.391071\pi\)
\(212\) −442.747 −0.143434
\(213\) −434.309 −0.139711
\(214\) 4863.06 1.55342
\(215\) 1956.34 0.620565
\(216\) −639.782 −0.201535
\(217\) 1248.78 0.390658
\(218\) −3.28040 −0.00101916
\(219\) 800.423 0.246975
\(220\) −210.700 −0.0645701
\(221\) 4648.59 1.41492
\(222\) 2086.77 0.630876
\(223\) −4534.58 −1.36169 −0.680847 0.732426i \(-0.738388\pi\)
−0.680847 + 0.732426i \(0.738388\pi\)
\(224\) 164.718 0.0491325
\(225\) −73.1181 −0.0216646
\(226\) −4023.74 −1.18432
\(227\) 4522.98 1.32247 0.661235 0.750179i \(-0.270033\pi\)
0.661235 + 0.750179i \(0.270033\pi\)
\(228\) −43.0091 −0.0124927
\(229\) −3951.37 −1.14024 −0.570118 0.821563i \(-0.693102\pi\)
−0.570118 + 0.821563i \(0.693102\pi\)
\(230\) −754.824 −0.216398
\(231\) −275.604 −0.0784997
\(232\) 165.788 0.0469160
\(233\) −5024.10 −1.41262 −0.706309 0.707904i \(-0.749641\pi\)
−0.706309 + 0.707904i \(0.749641\pi\)
\(234\) −1403.40 −0.392065
\(235\) 1367.30 0.379543
\(236\) 632.819 0.174547
\(237\) 1589.35 0.435609
\(238\) 881.169 0.239990
\(239\) 6007.84 1.62600 0.813002 0.582260i \(-0.197832\pi\)
0.813002 + 0.582260i \(0.197832\pi\)
\(240\) −1821.99 −0.490038
\(241\) 6016.87 1.60822 0.804110 0.594481i \(-0.202642\pi\)
0.804110 + 0.594481i \(0.202642\pi\)
\(242\) 2245.03 0.596346
\(243\) −243.000 −0.0641500
\(244\) 732.883 0.192287
\(245\) 3521.78 0.918360
\(246\) −21.6223 −0.00560401
\(247\) −951.213 −0.245037
\(248\) −7127.02 −1.82486
\(249\) 1987.09 0.505730
\(250\) −3840.03 −0.971459
\(251\) 5698.06 1.43290 0.716451 0.697637i \(-0.245765\pi\)
0.716451 + 0.697637i \(0.245765\pi\)
\(252\) 32.9136 0.00822762
\(253\) 579.010 0.143882
\(254\) 1493.05 0.368828
\(255\) 2579.77 0.633535
\(256\) −1335.93 −0.326155
\(257\) 7538.19 1.82965 0.914823 0.403854i \(-0.132330\pi\)
0.914823 + 0.403854i \(0.132330\pi\)
\(258\) −1448.50 −0.349534
\(259\) −1082.39 −0.259678
\(260\) 556.509 0.132743
\(261\) 62.9691 0.0149337
\(262\) 1859.01 0.438358
\(263\) 8438.30 1.97843 0.989216 0.146464i \(-0.0467892\pi\)
0.989216 + 0.146464i \(0.0467892\pi\)
\(264\) 1572.92 0.366691
\(265\) −5434.16 −1.25969
\(266\) −180.308 −0.0415617
\(267\) −2434.83 −0.558086
\(268\) −677.201 −0.154353
\(269\) 2094.94 0.474834 0.237417 0.971408i \(-0.423699\pi\)
0.237417 + 0.971408i \(0.423699\pi\)
\(270\) −778.827 −0.175548
\(271\) −2956.59 −0.662732 −0.331366 0.943502i \(-0.607509\pi\)
−0.331366 + 0.943502i \(0.607509\pi\)
\(272\) −4468.49 −0.996110
\(273\) 727.935 0.161380
\(274\) −4794.15 −1.05703
\(275\) 179.763 0.0394185
\(276\) −69.1473 −0.0150804
\(277\) 1408.78 0.305580 0.152790 0.988259i \(-0.451174\pi\)
0.152790 + 0.988259i \(0.451174\pi\)
\(278\) 6905.21 1.48974
\(279\) −2706.96 −0.580866
\(280\) 1063.60 0.227008
\(281\) −5380.24 −1.14220 −0.571100 0.820881i \(-0.693483\pi\)
−0.571100 + 0.820881i \(0.693483\pi\)
\(282\) −1012.36 −0.213778
\(283\) −6287.12 −1.32060 −0.660301 0.751001i \(-0.729571\pi\)
−0.660301 + 0.751001i \(0.729571\pi\)
\(284\) −127.515 −0.0266431
\(285\) −527.882 −0.109716
\(286\) 3450.30 0.713358
\(287\) 11.2153 0.00230669
\(288\) −357.056 −0.0730547
\(289\) 1413.95 0.287797
\(290\) 201.819 0.0408663
\(291\) −3683.10 −0.741949
\(292\) 235.009 0.0470988
\(293\) 3209.48 0.639930 0.319965 0.947429i \(-0.396329\pi\)
0.319965 + 0.947429i \(0.396329\pi\)
\(294\) −2607.57 −0.517268
\(295\) 7767.06 1.53293
\(296\) 6177.40 1.21302
\(297\) 597.422 0.116720
\(298\) 1569.43 0.305083
\(299\) −1529.30 −0.295792
\(300\) −21.4679 −0.00413149
\(301\) 751.328 0.143873
\(302\) 4591.71 0.874912
\(303\) −3241.63 −0.614609
\(304\) 914.359 0.172507
\(305\) 8995.21 1.68873
\(306\) −1910.09 −0.356839
\(307\) −1004.27 −0.186700 −0.0933500 0.995633i \(-0.529758\pi\)
−0.0933500 + 0.995633i \(0.529758\pi\)
\(308\) −80.9189 −0.0149701
\(309\) 663.119 0.122083
\(310\) −8675.95 −1.58955
\(311\) 2863.74 0.522147 0.261073 0.965319i \(-0.415924\pi\)
0.261073 + 0.965319i \(0.415924\pi\)
\(312\) −4154.45 −0.753844
\(313\) 8989.50 1.62338 0.811688 0.584092i \(-0.198549\pi\)
0.811688 + 0.584092i \(0.198549\pi\)
\(314\) 460.818 0.0828199
\(315\) 403.973 0.0722580
\(316\) 466.642 0.0830717
\(317\) −11231.0 −1.98990 −0.994948 0.100388i \(-0.967991\pi\)
−0.994948 + 0.100388i \(0.967991\pi\)
\(318\) 4023.52 0.709522
\(319\) −154.811 −0.0271717
\(320\) −6003.03 −1.04869
\(321\) 5467.84 0.950732
\(322\) −289.888 −0.0501703
\(323\) −1294.64 −0.223022
\(324\) −71.3462 −0.0122336
\(325\) −474.795 −0.0810366
\(326\) −10413.1 −1.76910
\(327\) −3.68836 −0.000623751 0
\(328\) −64.0079 −0.0107751
\(329\) 525.107 0.0879941
\(330\) 1914.77 0.319407
\(331\) 1323.77 0.219821 0.109911 0.993941i \(-0.464944\pi\)
0.109911 + 0.993941i \(0.464944\pi\)
\(332\) 583.421 0.0964440
\(333\) 2346.28 0.386112
\(334\) −4350.38 −0.712701
\(335\) −8311.78 −1.35559
\(336\) −699.732 −0.113612
\(337\) −337.000 −0.0544735
\(338\) −3251.06 −0.523178
\(339\) −4524.15 −0.724831
\(340\) 757.434 0.120817
\(341\) 6655.14 1.05688
\(342\) 390.851 0.0617976
\(343\) 2776.63 0.437097
\(344\) −4287.96 −0.672067
\(345\) −848.696 −0.132441
\(346\) 3075.11 0.477800
\(347\) −7509.68 −1.16179 −0.580894 0.813979i \(-0.697297\pi\)
−0.580894 + 0.813979i \(0.697297\pi\)
\(348\) 18.4881 0.00284789
\(349\) −3000.36 −0.460188 −0.230094 0.973168i \(-0.573903\pi\)
−0.230094 + 0.973168i \(0.573903\pi\)
\(350\) −90.0004 −0.0137449
\(351\) −1577.93 −0.239954
\(352\) 877.832 0.132922
\(353\) −11274.7 −1.69997 −0.849987 0.526804i \(-0.823390\pi\)
−0.849987 + 0.526804i \(0.823390\pi\)
\(354\) −5750.83 −0.863427
\(355\) −1565.09 −0.233990
\(356\) −714.878 −0.106428
\(357\) 990.753 0.146880
\(358\) −2233.02 −0.329662
\(359\) −961.024 −0.141284 −0.0706420 0.997502i \(-0.522505\pi\)
−0.0706420 + 0.997502i \(0.522505\pi\)
\(360\) −2305.54 −0.337535
\(361\) −6594.08 −0.961377
\(362\) 7726.87 1.12187
\(363\) 2524.22 0.364979
\(364\) 213.726 0.0307755
\(365\) 2884.43 0.413639
\(366\) −6660.17 −0.951182
\(367\) 3896.14 0.554161 0.277080 0.960847i \(-0.410633\pi\)
0.277080 + 0.960847i \(0.410633\pi\)
\(368\) 1470.05 0.208238
\(369\) −24.3113 −0.00342980
\(370\) 7519.95 1.05660
\(371\) −2086.97 −0.292049
\(372\) −794.779 −0.110773
\(373\) −1503.11 −0.208654 −0.104327 0.994543i \(-0.533269\pi\)
−0.104327 + 0.994543i \(0.533269\pi\)
\(374\) 4696.02 0.649265
\(375\) −4317.58 −0.594557
\(376\) −2996.87 −0.411042
\(377\) 408.893 0.0558595
\(378\) −299.107 −0.0406994
\(379\) 7124.27 0.965565 0.482782 0.875740i \(-0.339626\pi\)
0.482782 + 0.875740i \(0.339626\pi\)
\(380\) −154.989 −0.0209231
\(381\) 1678.73 0.225732
\(382\) −12233.5 −1.63854
\(383\) 4395.52 0.586425 0.293212 0.956047i \(-0.405276\pi\)
0.293212 + 0.956047i \(0.405276\pi\)
\(384\) 3492.57 0.464140
\(385\) −993.177 −0.131473
\(386\) −9367.31 −1.23519
\(387\) −1628.64 −0.213924
\(388\) −1081.38 −0.141492
\(389\) −13907.0 −1.81263 −0.906314 0.422604i \(-0.861116\pi\)
−0.906314 + 0.422604i \(0.861116\pi\)
\(390\) −5057.35 −0.656638
\(391\) −2081.45 −0.269216
\(392\) −7719.12 −0.994578
\(393\) 2090.20 0.268286
\(394\) −3668.82 −0.469119
\(395\) 5727.44 0.729566
\(396\) 175.406 0.0222588
\(397\) 9440.40 1.19345 0.596726 0.802445i \(-0.296468\pi\)
0.596726 + 0.802445i \(0.296468\pi\)
\(398\) 727.238 0.0915908
\(399\) −202.732 −0.0254368
\(400\) 456.400 0.0570500
\(401\) −10917.3 −1.35956 −0.679778 0.733418i \(-0.737924\pi\)
−0.679778 + 0.733418i \(0.737924\pi\)
\(402\) 6154.15 0.763536
\(403\) −17577.8 −2.17273
\(404\) −951.760 −0.117207
\(405\) −875.684 −0.107440
\(406\) 77.5081 0.00947454
\(407\) −5768.39 −0.702527
\(408\) −5654.40 −0.686114
\(409\) −2699.27 −0.326334 −0.163167 0.986599i \(-0.552171\pi\)
−0.163167 + 0.986599i \(0.552171\pi\)
\(410\) −77.9189 −0.00938571
\(411\) −5390.37 −0.646927
\(412\) 194.695 0.0232815
\(413\) 2982.92 0.355399
\(414\) 628.386 0.0745977
\(415\) 7160.76 0.847006
\(416\) −2318.56 −0.273262
\(417\) 7763.96 0.911757
\(418\) −960.917 −0.112440
\(419\) 6559.97 0.764859 0.382429 0.923985i \(-0.375088\pi\)
0.382429 + 0.923985i \(0.375088\pi\)
\(420\) 118.609 0.0137798
\(421\) 4742.93 0.549064 0.274532 0.961578i \(-0.411477\pi\)
0.274532 + 0.961578i \(0.411477\pi\)
\(422\) −5488.49 −0.633118
\(423\) −1138.26 −0.130838
\(424\) 11910.7 1.36424
\(425\) −646.218 −0.0737558
\(426\) 1158.81 0.131795
\(427\) 3454.59 0.391520
\(428\) 1605.39 0.181307
\(429\) 3879.38 0.436593
\(430\) −5219.87 −0.585406
\(431\) −494.267 −0.0552390 −0.0276195 0.999619i \(-0.508793\pi\)
−0.0276195 + 0.999619i \(0.508793\pi\)
\(432\) 1516.80 0.168928
\(433\) −82.9718 −0.00920871 −0.00460436 0.999989i \(-0.501466\pi\)
−0.00460436 + 0.999989i \(0.501466\pi\)
\(434\) −3331.98 −0.368525
\(435\) 226.918 0.0250112
\(436\) −1.08292 −0.000118951 0
\(437\) 425.914 0.0466230
\(438\) −2135.67 −0.232983
\(439\) −16468.2 −1.79039 −0.895197 0.445671i \(-0.852965\pi\)
−0.895197 + 0.445671i \(0.852965\pi\)
\(440\) 5668.23 0.614142
\(441\) −2931.86 −0.316581
\(442\) −12403.3 −1.33476
\(443\) 5925.81 0.635539 0.317770 0.948168i \(-0.397066\pi\)
0.317770 + 0.948168i \(0.397066\pi\)
\(444\) 688.881 0.0736325
\(445\) −8774.23 −0.934692
\(446\) 12099.1 1.28455
\(447\) 1764.61 0.186719
\(448\) −2305.45 −0.243130
\(449\) 1693.19 0.177965 0.0889827 0.996033i \(-0.471638\pi\)
0.0889827 + 0.996033i \(0.471638\pi\)
\(450\) 195.092 0.0204372
\(451\) 59.7699 0.00624048
\(452\) −1328.31 −0.138227
\(453\) 5162.75 0.535468
\(454\) −12068.1 −1.24754
\(455\) 2623.21 0.270282
\(456\) 1157.02 0.118822
\(457\) −4395.47 −0.449916 −0.224958 0.974368i \(-0.572224\pi\)
−0.224958 + 0.974368i \(0.572224\pi\)
\(458\) 10543.0 1.07563
\(459\) −2147.64 −0.218395
\(460\) −249.182 −0.0252569
\(461\) 12637.3 1.27674 0.638372 0.769728i \(-0.279608\pi\)
0.638372 + 0.769728i \(0.279608\pi\)
\(462\) 735.361 0.0740522
\(463\) 18196.6 1.82650 0.913251 0.407398i \(-0.133564\pi\)
0.913251 + 0.407398i \(0.133564\pi\)
\(464\) −393.051 −0.0393252
\(465\) −9754.91 −0.972845
\(466\) 13405.2 1.33258
\(467\) 3398.56 0.336760 0.168380 0.985722i \(-0.446146\pi\)
0.168380 + 0.985722i \(0.446146\pi\)
\(468\) −463.289 −0.0457597
\(469\) −3192.12 −0.314282
\(470\) −3648.19 −0.358040
\(471\) 518.126 0.0506879
\(472\) −17024.0 −1.66016
\(473\) 4004.05 0.389232
\(474\) −4240.67 −0.410929
\(475\) 132.232 0.0127731
\(476\) 290.891 0.0280104
\(477\) 4523.90 0.434245
\(478\) −16030.0 −1.53388
\(479\) 11318.9 1.07970 0.539849 0.841762i \(-0.318481\pi\)
0.539849 + 0.841762i \(0.318481\pi\)
\(480\) −1286.70 −0.122353
\(481\) 15235.7 1.44426
\(482\) −16054.1 −1.51710
\(483\) −325.939 −0.0307055
\(484\) 741.126 0.0696024
\(485\) −13272.6 −1.24263
\(486\) 648.368 0.0605155
\(487\) −13915.5 −1.29481 −0.647404 0.762147i \(-0.724145\pi\)
−0.647404 + 0.762147i \(0.724145\pi\)
\(488\) −19715.9 −1.82889
\(489\) −11708.1 −1.08273
\(490\) −9396.74 −0.866330
\(491\) 9647.58 0.886740 0.443370 0.896339i \(-0.353783\pi\)
0.443370 + 0.896339i \(0.353783\pi\)
\(492\) −7.13793 −0.000654071 0
\(493\) 556.522 0.0508407
\(494\) 2538.01 0.231154
\(495\) 2152.89 0.195485
\(496\) 16896.7 1.52961
\(497\) −601.069 −0.0542488
\(498\) −5301.92 −0.477077
\(499\) −16070.6 −1.44172 −0.720861 0.693079i \(-0.756253\pi\)
−0.720861 + 0.693079i \(0.756253\pi\)
\(500\) −1267.67 −0.113384
\(501\) −4891.40 −0.436191
\(502\) −15203.5 −1.35172
\(503\) 3129.46 0.277407 0.138703 0.990334i \(-0.455707\pi\)
0.138703 + 0.990334i \(0.455707\pi\)
\(504\) −885.437 −0.0782550
\(505\) −11681.6 −1.02936
\(506\) −1544.90 −0.135730
\(507\) −3655.36 −0.320198
\(508\) 492.884 0.0430476
\(509\) 7440.14 0.647894 0.323947 0.946075i \(-0.394990\pi\)
0.323947 + 0.946075i \(0.394990\pi\)
\(510\) −6883.28 −0.597641
\(511\) 1107.76 0.0958990
\(512\) 12878.0 1.11159
\(513\) 439.458 0.0378217
\(514\) −20113.2 −1.72599
\(515\) 2389.64 0.204466
\(516\) −478.178 −0.0407957
\(517\) 2798.45 0.238058
\(518\) 2888.02 0.244966
\(519\) 3457.53 0.292426
\(520\) −14971.1 −1.26255
\(521\) 10707.0 0.900352 0.450176 0.892940i \(-0.351361\pi\)
0.450176 + 0.892940i \(0.351361\pi\)
\(522\) −168.013 −0.0140876
\(523\) 15755.2 1.31726 0.658631 0.752466i \(-0.271136\pi\)
0.658631 + 0.752466i \(0.271136\pi\)
\(524\) 613.694 0.0511629
\(525\) −101.193 −0.00841224
\(526\) −22514.9 −1.86634
\(527\) −23924.2 −1.97752
\(528\) −3729.08 −0.307363
\(529\) −11482.2 −0.943720
\(530\) 14499.3 1.18832
\(531\) −6466.02 −0.528439
\(532\) −59.5232 −0.00485086
\(533\) −157.866 −0.0128292
\(534\) 6496.55 0.526467
\(535\) 19704.1 1.59230
\(536\) 18218.0 1.46809
\(537\) −2510.73 −0.201761
\(538\) −5589.66 −0.447932
\(539\) 7208.04 0.576016
\(540\) −257.106 −0.0204890
\(541\) −8963.68 −0.712345 −0.356173 0.934420i \(-0.615919\pi\)
−0.356173 + 0.934420i \(0.615919\pi\)
\(542\) 7888.72 0.625184
\(543\) 8687.80 0.686610
\(544\) −3155.67 −0.248710
\(545\) −13.2915 −0.00104467
\(546\) −1942.26 −0.152236
\(547\) 15550.9 1.21555 0.607776 0.794109i \(-0.292062\pi\)
0.607776 + 0.794109i \(0.292062\pi\)
\(548\) −1582.64 −0.123371
\(549\) −7488.44 −0.582147
\(550\) −479.639 −0.0371852
\(551\) −113.878 −0.00880463
\(552\) 1860.19 0.143433
\(553\) 2199.61 0.169144
\(554\) −3758.89 −0.288267
\(555\) 8455.14 0.646668
\(556\) 2279.54 0.173874
\(557\) −3122.80 −0.237553 −0.118777 0.992921i \(-0.537897\pi\)
−0.118777 + 0.992921i \(0.537897\pi\)
\(558\) 7222.66 0.547956
\(559\) −10575.6 −0.800183
\(560\) −2521.58 −0.190279
\(561\) 5280.02 0.397367
\(562\) 14355.4 1.07749
\(563\) 17142.7 1.28327 0.641634 0.767011i \(-0.278257\pi\)
0.641634 + 0.767011i \(0.278257\pi\)
\(564\) −334.201 −0.0249510
\(565\) −16303.4 −1.21396
\(566\) 16775.2 1.24578
\(567\) −336.304 −0.0249091
\(568\) 3430.40 0.253409
\(569\) 6297.48 0.463979 0.231990 0.972718i \(-0.425476\pi\)
0.231990 + 0.972718i \(0.425476\pi\)
\(570\) 1408.48 0.103500
\(571\) 15845.6 1.16133 0.580663 0.814144i \(-0.302793\pi\)
0.580663 + 0.814144i \(0.302793\pi\)
\(572\) 1139.01 0.0832594
\(573\) −13754.9 −1.00283
\(574\) −29.9245 −0.00217600
\(575\) 212.594 0.0154187
\(576\) 4997.48 0.361507
\(577\) 6196.55 0.447081 0.223540 0.974695i \(-0.428239\pi\)
0.223540 + 0.974695i \(0.428239\pi\)
\(578\) −3772.67 −0.271492
\(579\) −10532.2 −0.755967
\(580\) 66.6243 0.00476970
\(581\) 2750.07 0.196372
\(582\) 9827.18 0.699913
\(583\) −11122.1 −0.790105
\(584\) −6322.17 −0.447968
\(585\) −5686.29 −0.401879
\(586\) −8563.46 −0.603675
\(587\) −19306.2 −1.35750 −0.678749 0.734370i \(-0.737478\pi\)
−0.678749 + 0.734370i \(0.737478\pi\)
\(588\) −860.809 −0.0603727
\(589\) 4895.46 0.342468
\(590\) −20723.9 −1.44608
\(591\) −4125.09 −0.287112
\(592\) −14645.4 −1.01676
\(593\) −22969.9 −1.59066 −0.795331 0.606175i \(-0.792703\pi\)
−0.795331 + 0.606175i \(0.792703\pi\)
\(594\) −1594.03 −0.110107
\(595\) 3570.31 0.245998
\(596\) 518.100 0.0356077
\(597\) 817.679 0.0560559
\(598\) 4080.45 0.279033
\(599\) 16710.8 1.13987 0.569937 0.821689i \(-0.306968\pi\)
0.569937 + 0.821689i \(0.306968\pi\)
\(600\) 577.526 0.0392957
\(601\) 13596.4 0.922812 0.461406 0.887189i \(-0.347345\pi\)
0.461406 + 0.887189i \(0.347345\pi\)
\(602\) −2004.68 −0.135722
\(603\) 6919.50 0.467303
\(604\) 1515.81 0.102115
\(605\) 9096.38 0.611274
\(606\) 8649.24 0.579788
\(607\) −13645.3 −0.912433 −0.456216 0.889869i \(-0.650796\pi\)
−0.456216 + 0.889869i \(0.650796\pi\)
\(608\) 645.725 0.0430717
\(609\) 87.1472 0.00579866
\(610\) −24000.8 −1.59306
\(611\) −7391.37 −0.489399
\(612\) −630.558 −0.0416484
\(613\) 20836.8 1.37291 0.686453 0.727174i \(-0.259167\pi\)
0.686453 + 0.727174i \(0.259167\pi\)
\(614\) 2679.58 0.176122
\(615\) −87.6090 −0.00574429
\(616\) 2176.87 0.142384
\(617\) 3309.41 0.215935 0.107968 0.994154i \(-0.465566\pi\)
0.107968 + 0.994154i \(0.465566\pi\)
\(618\) −1769.32 −0.115166
\(619\) 13116.2 0.851674 0.425837 0.904800i \(-0.359980\pi\)
0.425837 + 0.904800i \(0.359980\pi\)
\(620\) −2864.10 −0.185524
\(621\) 706.533 0.0456557
\(622\) −7640.97 −0.492564
\(623\) −3369.72 −0.216701
\(624\) 9849.38 0.631876
\(625\) −14543.5 −0.930782
\(626\) −23985.6 −1.53140
\(627\) −1080.42 −0.0688162
\(628\) 152.125 0.00966630
\(629\) 20736.5 1.31449
\(630\) −1077.87 −0.0681642
\(631\) 3988.37 0.251624 0.125812 0.992054i \(-0.459846\pi\)
0.125812 + 0.992054i \(0.459846\pi\)
\(632\) −12553.5 −0.790115
\(633\) −6171.05 −0.387484
\(634\) 29966.4 1.87716
\(635\) 6049.52 0.378060
\(636\) 1328.24 0.0828116
\(637\) −19038.1 −1.18417
\(638\) 413.064 0.0256322
\(639\) 1302.93 0.0806619
\(640\) 12586.0 0.777350
\(641\) 6090.72 0.375302 0.187651 0.982236i \(-0.439913\pi\)
0.187651 + 0.982236i \(0.439913\pi\)
\(642\) −14589.2 −0.896868
\(643\) −2569.28 −0.157578 −0.0787890 0.996891i \(-0.525105\pi\)
−0.0787890 + 0.996891i \(0.525105\pi\)
\(644\) −95.6977 −0.00585562
\(645\) −5869.03 −0.358283
\(646\) 3454.34 0.210386
\(647\) 2705.99 0.164426 0.0822128 0.996615i \(-0.473801\pi\)
0.0822128 + 0.996615i \(0.473801\pi\)
\(648\) 1919.34 0.116356
\(649\) 15896.9 0.961489
\(650\) 1266.84 0.0764454
\(651\) −3746.35 −0.225547
\(652\) −3437.55 −0.206480
\(653\) 29666.3 1.77784 0.888922 0.458059i \(-0.151455\pi\)
0.888922 + 0.458059i \(0.151455\pi\)
\(654\) 9.84120 0.000588412 0
\(655\) 7532.31 0.449331
\(656\) 151.750 0.00903177
\(657\) −2401.27 −0.142591
\(658\) −1401.08 −0.0830087
\(659\) 18573.4 1.09790 0.548950 0.835855i \(-0.315028\pi\)
0.548950 + 0.835855i \(0.315028\pi\)
\(660\) 632.101 0.0372795
\(661\) 24562.1 1.44532 0.722660 0.691204i \(-0.242919\pi\)
0.722660 + 0.691204i \(0.242919\pi\)
\(662\) −3532.05 −0.207367
\(663\) −13945.8 −0.816907
\(664\) −15695.1 −0.917302
\(665\) −730.572 −0.0426020
\(666\) −6260.30 −0.364237
\(667\) −183.085 −0.0106283
\(668\) −1436.14 −0.0831826
\(669\) 13603.7 0.786174
\(670\) 22177.3 1.27878
\(671\) 18410.5 1.05921
\(672\) −494.154 −0.0283667
\(673\) 24089.8 1.37978 0.689891 0.723913i \(-0.257658\pi\)
0.689891 + 0.723913i \(0.257658\pi\)
\(674\) 899.177 0.0513872
\(675\) 219.354 0.0125081
\(676\) −1073.24 −0.0610626
\(677\) 5176.28 0.293856 0.146928 0.989147i \(-0.453061\pi\)
0.146928 + 0.989147i \(0.453061\pi\)
\(678\) 12071.2 0.683765
\(679\) −5097.29 −0.288094
\(680\) −20376.4 −1.14912
\(681\) −13568.9 −0.763528
\(682\) −17757.1 −0.997001
\(683\) −2133.26 −0.119512 −0.0597561 0.998213i \(-0.519032\pi\)
−0.0597561 + 0.998213i \(0.519032\pi\)
\(684\) 129.027 0.00721269
\(685\) −19424.9 −1.08349
\(686\) −7408.56 −0.412332
\(687\) 11854.1 0.658315
\(688\) 10165.9 0.563331
\(689\) 29376.1 1.62430
\(690\) 2264.47 0.124938
\(691\) −10453.1 −0.575476 −0.287738 0.957709i \(-0.592903\pi\)
−0.287738 + 0.957709i \(0.592903\pi\)
\(692\) 1015.15 0.0557663
\(693\) 826.812 0.0453218
\(694\) 20037.2 1.09597
\(695\) 27978.5 1.52703
\(696\) −497.364 −0.0270870
\(697\) −214.863 −0.0116765
\(698\) 8005.49 0.434115
\(699\) 15072.3 0.815575
\(700\) −29.7108 −0.00160423
\(701\) −11879.3 −0.640049 −0.320025 0.947409i \(-0.603691\pi\)
−0.320025 + 0.947409i \(0.603691\pi\)
\(702\) 4210.20 0.226359
\(703\) −4243.17 −0.227645
\(704\) −12286.4 −0.657759
\(705\) −4101.89 −0.219129
\(706\) 30082.9 1.60366
\(707\) −4486.30 −0.238649
\(708\) −1898.46 −0.100775
\(709\) 10805.4 0.572364 0.286182 0.958175i \(-0.407614\pi\)
0.286182 + 0.958175i \(0.407614\pi\)
\(710\) 4175.94 0.220733
\(711\) −4768.05 −0.251499
\(712\) 19231.6 1.01227
\(713\) 7870.61 0.413403
\(714\) −2643.51 −0.138559
\(715\) 13979.9 0.731214
\(716\) −737.163 −0.0384764
\(717\) −18023.5 −0.938774
\(718\) 2564.19 0.133279
\(719\) −14676.9 −0.761274 −0.380637 0.924724i \(-0.624295\pi\)
−0.380637 + 0.924724i \(0.624295\pi\)
\(720\) 5465.98 0.282924
\(721\) 917.735 0.0474039
\(722\) 17594.2 0.906909
\(723\) −18050.6 −0.928506
\(724\) 2550.79 0.130938
\(725\) −56.8417 −0.00291179
\(726\) −6735.08 −0.344301
\(727\) 36873.3 1.88109 0.940547 0.339663i \(-0.110313\pi\)
0.940547 + 0.339663i \(0.110313\pi\)
\(728\) −5749.62 −0.292713
\(729\) 729.000 0.0370370
\(730\) −7696.19 −0.390204
\(731\) −14393.9 −0.728289
\(732\) −2198.65 −0.111017
\(733\) 5420.90 0.273159 0.136580 0.990629i \(-0.456389\pi\)
0.136580 + 0.990629i \(0.456389\pi\)
\(734\) −10395.6 −0.522764
\(735\) −10565.3 −0.530216
\(736\) 1038.16 0.0519931
\(737\) −17011.8 −0.850253
\(738\) 64.8669 0.00323548
\(739\) −870.476 −0.0433301 −0.0216651 0.999765i \(-0.506897\pi\)
−0.0216651 + 0.999765i \(0.506897\pi\)
\(740\) 2482.48 0.123321
\(741\) 2853.64 0.141472
\(742\) 5568.42 0.275503
\(743\) −20288.4 −1.00176 −0.500881 0.865516i \(-0.666990\pi\)
−0.500881 + 0.865516i \(0.666990\pi\)
\(744\) 21381.0 1.05358
\(745\) 6359.02 0.312720
\(746\) 4010.56 0.196832
\(747\) −5961.27 −0.291983
\(748\) 1550.24 0.0757788
\(749\) 7567.31 0.369164
\(750\) 11520.1 0.560872
\(751\) −13003.6 −0.631833 −0.315917 0.948787i \(-0.602312\pi\)
−0.315917 + 0.948787i \(0.602312\pi\)
\(752\) 7105.00 0.344538
\(753\) −17094.2 −0.827287
\(754\) −1091.00 −0.0526948
\(755\) 18604.7 0.896812
\(756\) −98.7408 −0.00475022
\(757\) 12802.3 0.614672 0.307336 0.951601i \(-0.400563\pi\)
0.307336 + 0.951601i \(0.400563\pi\)
\(758\) −19008.8 −0.910860
\(759\) −1737.03 −0.0830700
\(760\) 4169.50 0.199005
\(761\) −16127.4 −0.768222 −0.384111 0.923287i \(-0.625492\pi\)
−0.384111 + 0.923287i \(0.625492\pi\)
\(762\) −4479.15 −0.212943
\(763\) −5.10457 −0.000242199 0
\(764\) −4038.52 −0.191241
\(765\) −7739.30 −0.365771
\(766\) −11728.0 −0.553200
\(767\) −41987.4 −1.97663
\(768\) 4007.80 0.188306
\(769\) −7738.74 −0.362895 −0.181447 0.983401i \(-0.558078\pi\)
−0.181447 + 0.983401i \(0.558078\pi\)
\(770\) 2649.97 0.124024
\(771\) −22614.6 −1.05635
\(772\) −3092.33 −0.144165
\(773\) 36238.6 1.68617 0.843086 0.537779i \(-0.180736\pi\)
0.843086 + 0.537779i \(0.180736\pi\)
\(774\) 4345.50 0.201804
\(775\) 2443.55 0.113258
\(776\) 29091.1 1.34576
\(777\) 3247.18 0.149925
\(778\) 37106.4 1.70993
\(779\) 43.9662 0.00202215
\(780\) −1669.53 −0.0766393
\(781\) −3203.28 −0.146764
\(782\) 5553.68 0.253963
\(783\) −188.907 −0.00862196
\(784\) 18300.5 0.833661
\(785\) 1867.14 0.0848930
\(786\) −5577.02 −0.253086
\(787\) −18259.7 −0.827048 −0.413524 0.910493i \(-0.635702\pi\)
−0.413524 + 0.910493i \(0.635702\pi\)
\(788\) −1211.15 −0.0547530
\(789\) −25314.9 −1.14225
\(790\) −15281.8 −0.688232
\(791\) −6261.27 −0.281448
\(792\) −4718.76 −0.211709
\(793\) −48626.5 −2.17753
\(794\) −25188.7 −1.12584
\(795\) 16302.5 0.727282
\(796\) 240.075 0.0106900
\(797\) 10821.5 0.480951 0.240476 0.970655i \(-0.422697\pi\)
0.240476 + 0.970655i \(0.422697\pi\)
\(798\) 540.925 0.0239956
\(799\) −10060.0 −0.445428
\(800\) 322.312 0.0142443
\(801\) 7304.48 0.322211
\(802\) 29129.2 1.28253
\(803\) 5903.58 0.259443
\(804\) 2031.60 0.0891158
\(805\) −1174.57 −0.0514262
\(806\) 46900.7 2.04963
\(807\) −6284.81 −0.274146
\(808\) 25604.1 1.11479
\(809\) −43523.2 −1.89146 −0.945731 0.324949i \(-0.894653\pi\)
−0.945731 + 0.324949i \(0.894653\pi\)
\(810\) 2336.48 0.101353
\(811\) 44292.1 1.91776 0.958881 0.283807i \(-0.0915975\pi\)
0.958881 + 0.283807i \(0.0915975\pi\)
\(812\) 25.5869 0.00110582
\(813\) 8869.78 0.382628
\(814\) 15391.1 0.662725
\(815\) −42191.6 −1.81338
\(816\) 13405.5 0.575104
\(817\) 2945.34 0.126125
\(818\) 7202.14 0.307845
\(819\) −2183.81 −0.0931726
\(820\) −25.7225 −0.00109545
\(821\) 6015.57 0.255718 0.127859 0.991792i \(-0.459189\pi\)
0.127859 + 0.991792i \(0.459189\pi\)
\(822\) 14382.5 0.610275
\(823\) −21950.3 −0.929697 −0.464849 0.885390i \(-0.653891\pi\)
−0.464849 + 0.885390i \(0.653891\pi\)
\(824\) −5237.67 −0.221436
\(825\) −539.288 −0.0227583
\(826\) −7958.96 −0.335264
\(827\) 2591.55 0.108969 0.0544843 0.998515i \(-0.482649\pi\)
0.0544843 + 0.998515i \(0.482649\pi\)
\(828\) 207.442 0.00870665
\(829\) 13778.9 0.577274 0.288637 0.957439i \(-0.406798\pi\)
0.288637 + 0.957439i \(0.406798\pi\)
\(830\) −19106.2 −0.799018
\(831\) −4226.35 −0.176427
\(832\) 32451.4 1.35222
\(833\) −25911.8 −1.07778
\(834\) −20715.6 −0.860100
\(835\) −17626.8 −0.730540
\(836\) −317.217 −0.0131234
\(837\) 8120.89 0.335363
\(838\) −17503.2 −0.721525
\(839\) 8719.52 0.358798 0.179399 0.983776i \(-0.442585\pi\)
0.179399 + 0.983776i \(0.442585\pi\)
\(840\) −3190.79 −0.131063
\(841\) −24340.0 −0.997993
\(842\) −12655.0 −0.517957
\(843\) 16140.7 0.659449
\(844\) −1811.86 −0.0738942
\(845\) −13172.6 −0.536274
\(846\) 3037.09 0.123425
\(847\) 3493.44 0.141719
\(848\) −28238.0 −1.14351
\(849\) 18861.4 0.762450
\(850\) 1724.23 0.0695771
\(851\) −6821.91 −0.274797
\(852\) 382.546 0.0153824
\(853\) −1765.04 −0.0708487 −0.0354243 0.999372i \(-0.511278\pi\)
−0.0354243 + 0.999372i \(0.511278\pi\)
\(854\) −9217.46 −0.369338
\(855\) 1583.65 0.0633445
\(856\) −43187.9 −1.72446
\(857\) −23068.6 −0.919496 −0.459748 0.888049i \(-0.652060\pi\)
−0.459748 + 0.888049i \(0.652060\pi\)
\(858\) −10350.9 −0.411858
\(859\) 45538.7 1.80880 0.904401 0.426683i \(-0.140318\pi\)
0.904401 + 0.426683i \(0.140318\pi\)
\(860\) −1723.18 −0.0683255
\(861\) −33.6460 −0.00133177
\(862\) 1318.79 0.0521094
\(863\) 17396.2 0.686182 0.343091 0.939302i \(-0.388526\pi\)
0.343091 + 0.939302i \(0.388526\pi\)
\(864\) 1071.17 0.0421781
\(865\) 12459.7 0.489760
\(866\) 221.384 0.00868698
\(867\) −4241.84 −0.166160
\(868\) −1099.95 −0.0430123
\(869\) 11722.4 0.457600
\(870\) −605.457 −0.0235942
\(871\) 44932.1 1.74795
\(872\) 29.1326 0.00113137
\(873\) 11049.3 0.428365
\(874\) −1136.42 −0.0439815
\(875\) −5975.39 −0.230863
\(876\) −705.026 −0.0271925
\(877\) 34399.6 1.32451 0.662254 0.749279i \(-0.269600\pi\)
0.662254 + 0.749279i \(0.269600\pi\)
\(878\) 43940.0 1.68896
\(879\) −9628.43 −0.369464
\(880\) −13438.3 −0.514777
\(881\) 32155.2 1.22967 0.614833 0.788657i \(-0.289223\pi\)
0.614833 + 0.788657i \(0.289223\pi\)
\(882\) 7822.72 0.298645
\(883\) 45892.3 1.74904 0.874519 0.484992i \(-0.161177\pi\)
0.874519 + 0.484992i \(0.161177\pi\)
\(884\) −4094.56 −0.155786
\(885\) −23301.2 −0.885040
\(886\) −15811.1 −0.599532
\(887\) −2306.90 −0.0873261 −0.0436630 0.999046i \(-0.513903\pi\)
−0.0436630 + 0.999046i \(0.513903\pi\)
\(888\) −18532.2 −0.700337
\(889\) 2323.30 0.0876503
\(890\) 23411.2 0.881737
\(891\) −1792.27 −0.0673885
\(892\) 3994.13 0.149925
\(893\) 2058.51 0.0771395
\(894\) −4708.30 −0.176140
\(895\) −9047.74 −0.337914
\(896\) 4833.61 0.180223
\(897\) 4587.90 0.170775
\(898\) −4517.73 −0.167883
\(899\) −2104.38 −0.0780702
\(900\) 64.4036 0.00238532
\(901\) 39982.2 1.47836
\(902\) −159.477 −0.00588692
\(903\) −2253.98 −0.0830652
\(904\) 35734.1 1.31471
\(905\) 31307.7 1.14995
\(906\) −13775.1 −0.505131
\(907\) 37028.8 1.35559 0.677796 0.735250i \(-0.262935\pi\)
0.677796 + 0.735250i \(0.262935\pi\)
\(908\) −3983.92 −0.145607
\(909\) 9724.88 0.354845
\(910\) −6999.21 −0.254969
\(911\) 4630.57 0.168406 0.0842028 0.996449i \(-0.473166\pi\)
0.0842028 + 0.996449i \(0.473166\pi\)
\(912\) −2743.08 −0.0995969
\(913\) 14655.9 0.531261
\(914\) 11727.9 0.424425
\(915\) −26985.6 −0.974992
\(916\) 3480.43 0.125542
\(917\) 2892.77 0.104174
\(918\) 5730.28 0.206021
\(919\) 16030.4 0.575402 0.287701 0.957720i \(-0.407109\pi\)
0.287701 + 0.957720i \(0.407109\pi\)
\(920\) 6703.46 0.240224
\(921\) 3012.82 0.107791
\(922\) −33718.7 −1.20441
\(923\) 8460.61 0.301717
\(924\) 242.757 0.00864298
\(925\) −2117.97 −0.0752848
\(926\) −48551.9 −1.72302
\(927\) −1989.36 −0.0704844
\(928\) −277.574 −0.00981877
\(929\) 24729.7 0.873364 0.436682 0.899616i \(-0.356154\pi\)
0.436682 + 0.899616i \(0.356154\pi\)
\(930\) 26027.8 0.917728
\(931\) 5302.17 0.186650
\(932\) 4425.32 0.155532
\(933\) −8591.21 −0.301462
\(934\) −9067.98 −0.317680
\(935\) 19027.3 0.665517
\(936\) 12463.3 0.435232
\(937\) 32508.7 1.13342 0.566709 0.823918i \(-0.308216\pi\)
0.566709 + 0.823918i \(0.308216\pi\)
\(938\) 8517.15 0.296476
\(939\) −26968.5 −0.937256
\(940\) −1204.34 −0.0417885
\(941\) −530.766 −0.0183873 −0.00919366 0.999958i \(-0.502926\pi\)
−0.00919366 + 0.999958i \(0.502926\pi\)
\(942\) −1382.45 −0.0478161
\(943\) 70.6861 0.00244099
\(944\) 40360.6 1.39155
\(945\) −1211.92 −0.0417182
\(946\) −10683.5 −0.367179
\(947\) 52553.0 1.80332 0.901660 0.432446i \(-0.142350\pi\)
0.901660 + 0.432446i \(0.142350\pi\)
\(948\) −1399.93 −0.0479615
\(949\) −15592.8 −0.533364
\(950\) −352.818 −0.0120494
\(951\) 33693.1 1.14887
\(952\) −7825.50 −0.266414
\(953\) 18880.6 0.641765 0.320883 0.947119i \(-0.396021\pi\)
0.320883 + 0.947119i \(0.396021\pi\)
\(954\) −12070.6 −0.409643
\(955\) −49567.7 −1.67955
\(956\) −5291.81 −0.179027
\(957\) 464.434 0.0156876
\(958\) −30201.0 −1.01853
\(959\) −7460.09 −0.251198
\(960\) 18009.1 0.605460
\(961\) 60673.8 2.03665
\(962\) −40651.5 −1.36243
\(963\) −16403.5 −0.548906
\(964\) −5299.76 −0.177068
\(965\) −37954.4 −1.26611
\(966\) 869.665 0.0289659
\(967\) −30050.4 −0.999334 −0.499667 0.866218i \(-0.666544\pi\)
−0.499667 + 0.866218i \(0.666544\pi\)
\(968\) −19937.7 −0.662005
\(969\) 3883.93 0.128762
\(970\) 35413.6 1.17223
\(971\) −21084.7 −0.696847 −0.348424 0.937337i \(-0.613283\pi\)
−0.348424 + 0.937337i \(0.613283\pi\)
\(972\) 214.039 0.00706305
\(973\) 10745.1 0.354030
\(974\) 37129.1 1.22145
\(975\) 1424.39 0.0467865
\(976\) 46742.5 1.53298
\(977\) −6005.96 −0.196671 −0.0983356 0.995153i \(-0.531352\pi\)
−0.0983356 + 0.995153i \(0.531352\pi\)
\(978\) 31239.2 1.02139
\(979\) −17958.2 −0.586259
\(980\) −3102.04 −0.101113
\(981\) 11.0651 0.000360123 0
\(982\) −25741.5 −0.836500
\(983\) −59306.2 −1.92429 −0.962144 0.272542i \(-0.912136\pi\)
−0.962144 + 0.272542i \(0.912136\pi\)
\(984\) 192.024 0.00622103
\(985\) −14865.3 −0.480861
\(986\) −1484.90 −0.0479603
\(987\) −1575.32 −0.0508034
\(988\) 837.844 0.0269791
\(989\) 4735.34 0.152250
\(990\) −5744.30 −0.184410
\(991\) 8530.35 0.273436 0.136718 0.990610i \(-0.456345\pi\)
0.136718 + 0.990610i \(0.456345\pi\)
\(992\) 11932.6 0.381915
\(993\) −3971.30 −0.126914
\(994\) 1603.76 0.0511753
\(995\) 2946.62 0.0938835
\(996\) −1750.26 −0.0556820
\(997\) 977.326 0.0310453 0.0155227 0.999880i \(-0.495059\pi\)
0.0155227 + 0.999880i \(0.495059\pi\)
\(998\) 42879.3 1.36004
\(999\) −7038.84 −0.222922
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1011.4.a.c.1.13 46
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1011.4.a.c.1.13 46 1.1 even 1 trivial