Properties

Label 1011.4.a.c.1.12
Level $1011$
Weight $4$
Character 1011.1
Self dual yes
Analytic conductor $59.651$
Analytic rank $0$
Dimension $46$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1011,4,Mod(1,1011)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1011.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1011, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1011 = 3 \cdot 337 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1011.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [46] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.6509310158\)
Analytic rank: \(0\)
Dimension: \(46\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Character \(\chi\) \(=\) 1011.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.07541 q^{2} -3.00000 q^{3} +1.45812 q^{4} -6.39601 q^{5} +9.22622 q^{6} +0.626874 q^{7} +20.1189 q^{8} +9.00000 q^{9} +19.6703 q^{10} -35.4878 q^{11} -4.37437 q^{12} -32.9018 q^{13} -1.92789 q^{14} +19.1880 q^{15} -73.5389 q^{16} -12.3485 q^{17} -27.6787 q^{18} +60.9814 q^{19} -9.32616 q^{20} -1.88062 q^{21} +109.139 q^{22} -32.7241 q^{23} -60.3568 q^{24} -84.0911 q^{25} +101.186 q^{26} -27.0000 q^{27} +0.914058 q^{28} +227.951 q^{29} -59.0109 q^{30} +197.472 q^{31} +65.2104 q^{32} +106.463 q^{33} +37.9766 q^{34} -4.00949 q^{35} +13.1231 q^{36} -263.328 q^{37} -187.543 q^{38} +98.7055 q^{39} -128.681 q^{40} -178.522 q^{41} +5.78367 q^{42} -431.571 q^{43} -51.7455 q^{44} -57.5640 q^{45} +100.640 q^{46} +148.368 q^{47} +220.617 q^{48} -342.607 q^{49} +258.614 q^{50} +37.0455 q^{51} -47.9749 q^{52} -659.908 q^{53} +83.0360 q^{54} +226.980 q^{55} +12.6120 q^{56} -182.944 q^{57} -701.042 q^{58} -172.116 q^{59} +27.9785 q^{60} -636.824 q^{61} -607.307 q^{62} +5.64186 q^{63} +387.762 q^{64} +210.440 q^{65} -327.418 q^{66} +100.574 q^{67} -18.0056 q^{68} +98.1722 q^{69} +12.3308 q^{70} -805.302 q^{71} +181.070 q^{72} -65.7876 q^{73} +809.840 q^{74} +252.273 q^{75} +88.9184 q^{76} -22.2463 q^{77} -303.559 q^{78} +416.445 q^{79} +470.355 q^{80} +81.0000 q^{81} +549.026 q^{82} +255.426 q^{83} -2.74218 q^{84} +78.9810 q^{85} +1327.26 q^{86} -683.853 q^{87} -713.976 q^{88} -572.424 q^{89} +177.033 q^{90} -20.6253 q^{91} -47.7157 q^{92} -592.417 q^{93} -456.292 q^{94} -390.038 q^{95} -195.631 q^{96} -1393.23 q^{97} +1053.66 q^{98} -319.390 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 46 q + 7 q^{2} - 138 q^{3} + 207 q^{4} + 42 q^{5} - 21 q^{6} - 72 q^{7} + 105 q^{8} + 414 q^{9} - 32 q^{10} + 126 q^{11} - 621 q^{12} + 114 q^{13} + 111 q^{14} - 126 q^{15} + 915 q^{16} + 154 q^{17} + 63 q^{18}+ \cdots + 1134 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.07541 −1.08732 −0.543660 0.839305i \(-0.682962\pi\)
−0.543660 + 0.839305i \(0.682962\pi\)
\(3\) −3.00000 −0.577350
\(4\) 1.45812 0.182265
\(5\) −6.39601 −0.572076 −0.286038 0.958218i \(-0.592338\pi\)
−0.286038 + 0.958218i \(0.592338\pi\)
\(6\) 9.22622 0.627765
\(7\) 0.626874 0.0338480 0.0169240 0.999857i \(-0.494613\pi\)
0.0169240 + 0.999857i \(0.494613\pi\)
\(8\) 20.1189 0.889140
\(9\) 9.00000 0.333333
\(10\) 19.6703 0.622030
\(11\) −35.4878 −0.972724 −0.486362 0.873757i \(-0.661676\pi\)
−0.486362 + 0.873757i \(0.661676\pi\)
\(12\) −4.37437 −0.105231
\(13\) −32.9018 −0.701948 −0.350974 0.936385i \(-0.614149\pi\)
−0.350974 + 0.936385i \(0.614149\pi\)
\(14\) −1.92789 −0.0368036
\(15\) 19.1880 0.330288
\(16\) −73.5389 −1.14904
\(17\) −12.3485 −0.176173 −0.0880867 0.996113i \(-0.528075\pi\)
−0.0880867 + 0.996113i \(0.528075\pi\)
\(18\) −27.6787 −0.362440
\(19\) 60.9814 0.736321 0.368161 0.929762i \(-0.379988\pi\)
0.368161 + 0.929762i \(0.379988\pi\)
\(20\) −9.32616 −0.104270
\(21\) −1.88062 −0.0195422
\(22\) 109.139 1.05766
\(23\) −32.7241 −0.296671 −0.148336 0.988937i \(-0.547392\pi\)
−0.148336 + 0.988937i \(0.547392\pi\)
\(24\) −60.3568 −0.513345
\(25\) −84.0911 −0.672729
\(26\) 101.186 0.763242
\(27\) −27.0000 −0.192450
\(28\) 0.914058 0.00616931
\(29\) 227.951 1.45964 0.729818 0.683641i \(-0.239605\pi\)
0.729818 + 0.683641i \(0.239605\pi\)
\(30\) −59.0109 −0.359129
\(31\) 197.472 1.14410 0.572049 0.820219i \(-0.306149\pi\)
0.572049 + 0.820219i \(0.306149\pi\)
\(32\) 65.2104 0.360240
\(33\) 106.463 0.561602
\(34\) 37.9766 0.191557
\(35\) −4.00949 −0.0193636
\(36\) 13.1231 0.0607551
\(37\) −263.328 −1.17002 −0.585012 0.811025i \(-0.698910\pi\)
−0.585012 + 0.811025i \(0.698910\pi\)
\(38\) −187.543 −0.800617
\(39\) 98.7055 0.405270
\(40\) −128.681 −0.508655
\(41\) −178.522 −0.680009 −0.340005 0.940424i \(-0.610429\pi\)
−0.340005 + 0.940424i \(0.610429\pi\)
\(42\) 5.78367 0.0212486
\(43\) −431.571 −1.53056 −0.765279 0.643699i \(-0.777399\pi\)
−0.765279 + 0.643699i \(0.777399\pi\)
\(44\) −51.7455 −0.177294
\(45\) −57.5640 −0.190692
\(46\) 100.640 0.322577
\(47\) 148.368 0.460462 0.230231 0.973136i \(-0.426052\pi\)
0.230231 + 0.973136i \(0.426052\pi\)
\(48\) 220.617 0.663401
\(49\) −342.607 −0.998854
\(50\) 258.614 0.731472
\(51\) 37.0455 0.101714
\(52\) −47.9749 −0.127941
\(53\) −659.908 −1.71029 −0.855144 0.518390i \(-0.826531\pi\)
−0.855144 + 0.518390i \(0.826531\pi\)
\(54\) 83.0360 0.209255
\(55\) 226.980 0.556472
\(56\) 12.6120 0.0300956
\(57\) −182.944 −0.425115
\(58\) −701.042 −1.58709
\(59\) −172.116 −0.379791 −0.189895 0.981804i \(-0.560815\pi\)
−0.189895 + 0.981804i \(0.560815\pi\)
\(60\) 27.9785 0.0602001
\(61\) −636.824 −1.33667 −0.668336 0.743859i \(-0.732993\pi\)
−0.668336 + 0.743859i \(0.732993\pi\)
\(62\) −607.307 −1.24400
\(63\) 5.64186 0.0112827
\(64\) 387.762 0.757348
\(65\) 210.440 0.401568
\(66\) −327.418 −0.610642
\(67\) 100.574 0.183389 0.0916943 0.995787i \(-0.470772\pi\)
0.0916943 + 0.995787i \(0.470772\pi\)
\(68\) −18.0056 −0.0321103
\(69\) 98.1722 0.171283
\(70\) 12.3308 0.0210545
\(71\) −805.302 −1.34608 −0.673040 0.739606i \(-0.735012\pi\)
−0.673040 + 0.739606i \(0.735012\pi\)
\(72\) 181.070 0.296380
\(73\) −65.7876 −0.105477 −0.0527387 0.998608i \(-0.516795\pi\)
−0.0527387 + 0.998608i \(0.516795\pi\)
\(74\) 809.840 1.27219
\(75\) 252.273 0.388400
\(76\) 88.9184 0.134206
\(77\) −22.2463 −0.0329248
\(78\) −303.559 −0.440658
\(79\) 416.445 0.593085 0.296543 0.955020i \(-0.404166\pi\)
0.296543 + 0.955020i \(0.404166\pi\)
\(80\) 470.355 0.657341
\(81\) 81.0000 0.111111
\(82\) 549.026 0.739388
\(83\) 255.426 0.337791 0.168896 0.985634i \(-0.445980\pi\)
0.168896 + 0.985634i \(0.445980\pi\)
\(84\) −2.74218 −0.00356186
\(85\) 78.9810 0.100785
\(86\) 1327.26 1.66421
\(87\) −683.853 −0.842722
\(88\) −713.976 −0.864887
\(89\) −572.424 −0.681763 −0.340881 0.940106i \(-0.610725\pi\)
−0.340881 + 0.940106i \(0.610725\pi\)
\(90\) 177.033 0.207343
\(91\) −20.6253 −0.0237595
\(92\) −47.7157 −0.0540728
\(93\) −592.417 −0.660546
\(94\) −456.292 −0.500669
\(95\) −390.038 −0.421232
\(96\) −195.631 −0.207985
\(97\) −1393.23 −1.45836 −0.729180 0.684322i \(-0.760098\pi\)
−0.729180 + 0.684322i \(0.760098\pi\)
\(98\) 1053.66 1.08607
\(99\) −319.390 −0.324241
\(100\) −122.615 −0.122615
\(101\) 1002.12 0.987279 0.493639 0.869667i \(-0.335666\pi\)
0.493639 + 0.869667i \(0.335666\pi\)
\(102\) −113.930 −0.110595
\(103\) −1122.58 −1.07390 −0.536948 0.843615i \(-0.680423\pi\)
−0.536948 + 0.843615i \(0.680423\pi\)
\(104\) −661.950 −0.624130
\(105\) 12.0285 0.0111796
\(106\) 2029.48 1.85963
\(107\) 1453.02 1.31279 0.656394 0.754418i \(-0.272081\pi\)
0.656394 + 0.754418i \(0.272081\pi\)
\(108\) −39.3693 −0.0350770
\(109\) 1763.02 1.54924 0.774619 0.632428i \(-0.217941\pi\)
0.774619 + 0.632428i \(0.217941\pi\)
\(110\) −698.056 −0.605063
\(111\) 789.984 0.675513
\(112\) −46.0996 −0.0388929
\(113\) 1736.21 1.44539 0.722693 0.691169i \(-0.242904\pi\)
0.722693 + 0.691169i \(0.242904\pi\)
\(114\) 562.628 0.462236
\(115\) 209.303 0.169718
\(116\) 332.381 0.266041
\(117\) −296.117 −0.233983
\(118\) 529.328 0.412954
\(119\) −7.74094 −0.00596312
\(120\) 386.042 0.293672
\(121\) −71.6183 −0.0538079
\(122\) 1958.49 1.45339
\(123\) 535.565 0.392604
\(124\) 287.939 0.208529
\(125\) 1337.35 0.956928
\(126\) −17.3510 −0.0122679
\(127\) −187.353 −0.130905 −0.0654524 0.997856i \(-0.520849\pi\)
−0.0654524 + 0.997856i \(0.520849\pi\)
\(128\) −1714.21 −1.18372
\(129\) 1294.71 0.883668
\(130\) −647.189 −0.436633
\(131\) −1032.24 −0.688452 −0.344226 0.938887i \(-0.611859\pi\)
−0.344226 + 0.938887i \(0.611859\pi\)
\(132\) 155.236 0.102361
\(133\) 38.2277 0.0249230
\(134\) −309.305 −0.199402
\(135\) 172.692 0.110096
\(136\) −248.438 −0.156643
\(137\) 2992.13 1.86595 0.932975 0.359941i \(-0.117203\pi\)
0.932975 + 0.359941i \(0.117203\pi\)
\(138\) −301.919 −0.186240
\(139\) 126.513 0.0771994 0.0385997 0.999255i \(-0.487710\pi\)
0.0385997 + 0.999255i \(0.487710\pi\)
\(140\) −5.84632 −0.00352932
\(141\) −445.104 −0.265848
\(142\) 2476.63 1.46362
\(143\) 1167.61 0.682802
\(144\) −661.850 −0.383015
\(145\) −1457.98 −0.835023
\(146\) 202.323 0.114688
\(147\) 1027.82 0.576689
\(148\) −383.964 −0.213255
\(149\) −588.770 −0.323718 −0.161859 0.986814i \(-0.551749\pi\)
−0.161859 + 0.986814i \(0.551749\pi\)
\(150\) −775.843 −0.422315
\(151\) −2457.81 −1.32460 −0.662298 0.749241i \(-0.730419\pi\)
−0.662298 + 0.749241i \(0.730419\pi\)
\(152\) 1226.88 0.654692
\(153\) −111.136 −0.0587245
\(154\) 68.4166 0.0357998
\(155\) −1263.03 −0.654511
\(156\) 143.925 0.0738666
\(157\) −1073.10 −0.545496 −0.272748 0.962085i \(-0.587933\pi\)
−0.272748 + 0.962085i \(0.587933\pi\)
\(158\) −1280.74 −0.644873
\(159\) 1979.72 0.987435
\(160\) −417.086 −0.206085
\(161\) −20.5139 −0.0100417
\(162\) −249.108 −0.120813
\(163\) −1103.73 −0.530375 −0.265188 0.964197i \(-0.585434\pi\)
−0.265188 + 0.964197i \(0.585434\pi\)
\(164\) −260.306 −0.123942
\(165\) −680.940 −0.321279
\(166\) −785.540 −0.367287
\(167\) 383.105 0.177518 0.0887592 0.996053i \(-0.471710\pi\)
0.0887592 + 0.996053i \(0.471710\pi\)
\(168\) −37.8361 −0.0173757
\(169\) −1114.47 −0.507269
\(170\) −242.899 −0.109585
\(171\) 548.833 0.245440
\(172\) −629.284 −0.278968
\(173\) 2374.35 1.04346 0.521730 0.853111i \(-0.325287\pi\)
0.521730 + 0.853111i \(0.325287\pi\)
\(174\) 2103.13 0.916308
\(175\) −52.7145 −0.0227705
\(176\) 2609.73 1.11770
\(177\) 516.349 0.219272
\(178\) 1760.44 0.741294
\(179\) 989.435 0.413150 0.206575 0.978431i \(-0.433768\pi\)
0.206575 + 0.978431i \(0.433768\pi\)
\(180\) −83.9354 −0.0347565
\(181\) 856.314 0.351654 0.175827 0.984421i \(-0.443740\pi\)
0.175827 + 0.984421i \(0.443740\pi\)
\(182\) 63.4312 0.0258342
\(183\) 1910.47 0.771728
\(184\) −658.373 −0.263782
\(185\) 1684.25 0.669342
\(186\) 1821.92 0.718225
\(187\) 438.220 0.171368
\(188\) 216.339 0.0839262
\(189\) −16.9256 −0.00651405
\(190\) 1199.52 0.458014
\(191\) −2758.54 −1.04503 −0.522516 0.852630i \(-0.675006\pi\)
−0.522516 + 0.852630i \(0.675006\pi\)
\(192\) −1163.29 −0.437255
\(193\) −661.446 −0.246694 −0.123347 0.992364i \(-0.539363\pi\)
−0.123347 + 0.992364i \(0.539363\pi\)
\(194\) 4284.74 1.58570
\(195\) −631.321 −0.231845
\(196\) −499.563 −0.182056
\(197\) 2116.46 0.765439 0.382719 0.923865i \(-0.374988\pi\)
0.382719 + 0.923865i \(0.374988\pi\)
\(198\) 982.254 0.352554
\(199\) 4202.14 1.49689 0.748446 0.663196i \(-0.230800\pi\)
0.748446 + 0.663196i \(0.230800\pi\)
\(200\) −1691.82 −0.598150
\(201\) −301.721 −0.105879
\(202\) −3081.94 −1.07349
\(203\) 142.897 0.0494058
\(204\) 54.0168 0.0185389
\(205\) 1141.82 0.389017
\(206\) 3452.40 1.16767
\(207\) −294.516 −0.0988904
\(208\) 2419.56 0.806570
\(209\) −2164.10 −0.716237
\(210\) −36.9924 −0.0121558
\(211\) 3074.19 1.00302 0.501508 0.865153i \(-0.332779\pi\)
0.501508 + 0.865153i \(0.332779\pi\)
\(212\) −962.226 −0.311726
\(213\) 2415.91 0.777160
\(214\) −4468.62 −1.42742
\(215\) 2760.33 0.875596
\(216\) −543.211 −0.171115
\(217\) 123.790 0.0387254
\(218\) −5422.01 −1.68452
\(219\) 197.363 0.0608974
\(220\) 330.964 0.101426
\(221\) 406.288 0.123665
\(222\) −2429.52 −0.734499
\(223\) 830.652 0.249438 0.124719 0.992192i \(-0.460197\pi\)
0.124719 + 0.992192i \(0.460197\pi\)
\(224\) 40.8787 0.0121934
\(225\) −756.820 −0.224243
\(226\) −5339.54 −1.57160
\(227\) 4301.47 1.25770 0.628852 0.777525i \(-0.283525\pi\)
0.628852 + 0.777525i \(0.283525\pi\)
\(228\) −266.755 −0.0774837
\(229\) −1753.52 −0.506007 −0.253003 0.967465i \(-0.581418\pi\)
−0.253003 + 0.967465i \(0.581418\pi\)
\(230\) −643.692 −0.184538
\(231\) 66.7390 0.0190091
\(232\) 4586.13 1.29782
\(233\) 6122.73 1.72152 0.860758 0.509015i \(-0.169990\pi\)
0.860758 + 0.509015i \(0.169990\pi\)
\(234\) 910.678 0.254414
\(235\) −948.963 −0.263419
\(236\) −250.967 −0.0692227
\(237\) −1249.34 −0.342418
\(238\) 23.8065 0.00648382
\(239\) 1435.67 0.388561 0.194280 0.980946i \(-0.437763\pi\)
0.194280 + 0.980946i \(0.437763\pi\)
\(240\) −1411.06 −0.379516
\(241\) 4852.49 1.29700 0.648498 0.761216i \(-0.275397\pi\)
0.648498 + 0.761216i \(0.275397\pi\)
\(242\) 220.255 0.0585064
\(243\) −243.000 −0.0641500
\(244\) −928.568 −0.243629
\(245\) 2191.32 0.571421
\(246\) −1647.08 −0.426886
\(247\) −2006.40 −0.516859
\(248\) 3972.93 1.01726
\(249\) −766.279 −0.195024
\(250\) −4112.89 −1.04049
\(251\) 6199.92 1.55910 0.779552 0.626337i \(-0.215447\pi\)
0.779552 + 0.626337i \(0.215447\pi\)
\(252\) 8.22653 0.00205644
\(253\) 1161.30 0.288579
\(254\) 576.187 0.142335
\(255\) −236.943 −0.0581880
\(256\) 2169.79 0.529734
\(257\) −4833.36 −1.17314 −0.586569 0.809899i \(-0.699522\pi\)
−0.586569 + 0.809899i \(0.699522\pi\)
\(258\) −3981.77 −0.960830
\(259\) −165.073 −0.0396029
\(260\) 306.848 0.0731919
\(261\) 2051.56 0.486546
\(262\) 3174.56 0.748568
\(263\) −7759.70 −1.81933 −0.909665 0.415343i \(-0.863661\pi\)
−0.909665 + 0.415343i \(0.863661\pi\)
\(264\) 2141.93 0.499343
\(265\) 4220.77 0.978415
\(266\) −117.566 −0.0270993
\(267\) 1717.27 0.393616
\(268\) 146.649 0.0334254
\(269\) 5774.02 1.30873 0.654365 0.756179i \(-0.272936\pi\)
0.654365 + 0.756179i \(0.272936\pi\)
\(270\) −531.098 −0.119710
\(271\) 2900.45 0.650147 0.325073 0.945689i \(-0.394611\pi\)
0.325073 + 0.945689i \(0.394611\pi\)
\(272\) 908.093 0.202431
\(273\) 61.8759 0.0137176
\(274\) −9202.02 −2.02888
\(275\) 2984.21 0.654380
\(276\) 143.147 0.0312190
\(277\) −6949.43 −1.50740 −0.753702 0.657216i \(-0.771734\pi\)
−0.753702 + 0.657216i \(0.771734\pi\)
\(278\) −389.079 −0.0839404
\(279\) 1777.25 0.381366
\(280\) −80.6666 −0.0172170
\(281\) 6786.49 1.44074 0.720371 0.693589i \(-0.243972\pi\)
0.720371 + 0.693589i \(0.243972\pi\)
\(282\) 1368.88 0.289062
\(283\) 4572.74 0.960500 0.480250 0.877132i \(-0.340546\pi\)
0.480250 + 0.877132i \(0.340546\pi\)
\(284\) −1174.23 −0.245344
\(285\) 1170.11 0.243198
\(286\) −3590.88 −0.742424
\(287\) −111.910 −0.0230170
\(288\) 586.894 0.120080
\(289\) −4760.51 −0.968963
\(290\) 4483.87 0.907938
\(291\) 4179.69 0.841985
\(292\) −95.9263 −0.0192249
\(293\) −2756.01 −0.549516 −0.274758 0.961513i \(-0.588598\pi\)
−0.274758 + 0.961513i \(0.588598\pi\)
\(294\) −3160.97 −0.627045
\(295\) 1100.86 0.217269
\(296\) −5297.88 −1.04031
\(297\) 958.170 0.187201
\(298\) 1810.71 0.351985
\(299\) 1076.68 0.208248
\(300\) 367.845 0.0707919
\(301\) −270.541 −0.0518063
\(302\) 7558.77 1.44026
\(303\) −3006.37 −0.570006
\(304\) −4484.51 −0.846066
\(305\) 4073.13 0.764678
\(306\) 341.789 0.0638523
\(307\) 6114.43 1.13671 0.568354 0.822784i \(-0.307581\pi\)
0.568354 + 0.822784i \(0.307581\pi\)
\(308\) −32.4379 −0.00600104
\(309\) 3367.75 0.620014
\(310\) 3884.34 0.711664
\(311\) −6025.65 −1.09866 −0.549330 0.835605i \(-0.685117\pi\)
−0.549330 + 0.835605i \(0.685117\pi\)
\(312\) 1985.85 0.360342
\(313\) −8989.39 −1.62336 −0.811678 0.584106i \(-0.801445\pi\)
−0.811678 + 0.584106i \(0.801445\pi\)
\(314\) 3300.23 0.593129
\(315\) −36.0854 −0.00645454
\(316\) 607.228 0.108099
\(317\) 5554.57 0.984151 0.492075 0.870553i \(-0.336238\pi\)
0.492075 + 0.870553i \(0.336238\pi\)
\(318\) −6088.45 −1.07366
\(319\) −8089.48 −1.41982
\(320\) −2480.13 −0.433261
\(321\) −4359.05 −0.757939
\(322\) 63.0884 0.0109186
\(323\) −753.028 −0.129720
\(324\) 118.108 0.0202517
\(325\) 2766.75 0.472221
\(326\) 3394.43 0.576687
\(327\) −5289.07 −0.894454
\(328\) −3591.66 −0.604623
\(329\) 93.0080 0.0155857
\(330\) 2094.17 0.349334
\(331\) −5773.25 −0.958691 −0.479346 0.877626i \(-0.659126\pi\)
−0.479346 + 0.877626i \(0.659126\pi\)
\(332\) 372.443 0.0615676
\(333\) −2369.95 −0.390008
\(334\) −1178.20 −0.193019
\(335\) −643.270 −0.104912
\(336\) 138.299 0.0224548
\(337\) −337.000 −0.0544735
\(338\) 3427.45 0.551564
\(339\) −5208.62 −0.834494
\(340\) 115.164 0.0183695
\(341\) −7007.85 −1.11289
\(342\) −1687.88 −0.266872
\(343\) −429.789 −0.0676572
\(344\) −8682.75 −1.36088
\(345\) −627.910 −0.0979870
\(346\) −7302.09 −1.13457
\(347\) 9710.00 1.50219 0.751095 0.660194i \(-0.229526\pi\)
0.751095 + 0.660194i \(0.229526\pi\)
\(348\) −997.142 −0.153599
\(349\) −249.515 −0.0382700 −0.0191350 0.999817i \(-0.506091\pi\)
−0.0191350 + 0.999817i \(0.506091\pi\)
\(350\) 162.119 0.0247589
\(351\) 888.350 0.135090
\(352\) −2314.17 −0.350414
\(353\) 5065.88 0.763823 0.381912 0.924199i \(-0.375266\pi\)
0.381912 + 0.924199i \(0.375266\pi\)
\(354\) −1587.98 −0.238419
\(355\) 5150.71 0.770061
\(356\) −834.665 −0.124262
\(357\) 23.2228 0.00344281
\(358\) −3042.92 −0.449226
\(359\) −5209.49 −0.765867 −0.382934 0.923776i \(-0.625086\pi\)
−0.382934 + 0.923776i \(0.625086\pi\)
\(360\) −1158.13 −0.169552
\(361\) −3140.26 −0.457831
\(362\) −2633.51 −0.382360
\(363\) 214.855 0.0310660
\(364\) −30.0742 −0.00433054
\(365\) 420.778 0.0603411
\(366\) −5875.48 −0.839116
\(367\) −727.035 −0.103408 −0.0517042 0.998662i \(-0.516465\pi\)
−0.0517042 + 0.998662i \(0.516465\pi\)
\(368\) 2406.49 0.340888
\(369\) −1606.69 −0.226670
\(370\) −5179.74 −0.727789
\(371\) −413.679 −0.0578898
\(372\) −863.816 −0.120395
\(373\) −9647.78 −1.33926 −0.669629 0.742696i \(-0.733547\pi\)
−0.669629 + 0.742696i \(0.733547\pi\)
\(374\) −1347.70 −0.186332
\(375\) −4012.04 −0.552483
\(376\) 2985.01 0.409415
\(377\) −7500.01 −1.02459
\(378\) 52.0531 0.00708286
\(379\) 6120.88 0.829574 0.414787 0.909919i \(-0.363856\pi\)
0.414787 + 0.909919i \(0.363856\pi\)
\(380\) −568.722 −0.0767759
\(381\) 562.060 0.0755779
\(382\) 8483.63 1.13628
\(383\) −9720.07 −1.29679 −0.648397 0.761302i \(-0.724560\pi\)
−0.648397 + 0.761302i \(0.724560\pi\)
\(384\) 5142.63 0.683421
\(385\) 142.288 0.0188355
\(386\) 2034.22 0.268235
\(387\) −3884.14 −0.510186
\(388\) −2031.50 −0.265808
\(389\) 1247.16 0.162555 0.0812773 0.996692i \(-0.474100\pi\)
0.0812773 + 0.996692i \(0.474100\pi\)
\(390\) 1941.57 0.252090
\(391\) 404.092 0.0522656
\(392\) −6892.89 −0.888121
\(393\) 3096.72 0.397478
\(394\) −6508.97 −0.832277
\(395\) −2663.58 −0.339290
\(396\) −465.709 −0.0590979
\(397\) 11284.9 1.42663 0.713315 0.700844i \(-0.247193\pi\)
0.713315 + 0.700844i \(0.247193\pi\)
\(398\) −12923.3 −1.62760
\(399\) −114.683 −0.0143893
\(400\) 6183.96 0.772996
\(401\) 6785.59 0.845027 0.422514 0.906357i \(-0.361148\pi\)
0.422514 + 0.906357i \(0.361148\pi\)
\(402\) 927.915 0.115125
\(403\) −6497.20 −0.803098
\(404\) 1461.22 0.179947
\(405\) −518.076 −0.0635640
\(406\) −439.465 −0.0537199
\(407\) 9344.92 1.13811
\(408\) 745.315 0.0904377
\(409\) 5305.29 0.641393 0.320696 0.947182i \(-0.396083\pi\)
0.320696 + 0.947182i \(0.396083\pi\)
\(410\) −3511.57 −0.422986
\(411\) −8976.40 −1.07731
\(412\) −1636.86 −0.195734
\(413\) −107.895 −0.0128552
\(414\) 905.758 0.107526
\(415\) −1633.71 −0.193242
\(416\) −2145.54 −0.252870
\(417\) −379.540 −0.0445711
\(418\) 6655.47 0.778779
\(419\) 788.662 0.0919538 0.0459769 0.998943i \(-0.485360\pi\)
0.0459769 + 0.998943i \(0.485360\pi\)
\(420\) 17.5390 0.00203765
\(421\) 2921.68 0.338228 0.169114 0.985597i \(-0.445909\pi\)
0.169114 + 0.985597i \(0.445909\pi\)
\(422\) −9454.40 −1.09060
\(423\) 1335.31 0.153487
\(424\) −13276.6 −1.52068
\(425\) 1038.40 0.118517
\(426\) −7429.89 −0.845022
\(427\) −399.209 −0.0452437
\(428\) 2118.68 0.239276
\(429\) −3502.84 −0.394216
\(430\) −8489.14 −0.952053
\(431\) 4045.05 0.452072 0.226036 0.974119i \(-0.427423\pi\)
0.226036 + 0.974119i \(0.427423\pi\)
\(432\) 1985.55 0.221134
\(433\) 1759.83 0.195317 0.0976584 0.995220i \(-0.468865\pi\)
0.0976584 + 0.995220i \(0.468865\pi\)
\(434\) −380.705 −0.0421070
\(435\) 4373.93 0.482101
\(436\) 2570.70 0.282372
\(437\) −1995.56 −0.218445
\(438\) −606.970 −0.0662150
\(439\) 9096.98 0.989009 0.494505 0.869175i \(-0.335350\pi\)
0.494505 + 0.869175i \(0.335350\pi\)
\(440\) 4566.59 0.494781
\(441\) −3083.46 −0.332951
\(442\) −1249.50 −0.134463
\(443\) −14592.8 −1.56506 −0.782531 0.622611i \(-0.786072\pi\)
−0.782531 + 0.622611i \(0.786072\pi\)
\(444\) 1151.89 0.123123
\(445\) 3661.23 0.390020
\(446\) −2554.59 −0.271219
\(447\) 1766.31 0.186899
\(448\) 243.078 0.0256347
\(449\) −1851.81 −0.194638 −0.0973191 0.995253i \(-0.531027\pi\)
−0.0973191 + 0.995253i \(0.531027\pi\)
\(450\) 2327.53 0.243824
\(451\) 6335.33 0.661461
\(452\) 2531.60 0.263444
\(453\) 7373.44 0.764756
\(454\) −13228.8 −1.36753
\(455\) 131.920 0.0135923
\(456\) −3680.64 −0.377987
\(457\) 4283.78 0.438483 0.219241 0.975671i \(-0.429642\pi\)
0.219241 + 0.975671i \(0.429642\pi\)
\(458\) 5392.77 0.550191
\(459\) 333.409 0.0339046
\(460\) 305.190 0.0309338
\(461\) 187.429 0.0189358 0.00946792 0.999955i \(-0.496986\pi\)
0.00946792 + 0.999955i \(0.496986\pi\)
\(462\) −205.250 −0.0206690
\(463\) 10094.8 1.01327 0.506635 0.862161i \(-0.330889\pi\)
0.506635 + 0.862161i \(0.330889\pi\)
\(464\) −16763.3 −1.67719
\(465\) 3789.10 0.377882
\(466\) −18829.9 −1.87184
\(467\) 230.158 0.0228061 0.0114031 0.999935i \(-0.496370\pi\)
0.0114031 + 0.999935i \(0.496370\pi\)
\(468\) −431.774 −0.0426469
\(469\) 63.0470 0.00620734
\(470\) 2918.45 0.286421
\(471\) 3219.31 0.314943
\(472\) −3462.80 −0.337687
\(473\) 15315.5 1.48881
\(474\) 3842.21 0.372318
\(475\) −5128.00 −0.495345
\(476\) −11.2872 −0.00108687
\(477\) −5939.17 −0.570096
\(478\) −4415.28 −0.422490
\(479\) −9869.62 −0.941450 −0.470725 0.882280i \(-0.656008\pi\)
−0.470725 + 0.882280i \(0.656008\pi\)
\(480\) 1251.26 0.118983
\(481\) 8663.97 0.821296
\(482\) −14923.4 −1.41025
\(483\) 61.5416 0.00579759
\(484\) −104.428 −0.00980731
\(485\) 8911.10 0.834293
\(486\) 747.324 0.0697516
\(487\) −20185.6 −1.87823 −0.939114 0.343606i \(-0.888351\pi\)
−0.939114 + 0.343606i \(0.888351\pi\)
\(488\) −12812.2 −1.18849
\(489\) 3311.20 0.306212
\(490\) −6739.19 −0.621317
\(491\) −13524.2 −1.24305 −0.621526 0.783394i \(-0.713487\pi\)
−0.621526 + 0.783394i \(0.713487\pi\)
\(492\) 780.919 0.0715580
\(493\) −2814.85 −0.257149
\(494\) 6170.50 0.561992
\(495\) 2042.82 0.185491
\(496\) −14521.9 −1.31462
\(497\) −504.823 −0.0455621
\(498\) 2356.62 0.212053
\(499\) 2400.16 0.215323 0.107661 0.994188i \(-0.465664\pi\)
0.107661 + 0.994188i \(0.465664\pi\)
\(500\) 1950.02 0.174415
\(501\) −1149.32 −0.102490
\(502\) −19067.3 −1.69525
\(503\) 12653.4 1.12164 0.560822 0.827936i \(-0.310485\pi\)
0.560822 + 0.827936i \(0.310485\pi\)
\(504\) 113.508 0.0100319
\(505\) −6409.60 −0.564799
\(506\) −3571.48 −0.313778
\(507\) 3343.41 0.292872
\(508\) −273.184 −0.0238594
\(509\) −6429.26 −0.559866 −0.279933 0.960020i \(-0.590312\pi\)
−0.279933 + 0.960020i \(0.590312\pi\)
\(510\) 728.696 0.0632690
\(511\) −41.2405 −0.00357020
\(512\) 7040.69 0.607729
\(513\) −1646.50 −0.141705
\(514\) 14864.5 1.27558
\(515\) 7180.04 0.614350
\(516\) 1887.85 0.161062
\(517\) −5265.25 −0.447902
\(518\) 507.668 0.0430611
\(519\) −7123.05 −0.602442
\(520\) 4233.83 0.357050
\(521\) 20392.8 1.71483 0.857413 0.514629i \(-0.172070\pi\)
0.857413 + 0.514629i \(0.172070\pi\)
\(522\) −6309.38 −0.529031
\(523\) −3380.52 −0.282638 −0.141319 0.989964i \(-0.545134\pi\)
−0.141319 + 0.989964i \(0.545134\pi\)
\(524\) −1505.13 −0.125481
\(525\) 158.144 0.0131466
\(526\) 23864.2 1.97819
\(527\) −2438.48 −0.201560
\(528\) −7829.19 −0.645306
\(529\) −11096.1 −0.911986
\(530\) −12980.6 −1.06385
\(531\) −1549.05 −0.126597
\(532\) 55.7406 0.00454260
\(533\) 5873.69 0.477331
\(534\) −5281.31 −0.427986
\(535\) −9293.50 −0.751015
\(536\) 2023.44 0.163058
\(537\) −2968.31 −0.238532
\(538\) −17757.5 −1.42301
\(539\) 12158.4 0.971610
\(540\) 251.806 0.0200667
\(541\) 21530.4 1.71103 0.855513 0.517781i \(-0.173242\pi\)
0.855513 + 0.517781i \(0.173242\pi\)
\(542\) −8920.06 −0.706918
\(543\) −2568.94 −0.203027
\(544\) −805.249 −0.0634647
\(545\) −11276.3 −0.886283
\(546\) −190.293 −0.0149154
\(547\) −25123.4 −1.96380 −0.981900 0.189402i \(-0.939345\pi\)
−0.981900 + 0.189402i \(0.939345\pi\)
\(548\) 4362.89 0.340098
\(549\) −5731.42 −0.445557
\(550\) −9177.64 −0.711520
\(551\) 13900.8 1.07476
\(552\) 1975.12 0.152295
\(553\) 261.058 0.0200747
\(554\) 21372.3 1.63903
\(555\) −5052.74 −0.386445
\(556\) 184.472 0.0140708
\(557\) 15035.9 1.14379 0.571894 0.820328i \(-0.306209\pi\)
0.571894 + 0.820328i \(0.306209\pi\)
\(558\) −5465.76 −0.414667
\(559\) 14199.5 1.07437
\(560\) 294.853 0.0222497
\(561\) −1314.66 −0.0989394
\(562\) −20871.2 −1.56655
\(563\) 11943.3 0.894050 0.447025 0.894521i \(-0.352483\pi\)
0.447025 + 0.894521i \(0.352483\pi\)
\(564\) −649.016 −0.0484548
\(565\) −11104.8 −0.826871
\(566\) −14063.0 −1.04437
\(567\) 50.7768 0.00376089
\(568\) −16201.8 −1.19685
\(569\) 23367.5 1.72164 0.860822 0.508906i \(-0.169950\pi\)
0.860822 + 0.508906i \(0.169950\pi\)
\(570\) −3598.57 −0.264434
\(571\) 5691.02 0.417096 0.208548 0.978012i \(-0.433126\pi\)
0.208548 + 0.978012i \(0.433126\pi\)
\(572\) 1702.52 0.124451
\(573\) 8275.62 0.603349
\(574\) 344.170 0.0250268
\(575\) 2751.80 0.199579
\(576\) 3489.86 0.252449
\(577\) −20456.4 −1.47593 −0.737965 0.674839i \(-0.764213\pi\)
−0.737965 + 0.674839i \(0.764213\pi\)
\(578\) 14640.5 1.05357
\(579\) 1984.34 0.142429
\(580\) −2125.91 −0.152196
\(581\) 160.120 0.0114336
\(582\) −12854.2 −0.915507
\(583\) 23418.6 1.66364
\(584\) −1323.58 −0.0937841
\(585\) 1893.96 0.133856
\(586\) 8475.86 0.597499
\(587\) −23187.8 −1.63043 −0.815215 0.579159i \(-0.803381\pi\)
−0.815215 + 0.579159i \(0.803381\pi\)
\(588\) 1498.69 0.105110
\(589\) 12042.1 0.842424
\(590\) −3385.59 −0.236241
\(591\) −6349.38 −0.441926
\(592\) 19364.8 1.34441
\(593\) 18929.0 1.31083 0.655413 0.755271i \(-0.272495\pi\)
0.655413 + 0.755271i \(0.272495\pi\)
\(594\) −2946.76 −0.203547
\(595\) 49.5111 0.00341136
\(596\) −858.499 −0.0590025
\(597\) −12606.4 −0.864231
\(598\) −3311.23 −0.226432
\(599\) 4828.08 0.329332 0.164666 0.986349i \(-0.447345\pi\)
0.164666 + 0.986349i \(0.447345\pi\)
\(600\) 5075.47 0.345342
\(601\) 927.828 0.0629732 0.0314866 0.999504i \(-0.489976\pi\)
0.0314866 + 0.999504i \(0.489976\pi\)
\(602\) 832.022 0.0563301
\(603\) 905.164 0.0611295
\(604\) −3583.79 −0.241428
\(605\) 458.071 0.0307822
\(606\) 9245.82 0.619779
\(607\) −7528.38 −0.503406 −0.251703 0.967805i \(-0.580991\pi\)
−0.251703 + 0.967805i \(0.580991\pi\)
\(608\) 3976.62 0.265252
\(609\) −428.690 −0.0285244
\(610\) −12526.5 −0.831450
\(611\) −4881.58 −0.323220
\(612\) −162.050 −0.0107034
\(613\) 1196.39 0.0788281 0.0394140 0.999223i \(-0.487451\pi\)
0.0394140 + 0.999223i \(0.487451\pi\)
\(614\) −18804.4 −1.23597
\(615\) −3425.47 −0.224599
\(616\) −447.573 −0.0292747
\(617\) −12548.6 −0.818781 −0.409390 0.912359i \(-0.634259\pi\)
−0.409390 + 0.912359i \(0.634259\pi\)
\(618\) −10357.2 −0.674154
\(619\) 25924.5 1.68335 0.841676 0.539982i \(-0.181569\pi\)
0.841676 + 0.539982i \(0.181569\pi\)
\(620\) −1841.66 −0.119295
\(621\) 883.549 0.0570944
\(622\) 18531.3 1.19460
\(623\) −358.838 −0.0230763
\(624\) −7258.69 −0.465673
\(625\) 1957.70 0.125293
\(626\) 27646.0 1.76511
\(627\) 6492.29 0.413520
\(628\) −1564.72 −0.0994250
\(629\) 3251.70 0.206127
\(630\) 110.977 0.00701816
\(631\) −5850.88 −0.369128 −0.184564 0.982820i \(-0.559087\pi\)
−0.184564 + 0.982820i \(0.559087\pi\)
\(632\) 8378.43 0.527335
\(633\) −9222.58 −0.579091
\(634\) −17082.6 −1.07009
\(635\) 1198.31 0.0748875
\(636\) 2886.68 0.179975
\(637\) 11272.4 0.701144
\(638\) 24878.4 1.54380
\(639\) −7247.72 −0.448694
\(640\) 10964.1 0.677178
\(641\) 4024.73 0.247999 0.123999 0.992282i \(-0.460428\pi\)
0.123999 + 0.992282i \(0.460428\pi\)
\(642\) 13405.8 0.824122
\(643\) 29091.5 1.78423 0.892113 0.451813i \(-0.149223\pi\)
0.892113 + 0.451813i \(0.149223\pi\)
\(644\) −29.9117 −0.00183026
\(645\) −8281.00 −0.505525
\(646\) 2315.87 0.141047
\(647\) 13487.2 0.819528 0.409764 0.912192i \(-0.365611\pi\)
0.409764 + 0.912192i \(0.365611\pi\)
\(648\) 1629.63 0.0987933
\(649\) 6108.03 0.369432
\(650\) −8508.89 −0.513455
\(651\) −371.370 −0.0223581
\(652\) −1609.38 −0.0966689
\(653\) −27515.4 −1.64894 −0.824472 0.565902i \(-0.808528\pi\)
−0.824472 + 0.565902i \(0.808528\pi\)
\(654\) 16266.0 0.972557
\(655\) 6602.21 0.393847
\(656\) 13128.3 0.781361
\(657\) −592.088 −0.0351591
\(658\) −286.038 −0.0169467
\(659\) −9953.61 −0.588372 −0.294186 0.955748i \(-0.595049\pi\)
−0.294186 + 0.955748i \(0.595049\pi\)
\(660\) −992.893 −0.0585581
\(661\) −21997.1 −1.29438 −0.647192 0.762327i \(-0.724057\pi\)
−0.647192 + 0.762327i \(0.724057\pi\)
\(662\) 17755.1 1.04240
\(663\) −1218.86 −0.0713978
\(664\) 5138.90 0.300344
\(665\) −244.504 −0.0142579
\(666\) 7288.56 0.424063
\(667\) −7459.49 −0.433032
\(668\) 558.614 0.0323554
\(669\) −2491.96 −0.144013
\(670\) 1978.32 0.114073
\(671\) 22599.5 1.30021
\(672\) −122.636 −0.00703986
\(673\) −1005.66 −0.0576009 −0.0288004 0.999585i \(-0.509169\pi\)
−0.0288004 + 0.999585i \(0.509169\pi\)
\(674\) 1036.41 0.0592301
\(675\) 2270.46 0.129467
\(676\) −1625.03 −0.0924575
\(677\) −19805.8 −1.12437 −0.562184 0.827012i \(-0.690039\pi\)
−0.562184 + 0.827012i \(0.690039\pi\)
\(678\) 16018.6 0.907362
\(679\) −873.378 −0.0493626
\(680\) 1589.01 0.0896116
\(681\) −12904.4 −0.726135
\(682\) 21552.0 1.21007
\(683\) −27280.2 −1.52833 −0.764165 0.645021i \(-0.776849\pi\)
−0.764165 + 0.645021i \(0.776849\pi\)
\(684\) 800.265 0.0447353
\(685\) −19137.7 −1.06747
\(686\) 1321.78 0.0735651
\(687\) 5260.55 0.292143
\(688\) 31737.3 1.75868
\(689\) 21712.2 1.20053
\(690\) 1931.08 0.106543
\(691\) 5837.46 0.321371 0.160685 0.987006i \(-0.448630\pi\)
0.160685 + 0.987006i \(0.448630\pi\)
\(692\) 3462.09 0.190186
\(693\) −200.217 −0.0109749
\(694\) −29862.2 −1.63336
\(695\) −809.179 −0.0441639
\(696\) −13758.4 −0.749297
\(697\) 2204.47 0.119800
\(698\) 767.359 0.0416117
\(699\) −18368.2 −0.993917
\(700\) −76.8642 −0.00415028
\(701\) −1828.03 −0.0984934 −0.0492467 0.998787i \(-0.515682\pi\)
−0.0492467 + 0.998787i \(0.515682\pi\)
\(702\) −2732.04 −0.146886
\(703\) −16058.1 −0.861513
\(704\) −13760.8 −0.736691
\(705\) 2846.89 0.152085
\(706\) −15579.6 −0.830520
\(707\) 628.206 0.0334174
\(708\) 752.901 0.0399657
\(709\) 18879.7 1.00006 0.500029 0.866009i \(-0.333323\pi\)
0.500029 + 0.866009i \(0.333323\pi\)
\(710\) −15840.5 −0.837303
\(711\) 3748.01 0.197695
\(712\) −11516.6 −0.606182
\(713\) −6462.09 −0.339421
\(714\) −71.4196 −0.00374343
\(715\) −7468.06 −0.390615
\(716\) 1442.72 0.0753029
\(717\) −4307.02 −0.224336
\(718\) 16021.3 0.832743
\(719\) −2085.03 −0.108148 −0.0540739 0.998537i \(-0.517221\pi\)
−0.0540739 + 0.998537i \(0.517221\pi\)
\(720\) 4233.19 0.219114
\(721\) −703.717 −0.0363492
\(722\) 9657.59 0.497809
\(723\) −14557.5 −0.748821
\(724\) 1248.61 0.0640942
\(725\) −19168.7 −0.981940
\(726\) −660.766 −0.0337787
\(727\) 37635.8 1.91999 0.959997 0.280012i \(-0.0903384\pi\)
0.959997 + 0.280012i \(0.0903384\pi\)
\(728\) −414.959 −0.0211255
\(729\) 729.000 0.0370370
\(730\) −1294.06 −0.0656101
\(731\) 5329.25 0.269644
\(732\) 2785.70 0.140659
\(733\) 24488.4 1.23397 0.616986 0.786974i \(-0.288354\pi\)
0.616986 + 0.786974i \(0.288354\pi\)
\(734\) 2235.93 0.112438
\(735\) −6573.95 −0.329910
\(736\) −2133.95 −0.106873
\(737\) −3569.14 −0.178387
\(738\) 4941.24 0.246463
\(739\) 36430.0 1.81339 0.906697 0.421783i \(-0.138595\pi\)
0.906697 + 0.421783i \(0.138595\pi\)
\(740\) 2455.84 0.121998
\(741\) 6019.20 0.298409
\(742\) 1272.23 0.0629448
\(743\) 8604.14 0.424839 0.212419 0.977179i \(-0.431866\pi\)
0.212419 + 0.977179i \(0.431866\pi\)
\(744\) −11918.8 −0.587317
\(745\) 3765.78 0.185191
\(746\) 29670.8 1.45620
\(747\) 2298.84 0.112597
\(748\) 638.978 0.0312344
\(749\) 910.858 0.0444353
\(750\) 12338.7 0.600726
\(751\) 5463.80 0.265482 0.132741 0.991151i \(-0.457622\pi\)
0.132741 + 0.991151i \(0.457622\pi\)
\(752\) −10910.8 −0.529091
\(753\) −18599.7 −0.900149
\(754\) 23065.6 1.11406
\(755\) 15720.2 0.757769
\(756\) −24.6796 −0.00118729
\(757\) 3360.73 0.161358 0.0806789 0.996740i \(-0.474291\pi\)
0.0806789 + 0.996740i \(0.474291\pi\)
\(758\) −18824.2 −0.902012
\(759\) −3483.91 −0.166611
\(760\) −7847.14 −0.374534
\(761\) −11156.6 −0.531439 −0.265720 0.964050i \(-0.585610\pi\)
−0.265720 + 0.964050i \(0.585610\pi\)
\(762\) −1728.56 −0.0821774
\(763\) 1105.19 0.0524386
\(764\) −4022.29 −0.190473
\(765\) 710.829 0.0335949
\(766\) 29893.2 1.41003
\(767\) 5662.95 0.266593
\(768\) −6509.38 −0.305842
\(769\) 36857.3 1.72836 0.864179 0.503184i \(-0.167838\pi\)
0.864179 + 0.503184i \(0.167838\pi\)
\(770\) −437.593 −0.0204802
\(771\) 14500.1 0.677312
\(772\) −964.469 −0.0449637
\(773\) −31568.6 −1.46888 −0.734439 0.678675i \(-0.762554\pi\)
−0.734439 + 0.678675i \(0.762554\pi\)
\(774\) 11945.3 0.554736
\(775\) −16605.7 −0.769668
\(776\) −28030.3 −1.29669
\(777\) 495.220 0.0228648
\(778\) −3835.54 −0.176749
\(779\) −10886.5 −0.500705
\(780\) −920.543 −0.0422573
\(781\) 28578.4 1.30937
\(782\) −1242.75 −0.0568294
\(783\) −6154.68 −0.280907
\(784\) 25194.9 1.14773
\(785\) 6863.57 0.312065
\(786\) −9523.67 −0.432186
\(787\) −36167.3 −1.63815 −0.819075 0.573687i \(-0.805513\pi\)
−0.819075 + 0.573687i \(0.805513\pi\)
\(788\) 3086.06 0.139513
\(789\) 23279.1 1.05039
\(790\) 8191.60 0.368917
\(791\) 1088.38 0.0489234
\(792\) −6425.78 −0.288296
\(793\) 20952.7 0.938275
\(794\) −34705.6 −1.55120
\(795\) −12662.3 −0.564888
\(796\) 6127.23 0.272831
\(797\) 37911.1 1.68492 0.842459 0.538760i \(-0.181107\pi\)
0.842459 + 0.538760i \(0.181107\pi\)
\(798\) 352.697 0.0156458
\(799\) −1832.12 −0.0811211
\(800\) −5483.61 −0.242344
\(801\) −5151.82 −0.227254
\(802\) −20868.4 −0.918815
\(803\) 2334.65 0.102600
\(804\) −439.946 −0.0192981
\(805\) 131.207 0.00574463
\(806\) 19981.5 0.873225
\(807\) −17322.1 −0.755596
\(808\) 20161.7 0.877828
\(809\) −12913.0 −0.561181 −0.280591 0.959828i \(-0.590530\pi\)
−0.280591 + 0.959828i \(0.590530\pi\)
\(810\) 1593.30 0.0691144
\(811\) −8100.77 −0.350748 −0.175374 0.984502i \(-0.556113\pi\)
−0.175374 + 0.984502i \(0.556113\pi\)
\(812\) 208.361 0.00900496
\(813\) −8701.35 −0.375362
\(814\) −28739.4 −1.23749
\(815\) 7059.49 0.303415
\(816\) −2724.28 −0.116874
\(817\) −26317.8 −1.12698
\(818\) −16315.9 −0.697399
\(819\) −185.628 −0.00791985
\(820\) 1664.92 0.0709043
\(821\) 33772.7 1.43566 0.717830 0.696218i \(-0.245135\pi\)
0.717830 + 0.696218i \(0.245135\pi\)
\(822\) 27606.1 1.17138
\(823\) −25659.5 −1.08680 −0.543398 0.839475i \(-0.682862\pi\)
−0.543398 + 0.839475i \(0.682862\pi\)
\(824\) −22585.2 −0.954843
\(825\) −8952.62 −0.377806
\(826\) 331.822 0.0139777
\(827\) −14976.3 −0.629717 −0.314859 0.949139i \(-0.601957\pi\)
−0.314859 + 0.949139i \(0.601957\pi\)
\(828\) −429.441 −0.0180243
\(829\) 18792.0 0.787301 0.393651 0.919260i \(-0.371212\pi\)
0.393651 + 0.919260i \(0.371212\pi\)
\(830\) 5024.32 0.210116
\(831\) 20848.3 0.870300
\(832\) −12758.1 −0.531619
\(833\) 4230.68 0.175972
\(834\) 1167.24 0.0484630
\(835\) −2450.34 −0.101554
\(836\) −3155.51 −0.130545
\(837\) −5331.75 −0.220182
\(838\) −2425.45 −0.0999832
\(839\) −564.556 −0.0232308 −0.0116154 0.999933i \(-0.503697\pi\)
−0.0116154 + 0.999933i \(0.503697\pi\)
\(840\) 242.000 0.00994022
\(841\) 27572.7 1.13054
\(842\) −8985.34 −0.367762
\(843\) −20359.5 −0.831812
\(844\) 4482.55 0.182815
\(845\) 7128.15 0.290196
\(846\) −4106.63 −0.166890
\(847\) −44.8956 −0.00182129
\(848\) 48528.8 1.96520
\(849\) −13718.2 −0.554545
\(850\) −3193.49 −0.128866
\(851\) 8617.16 0.347112
\(852\) 3522.68 0.141649
\(853\) 32738.6 1.31412 0.657062 0.753836i \(-0.271799\pi\)
0.657062 + 0.753836i \(0.271799\pi\)
\(854\) 1227.73 0.0491944
\(855\) −3510.34 −0.140411
\(856\) 29233.1 1.16725
\(857\) −41123.4 −1.63915 −0.819574 0.572974i \(-0.805790\pi\)
−0.819574 + 0.572974i \(0.805790\pi\)
\(858\) 10772.6 0.428639
\(859\) 29929.5 1.18880 0.594400 0.804169i \(-0.297389\pi\)
0.594400 + 0.804169i \(0.297389\pi\)
\(860\) 4024.90 0.159591
\(861\) 335.731 0.0132888
\(862\) −12440.2 −0.491547
\(863\) 11753.2 0.463594 0.231797 0.972764i \(-0.425539\pi\)
0.231797 + 0.972764i \(0.425539\pi\)
\(864\) −1760.68 −0.0693282
\(865\) −15186.4 −0.596938
\(866\) −5412.20 −0.212372
\(867\) 14281.5 0.559431
\(868\) 180.501 0.00705830
\(869\) −14778.7 −0.576908
\(870\) −13451.6 −0.524198
\(871\) −3309.06 −0.128729
\(872\) 35470.2 1.37749
\(873\) −12539.1 −0.486120
\(874\) 6137.16 0.237520
\(875\) 838.348 0.0323901
\(876\) 287.779 0.0110995
\(877\) −2655.34 −0.102240 −0.0511201 0.998693i \(-0.516279\pi\)
−0.0511201 + 0.998693i \(0.516279\pi\)
\(878\) −27976.9 −1.07537
\(879\) 8268.04 0.317263
\(880\) −16691.8 −0.639411
\(881\) 39985.3 1.52910 0.764550 0.644564i \(-0.222961\pi\)
0.764550 + 0.644564i \(0.222961\pi\)
\(882\) 9482.90 0.362025
\(883\) 31708.2 1.20845 0.604227 0.796812i \(-0.293482\pi\)
0.604227 + 0.796812i \(0.293482\pi\)
\(884\) 592.417 0.0225398
\(885\) −3302.57 −0.125440
\(886\) 44878.6 1.70172
\(887\) 5808.90 0.219892 0.109946 0.993938i \(-0.464932\pi\)
0.109946 + 0.993938i \(0.464932\pi\)
\(888\) 15893.6 0.600625
\(889\) −117.447 −0.00443087
\(890\) −11259.8 −0.424077
\(891\) −2874.51 −0.108080
\(892\) 1211.19 0.0454638
\(893\) 9047.70 0.339048
\(894\) −5432.12 −0.203219
\(895\) −6328.43 −0.236353
\(896\) −1074.59 −0.0400666
\(897\) −3230.04 −0.120232
\(898\) 5695.08 0.211634
\(899\) 45014.0 1.66997
\(900\) −1103.54 −0.0408717
\(901\) 8148.86 0.301307
\(902\) −19483.7 −0.719220
\(903\) 811.622 0.0299104
\(904\) 34930.6 1.28515
\(905\) −5476.99 −0.201173
\(906\) −22676.3 −0.831534
\(907\) 4357.57 0.159527 0.0797633 0.996814i \(-0.474584\pi\)
0.0797633 + 0.996814i \(0.474584\pi\)
\(908\) 6272.07 0.229236
\(909\) 9019.12 0.329093
\(910\) −405.706 −0.0147791
\(911\) 51248.6 1.86382 0.931911 0.362688i \(-0.118141\pi\)
0.931911 + 0.362688i \(0.118141\pi\)
\(912\) 13453.5 0.488476
\(913\) −9064.51 −0.328578
\(914\) −13174.4 −0.476771
\(915\) −12219.4 −0.441487
\(916\) −2556.84 −0.0922274
\(917\) −647.084 −0.0233027
\(918\) −1025.37 −0.0368651
\(919\) −12655.3 −0.454256 −0.227128 0.973865i \(-0.572934\pi\)
−0.227128 + 0.973865i \(0.572934\pi\)
\(920\) 4210.96 0.150903
\(921\) −18343.3 −0.656278
\(922\) −576.419 −0.0205893
\(923\) 26495.9 0.944879
\(924\) 97.3137 0.00346470
\(925\) 22143.5 0.787108
\(926\) −31045.5 −1.10175
\(927\) −10103.2 −0.357965
\(928\) 14864.8 0.525819
\(929\) −6790.37 −0.239812 −0.119906 0.992785i \(-0.538259\pi\)
−0.119906 + 0.992785i \(0.538259\pi\)
\(930\) −11653.0 −0.410879
\(931\) −20892.7 −0.735478
\(932\) 8927.68 0.313772
\(933\) 18077.0 0.634312
\(934\) −707.830 −0.0247975
\(935\) −2802.86 −0.0980356
\(936\) −5957.55 −0.208043
\(937\) −24731.5 −0.862266 −0.431133 0.902288i \(-0.641886\pi\)
−0.431133 + 0.902288i \(0.641886\pi\)
\(938\) −193.895 −0.00674936
\(939\) 26968.2 0.937244
\(940\) −1383.70 −0.0480122
\(941\) 18436.9 0.638711 0.319356 0.947635i \(-0.396534\pi\)
0.319356 + 0.947635i \(0.396534\pi\)
\(942\) −9900.68 −0.342443
\(943\) 5841.95 0.201739
\(944\) 12657.2 0.436397
\(945\) 108.256 0.00372653
\(946\) −47101.4 −1.61881
\(947\) −54223.8 −1.86065 −0.930326 0.366735i \(-0.880476\pi\)
−0.930326 + 0.366735i \(0.880476\pi\)
\(948\) −1821.68 −0.0624109
\(949\) 2164.53 0.0740397
\(950\) 15770.7 0.538598
\(951\) −16663.7 −0.568200
\(952\) −155.739 −0.00530204
\(953\) −37694.7 −1.28127 −0.640635 0.767846i \(-0.721329\pi\)
−0.640635 + 0.767846i \(0.721329\pi\)
\(954\) 18265.4 0.619877
\(955\) 17643.6 0.597837
\(956\) 2093.39 0.0708212
\(957\) 24268.4 0.819736
\(958\) 30353.1 1.02366
\(959\) 1875.69 0.0631587
\(960\) 7440.39 0.250143
\(961\) 9204.27 0.308961
\(962\) −26645.2 −0.893011
\(963\) 13077.1 0.437596
\(964\) 7075.52 0.236397
\(965\) 4230.61 0.141128
\(966\) −189.265 −0.00630384
\(967\) −21563.9 −0.717113 −0.358556 0.933508i \(-0.616731\pi\)
−0.358556 + 0.933508i \(0.616731\pi\)
\(968\) −1440.88 −0.0478427
\(969\) 2259.08 0.0748940
\(970\) −27405.2 −0.907144
\(971\) −32139.3 −1.06220 −0.531101 0.847308i \(-0.678222\pi\)
−0.531101 + 0.847308i \(0.678222\pi\)
\(972\) −354.324 −0.0116923
\(973\) 79.3078 0.00261304
\(974\) 62078.9 2.04223
\(975\) −8300.26 −0.272637
\(976\) 46831.3 1.53590
\(977\) −19268.7 −0.630974 −0.315487 0.948930i \(-0.602168\pi\)
−0.315487 + 0.948930i \(0.602168\pi\)
\(978\) −10183.3 −0.332951
\(979\) 20314.1 0.663167
\(980\) 3195.21 0.104150
\(981\) 15867.2 0.516413
\(982\) 41592.4 1.35159
\(983\) −43065.2 −1.39732 −0.698660 0.715454i \(-0.746220\pi\)
−0.698660 + 0.715454i \(0.746220\pi\)
\(984\) 10775.0 0.349079
\(985\) −13536.9 −0.437889
\(986\) 8656.81 0.279603
\(987\) −279.024 −0.00899842
\(988\) −2925.58 −0.0942055
\(989\) 14122.8 0.454072
\(990\) −6282.50 −0.201688
\(991\) −50160.6 −1.60788 −0.803938 0.594713i \(-0.797266\pi\)
−0.803938 + 0.594713i \(0.797266\pi\)
\(992\) 12877.2 0.412150
\(993\) 17319.8 0.553501
\(994\) 1552.53 0.0495406
\(995\) −26876.9 −0.856336
\(996\) −1117.33 −0.0355461
\(997\) 14973.2 0.475634 0.237817 0.971310i \(-0.423568\pi\)
0.237817 + 0.971310i \(0.423568\pi\)
\(998\) −7381.48 −0.234125
\(999\) 7109.86 0.225171
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1011.4.a.c.1.12 46
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1011.4.a.c.1.12 46 1.1 even 1 trivial