Properties

Label 1008.3.o.b.1007.6
Level $1008$
Weight $3$
Character 1008.1007
Analytic conductor $27.466$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,3,Mod(1007,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.1007"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.o (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1007.6
Character \(\chi\) \(=\) 1008.1007
Dual form 1008.3.o.b.1007.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.34452 q^{5} +(0.646021 - 6.97013i) q^{7} +7.76492 q^{11} +13.4815i q^{13} +28.9344 q^{17} -32.7004 q^{19} +16.8486 q^{23} -6.12514 q^{25} -38.3891i q^{29} +50.1080 q^{31} +(-2.80665 + 30.2819i) q^{35} -39.1653 q^{37} -63.0188 q^{41} -7.01205i q^{43} -23.4545i q^{47} +(-48.1653 - 9.00569i) q^{49} -90.9488i q^{53} -33.7349 q^{55} -78.1723i q^{59} -49.9251i q^{61} -58.5705i q^{65} -15.8052i q^{67} +62.1280 q^{71} +59.7725i q^{73} +(5.01630 - 54.1225i) q^{77} -137.286i q^{79} +102.790i q^{83} -125.706 q^{85} +26.6516 q^{89} +(93.9675 + 8.70930i) q^{91} +142.068 q^{95} -105.697i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 264 q^{25} - 96 q^{37} - 312 q^{49} - 96 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −4.34452 −0.868904 −0.434452 0.900695i \(-0.643058\pi\)
−0.434452 + 0.900695i \(0.643058\pi\)
\(6\) 0 0
\(7\) 0.646021 6.97013i 0.0922887 0.995732i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 7.76492 0.705902 0.352951 0.935642i \(-0.385178\pi\)
0.352951 + 0.935642i \(0.385178\pi\)
\(12\) 0 0
\(13\) 13.4815i 1.03704i 0.855067 + 0.518518i \(0.173516\pi\)
−0.855067 + 0.518518i \(0.826484\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 28.9344 1.70202 0.851011 0.525147i \(-0.175990\pi\)
0.851011 + 0.525147i \(0.175990\pi\)
\(18\) 0 0
\(19\) −32.7004 −1.72107 −0.860537 0.509389i \(-0.829872\pi\)
−0.860537 + 0.509389i \(0.829872\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 16.8486 0.732546 0.366273 0.930507i \(-0.380634\pi\)
0.366273 + 0.930507i \(0.380634\pi\)
\(24\) 0 0
\(25\) −6.12514 −0.245005
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 38.3891i 1.32376i −0.749608 0.661882i \(-0.769758\pi\)
0.749608 0.661882i \(-0.230242\pi\)
\(30\) 0 0
\(31\) 50.1080 1.61639 0.808193 0.588917i \(-0.200446\pi\)
0.808193 + 0.588917i \(0.200446\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.80665 + 30.2819i −0.0801900 + 0.865196i
\(36\) 0 0
\(37\) −39.1653 −1.05852 −0.529261 0.848459i \(-0.677531\pi\)
−0.529261 + 0.848459i \(0.677531\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −63.0188 −1.53704 −0.768522 0.639824i \(-0.779007\pi\)
−0.768522 + 0.639824i \(0.779007\pi\)
\(42\) 0 0
\(43\) 7.01205i 0.163071i −0.996670 0.0815355i \(-0.974018\pi\)
0.996670 0.0815355i \(-0.0259824\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 23.4545i 0.499032i −0.968371 0.249516i \(-0.919728\pi\)
0.968371 0.249516i \(-0.0802715\pi\)
\(48\) 0 0
\(49\) −48.1653 9.00569i −0.982966 0.183790i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 90.9488i 1.71602i −0.513637 0.858008i \(-0.671702\pi\)
0.513637 0.858008i \(-0.328298\pi\)
\(54\) 0 0
\(55\) −33.7349 −0.613361
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 78.1723i 1.32495i −0.749082 0.662477i \(-0.769505\pi\)
0.749082 0.662477i \(-0.230495\pi\)
\(60\) 0 0
\(61\) 49.9251i 0.818444i −0.912435 0.409222i \(-0.865800\pi\)
0.912435 0.409222i \(-0.134200\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 58.5705i 0.901084i
\(66\) 0 0
\(67\) 15.8052i 0.235898i −0.993020 0.117949i \(-0.962368\pi\)
0.993020 0.117949i \(-0.0376320\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 62.1280 0.875042 0.437521 0.899208i \(-0.355857\pi\)
0.437521 + 0.899208i \(0.355857\pi\)
\(72\) 0 0
\(73\) 59.7725i 0.818801i 0.912355 + 0.409401i \(0.134262\pi\)
−0.912355 + 0.409401i \(0.865738\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.01630 54.1225i 0.0651468 0.702889i
\(78\) 0 0
\(79\) 137.286i 1.73780i −0.494989 0.868899i \(-0.664828\pi\)
0.494989 0.868899i \(-0.335172\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 102.790i 1.23844i 0.785218 + 0.619219i \(0.212551\pi\)
−0.785218 + 0.619219i \(0.787449\pi\)
\(84\) 0 0
\(85\) −125.706 −1.47889
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 26.6516 0.299456 0.149728 0.988727i \(-0.452160\pi\)
0.149728 + 0.988727i \(0.452160\pi\)
\(90\) 0 0
\(91\) 93.9675 + 8.70930i 1.03261 + 0.0957066i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 142.068 1.49545
\(96\) 0 0
\(97\) 105.697i 1.08966i −0.838547 0.544829i \(-0.816595\pi\)
0.838547 0.544829i \(-0.183405\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −95.6259 −0.946791 −0.473396 0.880850i \(-0.656972\pi\)
−0.473396 + 0.880850i \(0.656972\pi\)
\(102\) 0 0
\(103\) −0.211707 −0.00205541 −0.00102770 0.999999i \(-0.500327\pi\)
−0.00102770 + 0.999999i \(0.500327\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 121.393 1.13451 0.567257 0.823541i \(-0.308005\pi\)
0.567257 + 0.823541i \(0.308005\pi\)
\(108\) 0 0
\(109\) −28.2904 −0.259545 −0.129773 0.991544i \(-0.541425\pi\)
−0.129773 + 0.991544i \(0.541425\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 150.551i 1.33231i −0.745813 0.666156i \(-0.767939\pi\)
0.745813 0.666156i \(-0.232061\pi\)
\(114\) 0 0
\(115\) −73.1989 −0.636512
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 18.6922 201.676i 0.157077 1.69476i
\(120\) 0 0
\(121\) −60.7060 −0.501703
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 135.224 1.08179
\(126\) 0 0
\(127\) 16.1406i 0.127091i −0.997979 0.0635456i \(-0.979759\pi\)
0.997979 0.0635456i \(-0.0202408\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 71.5271i 0.546008i 0.962013 + 0.273004i \(0.0880172\pi\)
−0.962013 + 0.273004i \(0.911983\pi\)
\(132\) 0 0
\(133\) −21.1251 + 227.926i −0.158836 + 1.71373i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 71.2984i 0.520426i −0.965551 0.260213i \(-0.916207\pi\)
0.965551 0.260213i \(-0.0837928\pi\)
\(138\) 0 0
\(139\) −193.103 −1.38923 −0.694615 0.719381i \(-0.744425\pi\)
−0.694615 + 0.719381i \(0.744425\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 104.682i 0.732045i
\(144\) 0 0
\(145\) 166.782i 1.15022i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.33327i 0.0492166i −0.999697 0.0246083i \(-0.992166\pi\)
0.999697 0.0246083i \(-0.00783385\pi\)
\(150\) 0 0
\(151\) 121.565i 0.805064i −0.915406 0.402532i \(-0.868130\pi\)
0.915406 0.402532i \(-0.131870\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −217.695 −1.40449
\(156\) 0 0
\(157\) 23.9122i 0.152307i −0.997096 0.0761535i \(-0.975736\pi\)
0.997096 0.0761535i \(-0.0242639\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.8845 117.437i 0.0676057 0.729420i
\(162\) 0 0
\(163\) 92.4900i 0.567423i 0.958910 + 0.283712i \(0.0915659\pi\)
−0.958910 + 0.283712i \(0.908434\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 85.9811i 0.514857i 0.966297 + 0.257428i \(0.0828751\pi\)
−0.966297 + 0.257428i \(0.917125\pi\)
\(168\) 0 0
\(169\) −12.7497 −0.0754422
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −110.721 −0.640007 −0.320004 0.947416i \(-0.603684\pi\)
−0.320004 + 0.947416i \(0.603684\pi\)
\(174\) 0 0
\(175\) −3.95697 + 42.6930i −0.0226112 + 0.243960i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −134.658 −0.752281 −0.376141 0.926563i \(-0.622749\pi\)
−0.376141 + 0.926563i \(0.622749\pi\)
\(180\) 0 0
\(181\) 177.051i 0.978181i −0.872233 0.489090i \(-0.837329\pi\)
0.872233 0.489090i \(-0.162671\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 170.155 0.919754
\(186\) 0 0
\(187\) 224.673 1.20146
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 343.530 1.79859 0.899293 0.437346i \(-0.144081\pi\)
0.899293 + 0.437346i \(0.144081\pi\)
\(192\) 0 0
\(193\) −175.536 −0.909514 −0.454757 0.890616i \(-0.650274\pi\)
−0.454757 + 0.890616i \(0.650274\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 59.3117i 0.301075i −0.988604 0.150537i \(-0.951900\pi\)
0.988604 0.150537i \(-0.0481004\pi\)
\(198\) 0 0
\(199\) 172.077 0.864708 0.432354 0.901704i \(-0.357683\pi\)
0.432354 + 0.901704i \(0.357683\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −267.577 24.8002i −1.31811 0.122168i
\(204\) 0 0
\(205\) 273.786 1.33554
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −253.916 −1.21491
\(210\) 0 0
\(211\) 181.084i 0.858218i 0.903253 + 0.429109i \(0.141172\pi\)
−0.903253 + 0.429109i \(0.858828\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 30.4640i 0.141693i
\(216\) 0 0
\(217\) 32.3708 349.259i 0.149174 1.60949i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 390.078i 1.76506i
\(222\) 0 0
\(223\) −142.430 −0.638699 −0.319350 0.947637i \(-0.603464\pi\)
−0.319350 + 0.947637i \(0.603464\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 130.464i 0.574731i −0.957821 0.287366i \(-0.907220\pi\)
0.957821 0.287366i \(-0.0927795\pi\)
\(228\) 0 0
\(229\) 130.393i 0.569402i −0.958616 0.284701i \(-0.908106\pi\)
0.958616 0.284701i \(-0.0918943\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 333.516i 1.43140i 0.698409 + 0.715699i \(0.253892\pi\)
−0.698409 + 0.715699i \(0.746108\pi\)
\(234\) 0 0
\(235\) 101.899i 0.433611i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7.02757 0.0294040 0.0147020 0.999892i \(-0.495320\pi\)
0.0147020 + 0.999892i \(0.495320\pi\)
\(240\) 0 0
\(241\) 63.5726i 0.263787i 0.991264 + 0.131893i \(0.0421057\pi\)
−0.991264 + 0.131893i \(0.957894\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 209.255 + 39.1254i 0.854103 + 0.159696i
\(246\) 0 0
\(247\) 440.849i 1.78481i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 354.382i 1.41188i −0.708272 0.705940i \(-0.750525\pi\)
0.708272 0.705940i \(-0.249475\pi\)
\(252\) 0 0
\(253\) 130.828 0.517105
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −84.5204 −0.328873 −0.164437 0.986388i \(-0.552581\pi\)
−0.164437 + 0.986388i \(0.552581\pi\)
\(258\) 0 0
\(259\) −25.3016 + 272.987i −0.0976896 + 1.05400i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 68.3572 0.259913 0.129957 0.991520i \(-0.458516\pi\)
0.129957 + 0.991520i \(0.458516\pi\)
\(264\) 0 0
\(265\) 395.129i 1.49105i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −81.6067 −0.303371 −0.151685 0.988429i \(-0.548470\pi\)
−0.151685 + 0.988429i \(0.548470\pi\)
\(270\) 0 0
\(271\) −394.777 −1.45674 −0.728371 0.685183i \(-0.759722\pi\)
−0.728371 + 0.685183i \(0.759722\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −47.5612 −0.172950
\(276\) 0 0
\(277\) 266.537 0.962228 0.481114 0.876658i \(-0.340232\pi\)
0.481114 + 0.876658i \(0.340232\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 347.356i 1.23614i 0.786123 + 0.618071i \(0.212085\pi\)
−0.786123 + 0.618071i \(0.787915\pi\)
\(282\) 0 0
\(283\) 342.554 1.21044 0.605220 0.796059i \(-0.293085\pi\)
0.605220 + 0.796059i \(0.293085\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −40.7114 + 439.249i −0.141852 + 1.53048i
\(288\) 0 0
\(289\) 548.198 1.89688
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −84.3867 −0.288009 −0.144005 0.989577i \(-0.545998\pi\)
−0.144005 + 0.989577i \(0.545998\pi\)
\(294\) 0 0
\(295\) 339.621i 1.15126i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 227.143i 0.759676i
\(300\) 0 0
\(301\) −48.8749 4.52993i −0.162375 0.0150496i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 216.901i 0.711150i
\(306\) 0 0
\(307\) 397.950 1.29626 0.648128 0.761532i \(-0.275552\pi\)
0.648128 + 0.761532i \(0.275552\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 188.336i 0.605583i −0.953057 0.302792i \(-0.902081\pi\)
0.953057 0.302792i \(-0.0979186\pi\)
\(312\) 0 0
\(313\) 346.942i 1.10844i −0.832370 0.554220i \(-0.813017\pi\)
0.832370 0.554220i \(-0.186983\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 486.216i 1.53380i 0.641764 + 0.766902i \(0.278203\pi\)
−0.641764 + 0.766902i \(0.721797\pi\)
\(318\) 0 0
\(319\) 298.089i 0.934447i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −946.166 −2.92931
\(324\) 0 0
\(325\) 82.5758i 0.254079i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −163.481 15.1521i −0.496902 0.0460550i
\(330\) 0 0
\(331\) 47.1991i 0.142595i 0.997455 + 0.0712977i \(0.0227140\pi\)
−0.997455 + 0.0712977i \(0.977286\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 68.6660i 0.204973i
\(336\) 0 0
\(337\) −215.332 −0.638967 −0.319483 0.947592i \(-0.603509\pi\)
−0.319483 + 0.947592i \(0.603509\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 389.084 1.14101
\(342\) 0 0
\(343\) −93.8866 + 329.900i −0.273722 + 0.961809i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −190.548 −0.549131 −0.274566 0.961568i \(-0.588534\pi\)
−0.274566 + 0.961568i \(0.588534\pi\)
\(348\) 0 0
\(349\) 123.762i 0.354620i 0.984155 + 0.177310i \(0.0567395\pi\)
−0.984155 + 0.177310i \(0.943260\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 399.030 1.13040 0.565198 0.824955i \(-0.308800\pi\)
0.565198 + 0.824955i \(0.308800\pi\)
\(354\) 0 0
\(355\) −269.916 −0.760328
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 493.736 1.37531 0.687654 0.726039i \(-0.258641\pi\)
0.687654 + 0.726039i \(0.258641\pi\)
\(360\) 0 0
\(361\) 708.315 1.96209
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 259.683i 0.711460i
\(366\) 0 0
\(367\) −592.907 −1.61555 −0.807775 0.589491i \(-0.799328\pi\)
−0.807775 + 0.589491i \(0.799328\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −633.925 58.7549i −1.70869 0.158369i
\(372\) 0 0
\(373\) −73.4924 −0.197031 −0.0985153 0.995136i \(-0.531409\pi\)
−0.0985153 + 0.995136i \(0.531409\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 517.542 1.37279
\(378\) 0 0
\(379\) 559.383i 1.47594i 0.674831 + 0.737972i \(0.264217\pi\)
−0.674831 + 0.737972i \(0.735783\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 521.424i 1.36142i −0.732552 0.680711i \(-0.761671\pi\)
0.732552 0.680711i \(-0.238329\pi\)
\(384\) 0 0
\(385\) −21.7934 + 235.136i −0.0566063 + 0.610743i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 173.567i 0.446189i 0.974797 + 0.223094i \(0.0716158\pi\)
−0.974797 + 0.223094i \(0.928384\pi\)
\(390\) 0 0
\(391\) 487.503 1.24681
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 596.442i 1.50998i
\(396\) 0 0
\(397\) 655.243i 1.65049i 0.564778 + 0.825243i \(0.308962\pi\)
−0.564778 + 0.825243i \(0.691038\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 760.249i 1.89588i 0.318444 + 0.947942i \(0.396840\pi\)
−0.318444 + 0.947942i \(0.603160\pi\)
\(402\) 0 0
\(403\) 675.529i 1.67625i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −304.115 −0.747212
\(408\) 0 0
\(409\) 158.456i 0.387423i 0.981059 + 0.193711i \(0.0620526\pi\)
−0.981059 + 0.193711i \(0.937947\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −544.871 50.5009i −1.31930 0.122278i
\(414\) 0 0
\(415\) 446.575i 1.07608i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 599.526i 1.43085i 0.698690 + 0.715425i \(0.253767\pi\)
−0.698690 + 0.715425i \(0.746233\pi\)
\(420\) 0 0
\(421\) 56.9482 0.135269 0.0676344 0.997710i \(-0.478455\pi\)
0.0676344 + 0.997710i \(0.478455\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −177.227 −0.417005
\(426\) 0 0
\(427\) −347.984 32.2527i −0.814951 0.0755331i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 584.112 1.35525 0.677625 0.735408i \(-0.263009\pi\)
0.677625 + 0.735408i \(0.263009\pi\)
\(432\) 0 0
\(433\) 285.740i 0.659909i −0.943997 0.329954i \(-0.892967\pi\)
0.943997 0.329954i \(-0.107033\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −550.954 −1.26076
\(438\) 0 0
\(439\) 813.164 1.85231 0.926155 0.377142i \(-0.123093\pi\)
0.926155 + 0.377142i \(0.123093\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 482.275 1.08866 0.544328 0.838872i \(-0.316785\pi\)
0.544328 + 0.838872i \(0.316785\pi\)
\(444\) 0 0
\(445\) −115.789 −0.260199
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 67.5218i 0.150383i 0.997169 + 0.0751913i \(0.0239568\pi\)
−0.997169 + 0.0751913i \(0.976043\pi\)
\(450\) 0 0
\(451\) −489.336 −1.08500
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −408.244 37.8378i −0.897239 0.0831599i
\(456\) 0 0
\(457\) 198.590 0.434552 0.217276 0.976110i \(-0.430283\pi\)
0.217276 + 0.976110i \(0.430283\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 263.672 0.571957 0.285979 0.958236i \(-0.407681\pi\)
0.285979 + 0.958236i \(0.407681\pi\)
\(462\) 0 0
\(463\) 372.637i 0.804831i −0.915457 0.402415i \(-0.868171\pi\)
0.915457 0.402415i \(-0.131829\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 801.489i 1.71625i −0.513441 0.858125i \(-0.671629\pi\)
0.513441 0.858125i \(-0.328371\pi\)
\(468\) 0 0
\(469\) −110.164 10.2105i −0.234892 0.0217708i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 54.4480i 0.115112i
\(474\) 0 0
\(475\) 200.294 0.421672
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 127.437i 0.266047i −0.991113 0.133024i \(-0.957531\pi\)
0.991113 0.133024i \(-0.0424686\pi\)
\(480\) 0 0
\(481\) 528.006i 1.09772i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 459.202i 0.946809i
\(486\) 0 0
\(487\) 290.901i 0.597332i −0.954358 0.298666i \(-0.903458\pi\)
0.954358 0.298666i \(-0.0965417\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −306.900 −0.625052 −0.312526 0.949909i \(-0.601175\pi\)
−0.312526 + 0.949909i \(0.601175\pi\)
\(492\) 0 0
\(493\) 1110.77i 2.25308i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 40.1360 433.040i 0.0807565 0.871308i
\(498\) 0 0
\(499\) 770.288i 1.54366i −0.635827 0.771832i \(-0.719341\pi\)
0.635827 0.771832i \(-0.280659\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 698.797i 1.38926i −0.719368 0.694630i \(-0.755568\pi\)
0.719368 0.694630i \(-0.244432\pi\)
\(504\) 0 0
\(505\) 415.449 0.822671
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 645.281 1.26774 0.633871 0.773439i \(-0.281465\pi\)
0.633871 + 0.773439i \(0.281465\pi\)
\(510\) 0 0
\(511\) 416.622 + 38.6143i 0.815307 + 0.0755661i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.919766 0.00178595
\(516\) 0 0
\(517\) 182.122i 0.352268i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −862.570 −1.65560 −0.827802 0.561020i \(-0.810409\pi\)
−0.827802 + 0.561020i \(0.810409\pi\)
\(522\) 0 0
\(523\) 147.952 0.282890 0.141445 0.989946i \(-0.454825\pi\)
0.141445 + 0.989946i \(0.454825\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1449.84 2.75113
\(528\) 0 0
\(529\) −245.126 −0.463377
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 849.585i 1.59397i
\(534\) 0 0
\(535\) −527.394 −0.985783
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −374.000 69.9285i −0.693877 0.129737i
\(540\) 0 0
\(541\) 483.118 0.893009 0.446505 0.894781i \(-0.352669\pi\)
0.446505 + 0.894781i \(0.352669\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 122.908 0.225520
\(546\) 0 0
\(547\) 825.387i 1.50893i 0.656338 + 0.754467i \(0.272104\pi\)
−0.656338 + 0.754467i \(0.727896\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1255.34i 2.27829i
\(552\) 0 0
\(553\) −956.901 88.6897i −1.73038 0.160379i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 233.711i 0.419589i −0.977745 0.209795i \(-0.932720\pi\)
0.977745 0.209795i \(-0.0672795\pi\)
\(558\) 0 0
\(559\) 94.5326 0.169110
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 510.026i 0.905908i 0.891534 + 0.452954i \(0.149630\pi\)
−0.891534 + 0.452954i \(0.850370\pi\)
\(564\) 0 0
\(565\) 654.073i 1.15765i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 129.208i 0.227079i −0.993533 0.113539i \(-0.963781\pi\)
0.993533 0.113539i \(-0.0362188\pi\)
\(570\) 0 0
\(571\) 742.862i 1.30098i −0.759513 0.650492i \(-0.774563\pi\)
0.759513 0.650492i \(-0.225437\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −103.200 −0.179478
\(576\) 0 0
\(577\) 549.384i 0.952138i 0.879408 + 0.476069i \(0.157939\pi\)
−0.879408 + 0.476069i \(0.842061\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 716.462 + 66.4047i 1.23315 + 0.114294i
\(582\) 0 0
\(583\) 706.210i 1.21134i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 697.804i 1.18876i −0.804183 0.594381i \(-0.797397\pi\)
0.804183 0.594381i \(-0.202603\pi\)
\(588\) 0 0
\(589\) −1638.55 −2.78192
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −631.537 −1.06499 −0.532493 0.846434i \(-0.678745\pi\)
−0.532493 + 0.846434i \(0.678745\pi\)
\(594\) 0 0
\(595\) −81.2087 + 876.187i −0.136485 + 1.47258i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 105.663 0.176400 0.0881998 0.996103i \(-0.471889\pi\)
0.0881998 + 0.996103i \(0.471889\pi\)
\(600\) 0 0
\(601\) 988.391i 1.64458i 0.569071 + 0.822288i \(0.307303\pi\)
−0.569071 + 0.822288i \(0.692697\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 263.739 0.435932
\(606\) 0 0
\(607\) 164.700 0.271334 0.135667 0.990754i \(-0.456682\pi\)
0.135667 + 0.990754i \(0.456682\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 316.201 0.517514
\(612\) 0 0
\(613\) 413.251 0.674146 0.337073 0.941479i \(-0.390563\pi\)
0.337073 + 0.941479i \(0.390563\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1093.33i 1.77201i −0.463677 0.886005i \(-0.653470\pi\)
0.463677 0.886005i \(-0.346530\pi\)
\(618\) 0 0
\(619\) 75.5055 0.121980 0.0609899 0.998138i \(-0.480574\pi\)
0.0609899 + 0.998138i \(0.480574\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 17.2175 185.765i 0.0276365 0.298179i
\(624\) 0 0
\(625\) −434.354 −0.694967
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1133.22 −1.80163
\(630\) 0 0
\(631\) 808.303i 1.28099i 0.767963 + 0.640494i \(0.221270\pi\)
−0.767963 + 0.640494i \(0.778730\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 70.1231i 0.110430i
\(636\) 0 0
\(637\) 121.410 649.339i 0.190596 1.01937i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 412.768i 0.643944i −0.946749 0.321972i \(-0.895654\pi\)
0.946749 0.321972i \(-0.104346\pi\)
\(642\) 0 0
\(643\) −256.621 −0.399099 −0.199550 0.979888i \(-0.563948\pi\)
−0.199550 + 0.979888i \(0.563948\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 113.389i 0.175254i −0.996153 0.0876271i \(-0.972072\pi\)
0.996153 0.0876271i \(-0.0279284\pi\)
\(648\) 0 0
\(649\) 607.001i 0.935287i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 524.029i 0.802495i −0.915970 0.401247i \(-0.868577\pi\)
0.915970 0.401247i \(-0.131423\pi\)
\(654\) 0 0
\(655\) 310.751i 0.474429i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −569.919 −0.864823 −0.432412 0.901676i \(-0.642337\pi\)
−0.432412 + 0.901676i \(0.642337\pi\)
\(660\) 0 0
\(661\) 478.373i 0.723712i 0.932234 + 0.361856i \(0.117857\pi\)
−0.932234 + 0.361856i \(0.882143\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 91.7786 990.229i 0.138013 1.48907i
\(666\) 0 0
\(667\) 646.802i 0.969718i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 387.664i 0.577741i
\(672\) 0 0
\(673\) −137.786 −0.204735 −0.102367 0.994747i \(-0.532642\pi\)
−0.102367 + 0.994747i \(0.532642\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −612.441 −0.904639 −0.452319 0.891856i \(-0.649403\pi\)
−0.452319 + 0.891856i \(0.649403\pi\)
\(678\) 0 0
\(679\) −736.720 68.2824i −1.08501 0.100563i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 823.775 1.20611 0.603056 0.797699i \(-0.293950\pi\)
0.603056 + 0.797699i \(0.293950\pi\)
\(684\) 0 0
\(685\) 309.757i 0.452201i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1226.12 1.77957
\(690\) 0 0
\(691\) −570.994 −0.826330 −0.413165 0.910656i \(-0.635577\pi\)
−0.413165 + 0.910656i \(0.635577\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 838.941 1.20711
\(696\) 0 0
\(697\) −1823.41 −2.61608
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 516.520i 0.736833i −0.929661 0.368417i \(-0.879900\pi\)
0.929661 0.368417i \(-0.120100\pi\)
\(702\) 0 0
\(703\) 1280.72 1.82179
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −61.7763 + 666.525i −0.0873781 + 0.942750i
\(708\) 0 0
\(709\) 529.200 0.746403 0.373202 0.927750i \(-0.378260\pi\)
0.373202 + 0.927750i \(0.378260\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 844.247 1.18408
\(714\) 0 0
\(715\) 454.795i 0.636077i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 29.1058i 0.0404810i −0.999795 0.0202405i \(-0.993557\pi\)
0.999795 0.0202405i \(-0.00644319\pi\)
\(720\) 0 0
\(721\) −0.136767 + 1.47562i −0.000189691 + 0.00204664i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 235.139i 0.324329i
\(726\) 0 0
\(727\) −914.369 −1.25773 −0.628864 0.777515i \(-0.716480\pi\)
−0.628864 + 0.777515i \(0.716480\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 202.889i 0.277550i
\(732\) 0 0
\(733\) 995.630i 1.35830i 0.734002 + 0.679148i \(0.237650\pi\)
−0.734002 + 0.679148i \(0.762350\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 122.726i 0.166521i
\(738\) 0 0
\(739\) 407.011i 0.550760i −0.961336 0.275380i \(-0.911196\pi\)
0.961336 0.275380i \(-0.0888036\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −645.381 −0.868615 −0.434308 0.900765i \(-0.643007\pi\)
−0.434308 + 0.900765i \(0.643007\pi\)
\(744\) 0 0
\(745\) 31.8595i 0.0427645i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 78.4224 846.124i 0.104703 1.12967i
\(750\) 0 0
\(751\) 883.405i 1.17630i −0.808750 0.588152i \(-0.799855\pi\)
0.808750 0.588152i \(-0.200145\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 528.140i 0.699524i
\(756\) 0 0
\(757\) −651.461 −0.860583 −0.430292 0.902690i \(-0.641589\pi\)
−0.430292 + 0.902690i \(0.641589\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −137.234 −0.180333 −0.0901666 0.995927i \(-0.528740\pi\)
−0.0901666 + 0.995927i \(0.528740\pi\)
\(762\) 0 0
\(763\) −18.2762 + 197.188i −0.0239531 + 0.258438i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1053.88 1.37402
\(768\) 0 0
\(769\) 705.493i 0.917416i −0.888587 0.458708i \(-0.848312\pi\)
0.888587 0.458708i \(-0.151688\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 866.374 1.12079 0.560397 0.828224i \(-0.310648\pi\)
0.560397 + 0.828224i \(0.310648\pi\)
\(774\) 0 0
\(775\) −306.918 −0.396023
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2060.74 2.64536
\(780\) 0 0
\(781\) 482.419 0.617694
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 103.887i 0.132340i
\(786\) 0 0
\(787\) 1027.15 1.30515 0.652575 0.757724i \(-0.273689\pi\)
0.652575 + 0.757724i \(0.273689\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −1049.36 97.2592i −1.32663 0.122957i
\(792\) 0 0
\(793\) 673.063 0.848755
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −611.097 −0.766747 −0.383373 0.923593i \(-0.625238\pi\)
−0.383373 + 0.923593i \(0.625238\pi\)
\(798\) 0 0
\(799\) 678.641i 0.849364i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 464.129i 0.577993i
\(804\) 0 0
\(805\) −47.2880 + 510.206i −0.0587429 + 0.633796i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 521.424i 0.644529i −0.946650 0.322265i \(-0.895556\pi\)
0.946650 0.322265i \(-0.104444\pi\)
\(810\) 0 0
\(811\) −112.014 −0.138119 −0.0690594 0.997613i \(-0.522000\pi\)
−0.0690594 + 0.997613i \(0.522000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 401.825i 0.493037i
\(816\) 0 0
\(817\) 229.297i 0.280657i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 770.242i 0.938175i 0.883152 + 0.469088i \(0.155417\pi\)
−0.883152 + 0.469088i \(0.844583\pi\)
\(822\) 0 0
\(823\) 135.515i 0.164660i 0.996605 + 0.0823298i \(0.0262361\pi\)
−0.996605 + 0.0823298i \(0.973764\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 428.008 0.517543 0.258771 0.965939i \(-0.416682\pi\)
0.258771 + 0.965939i \(0.416682\pi\)
\(828\) 0 0
\(829\) 432.136i 0.521274i −0.965437 0.260637i \(-0.916067\pi\)
0.965437 0.260637i \(-0.0839326\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1393.63 260.574i −1.67303 0.312814i
\(834\) 0 0
\(835\) 373.547i 0.447361i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 383.809i 0.457460i 0.973490 + 0.228730i \(0.0734574\pi\)
−0.973490 + 0.228730i \(0.926543\pi\)
\(840\) 0 0
\(841\) −632.726 −0.752350
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 55.3915 0.0655520
\(846\) 0 0
\(847\) −39.2174 + 423.129i −0.0463015 + 0.499562i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −659.879 −0.775416
\(852\) 0 0
\(853\) 777.198i 0.911134i −0.890201 0.455567i \(-0.849436\pi\)
0.890201 0.455567i \(-0.150564\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1261.11 −1.47154 −0.735769 0.677233i \(-0.763179\pi\)
−0.735769 + 0.677233i \(0.763179\pi\)
\(858\) 0 0
\(859\) −102.095 −0.118854 −0.0594269 0.998233i \(-0.518927\pi\)
−0.0594269 + 0.998233i \(0.518927\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1073.55 1.24398 0.621989 0.783026i \(-0.286325\pi\)
0.621989 + 0.783026i \(0.286325\pi\)
\(864\) 0 0
\(865\) 481.031 0.556105
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1066.01i 1.22671i
\(870\) 0 0
\(871\) 213.077 0.244635
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 87.3574 942.527i 0.0998370 1.07717i
\(876\) 0 0
\(877\) −1408.87 −1.60647 −0.803234 0.595664i \(-0.796889\pi\)
−0.803234 + 0.595664i \(0.796889\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −93.4281 −0.106048 −0.0530239 0.998593i \(-0.516886\pi\)
−0.0530239 + 0.998593i \(0.516886\pi\)
\(882\) 0 0
\(883\) 317.988i 0.360122i 0.983655 + 0.180061i \(0.0576295\pi\)
−0.983655 + 0.180061i \(0.942371\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1129.36i 1.27324i −0.771179 0.636618i \(-0.780333\pi\)
0.771179 0.636618i \(-0.219667\pi\)
\(888\) 0 0
\(889\) −112.502 10.4272i −0.126549 0.0117291i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 766.971i 0.858870i
\(894\) 0 0
\(895\) 585.026 0.653660
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 1923.60i 2.13971i
\(900\) 0 0
\(901\) 2631.55i 2.92070i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 769.201i 0.849945i
\(906\) 0 0
\(907\) 643.806i 0.709819i −0.934901 0.354910i \(-0.884512\pi\)
0.934901 0.354910i \(-0.115488\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1000.01 −1.09770 −0.548852 0.835920i \(-0.684935\pi\)
−0.548852 + 0.835920i \(0.684935\pi\)
\(912\) 0 0
\(913\) 798.159i 0.874215i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 498.553 + 46.2080i 0.543678 + 0.0503904i
\(918\) 0 0
\(919\) 1537.61i 1.67314i 0.547861 + 0.836569i \(0.315442\pi\)
−0.547861 + 0.836569i \(0.684558\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 837.576i 0.907450i
\(924\) 0 0
\(925\) 239.893 0.259344
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 576.410 0.620463 0.310232 0.950661i \(-0.399593\pi\)
0.310232 + 0.950661i \(0.399593\pi\)
\(930\) 0 0
\(931\) 1575.02 + 294.490i 1.69176 + 0.316315i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −976.097 −1.04395
\(936\) 0 0
\(937\) 398.967i 0.425792i −0.977075 0.212896i \(-0.931710\pi\)
0.977075 0.212896i \(-0.0682896\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1021.05 −1.08507 −0.542533 0.840035i \(-0.682535\pi\)
−0.542533 + 0.840035i \(0.682535\pi\)
\(942\) 0 0
\(943\) −1061.78 −1.12595
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −216.473 −0.228588 −0.114294 0.993447i \(-0.536461\pi\)
−0.114294 + 0.993447i \(0.536461\pi\)
\(948\) 0 0
\(949\) −805.820 −0.849126
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 989.112i 1.03789i 0.854807 + 0.518946i \(0.173676\pi\)
−0.854807 + 0.518946i \(0.826324\pi\)
\(954\) 0 0
\(955\) −1492.47 −1.56280
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −496.959 46.0603i −0.518205 0.0480295i
\(960\) 0 0
\(961\) 1549.81 1.61271
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 762.620 0.790280
\(966\) 0 0
\(967\) 1338.63i 1.38431i 0.721748 + 0.692156i \(0.243339\pi\)
−0.721748 + 0.692156i \(0.756661\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 571.990i 0.589074i 0.955640 + 0.294537i \(0.0951654\pi\)
−0.955640 + 0.294537i \(0.904835\pi\)
\(972\) 0 0
\(973\) −124.749 + 1345.95i −0.128210 + 1.38330i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 637.338i 0.652342i −0.945311 0.326171i \(-0.894242\pi\)
0.945311 0.326171i \(-0.105758\pi\)
\(978\) 0 0
\(979\) 206.948 0.211387
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 1751.74i 1.78203i 0.453970 + 0.891017i \(0.350007\pi\)
−0.453970 + 0.891017i \(0.649993\pi\)
\(984\) 0 0
\(985\) 257.681i 0.261605i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 118.143i 0.119457i
\(990\) 0 0
\(991\) 622.310i 0.627962i 0.949429 + 0.313981i \(0.101663\pi\)
−0.949429 + 0.313981i \(0.898337\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −747.592 −0.751349
\(996\) 0 0
\(997\) 976.898i 0.979838i 0.871768 + 0.489919i \(0.162974\pi\)
−0.871768 + 0.489919i \(0.837026\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.3.o.b.1007.6 yes 24
3.2 odd 2 inner 1008.3.o.b.1007.18 yes 24
4.3 odd 2 inner 1008.3.o.b.1007.8 yes 24
7.6 odd 2 inner 1008.3.o.b.1007.17 yes 24
12.11 even 2 inner 1008.3.o.b.1007.20 yes 24
21.20 even 2 inner 1008.3.o.b.1007.5 24
28.27 even 2 inner 1008.3.o.b.1007.19 yes 24
84.83 odd 2 inner 1008.3.o.b.1007.7 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.3.o.b.1007.5 24 21.20 even 2 inner
1008.3.o.b.1007.6 yes 24 1.1 even 1 trivial
1008.3.o.b.1007.7 yes 24 84.83 odd 2 inner
1008.3.o.b.1007.8 yes 24 4.3 odd 2 inner
1008.3.o.b.1007.17 yes 24 7.6 odd 2 inner
1008.3.o.b.1007.18 yes 24 3.2 odd 2 inner
1008.3.o.b.1007.19 yes 24 28.27 even 2 inner
1008.3.o.b.1007.20 yes 24 12.11 even 2 inner