Properties

Label 1008.3.o.b.1007.4
Level $1008$
Weight $3$
Character 1008.1007
Analytic conductor $27.466$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,3,Mod(1007,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.1007"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.o (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1007.4
Character \(\chi\) \(=\) 1008.1007
Dual form 1008.3.o.b.1007.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.41321 q^{5} +(-3.32249 + 6.16125i) q^{7} -17.6630 q^{11} +17.9225i q^{13} -13.3835 q^{17} -14.6302 q^{19} +30.1907 q^{23} +63.6085 q^{25} -25.9412i q^{29} -11.5500 q^{31} +(31.2753 - 57.9972i) q^{35} -17.9221 q^{37} -12.6503 q^{41} +19.2507i q^{43} +48.3171i q^{47} +(-26.9221 - 40.9414i) q^{49} -3.42395i q^{53} +166.265 q^{55} -53.9239i q^{59} -59.8685i q^{61} -168.709i q^{65} +104.977i q^{67} +76.5385 q^{71} -142.830i q^{73} +(58.6851 - 108.826i) q^{77} -47.9662i q^{79} +90.9483i q^{83} +125.981 q^{85} -122.663 q^{89} +(-110.425 - 59.5474i) q^{91} +137.717 q^{95} +94.7826i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 264 q^{25} - 96 q^{37} - 312 q^{49} - 96 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −9.41321 −1.88264 −0.941321 0.337512i \(-0.890414\pi\)
−0.941321 + 0.337512i \(0.890414\pi\)
\(6\) 0 0
\(7\) −3.32249 + 6.16125i −0.474642 + 0.880179i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −17.6630 −1.60573 −0.802863 0.596163i \(-0.796691\pi\)
−0.802863 + 0.596163i \(0.796691\pi\)
\(12\) 0 0
\(13\) 17.9225i 1.37866i 0.724449 + 0.689328i \(0.242094\pi\)
−0.724449 + 0.689328i \(0.757906\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −13.3835 −0.787263 −0.393631 0.919268i \(-0.628781\pi\)
−0.393631 + 0.919268i \(0.628781\pi\)
\(18\) 0 0
\(19\) −14.6302 −0.770008 −0.385004 0.922915i \(-0.625800\pi\)
−0.385004 + 0.922915i \(0.625800\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 30.1907 1.31264 0.656319 0.754484i \(-0.272113\pi\)
0.656319 + 0.754484i \(0.272113\pi\)
\(24\) 0 0
\(25\) 63.6085 2.54434
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 25.9412i 0.894525i −0.894403 0.447262i \(-0.852399\pi\)
0.894403 0.447262i \(-0.147601\pi\)
\(30\) 0 0
\(31\) −11.5500 −0.372582 −0.186291 0.982495i \(-0.559647\pi\)
−0.186291 + 0.982495i \(0.559647\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 31.2753 57.9972i 0.893580 1.65706i
\(36\) 0 0
\(37\) −17.9221 −0.484381 −0.242191 0.970229i \(-0.577866\pi\)
−0.242191 + 0.970229i \(0.577866\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −12.6503 −0.308544 −0.154272 0.988028i \(-0.549303\pi\)
−0.154272 + 0.988028i \(0.549303\pi\)
\(42\) 0 0
\(43\) 19.2507i 0.447691i 0.974625 + 0.223845i \(0.0718611\pi\)
−0.974625 + 0.223845i \(0.928139\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 48.3171i 1.02802i 0.857783 + 0.514012i \(0.171841\pi\)
−0.857783 + 0.514012i \(0.828159\pi\)
\(48\) 0 0
\(49\) −26.9221 40.9414i −0.549431 0.835539i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.42395i 0.0646028i −0.999478 0.0323014i \(-0.989716\pi\)
0.999478 0.0323014i \(-0.0102837\pi\)
\(54\) 0 0
\(55\) 166.265 3.02301
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 53.9239i 0.913964i −0.889476 0.456982i \(-0.848930\pi\)
0.889476 0.456982i \(-0.151070\pi\)
\(60\) 0 0
\(61\) 59.8685i 0.981451i −0.871314 0.490725i \(-0.836732\pi\)
0.871314 0.490725i \(-0.163268\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 168.709i 2.59552i
\(66\) 0 0
\(67\) 104.977i 1.56682i 0.621504 + 0.783411i \(0.286522\pi\)
−0.621504 + 0.783411i \(0.713478\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 76.5385 1.07801 0.539004 0.842303i \(-0.318801\pi\)
0.539004 + 0.842303i \(0.318801\pi\)
\(72\) 0 0
\(73\) 142.830i 1.95657i −0.207268 0.978284i \(-0.566457\pi\)
0.207268 0.978284i \(-0.433543\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 58.6851 108.826i 0.762145 1.41333i
\(78\) 0 0
\(79\) 47.9662i 0.607167i −0.952805 0.303584i \(-0.901817\pi\)
0.952805 0.303584i \(-0.0981832\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 90.9483i 1.09576i 0.836556 + 0.547881i \(0.184565\pi\)
−0.836556 + 0.547881i \(0.815435\pi\)
\(84\) 0 0
\(85\) 125.981 1.48213
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −122.663 −1.37824 −0.689120 0.724647i \(-0.742003\pi\)
−0.689120 + 0.724647i \(0.742003\pi\)
\(90\) 0 0
\(91\) −110.425 59.5474i −1.21346 0.654367i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 137.717 1.44965
\(96\) 0 0
\(97\) 94.7826i 0.977140i 0.872525 + 0.488570i \(0.162481\pi\)
−0.872525 + 0.488570i \(0.837519\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 40.5919 0.401900 0.200950 0.979602i \(-0.435597\pi\)
0.200950 + 0.979602i \(0.435597\pi\)
\(102\) 0 0
\(103\) 120.550 1.17039 0.585195 0.810893i \(-0.301018\pi\)
0.585195 + 0.810893i \(0.301018\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −113.946 −1.06492 −0.532458 0.846456i \(-0.678732\pi\)
−0.532458 + 0.846456i \(0.678732\pi\)
\(108\) 0 0
\(109\) 62.6864 0.575105 0.287552 0.957765i \(-0.407158\pi\)
0.287552 + 0.957765i \(0.407158\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.15197i 0.0721413i −0.999349 0.0360706i \(-0.988516\pi\)
0.999349 0.0360706i \(-0.0114841\pi\)
\(114\) 0 0
\(115\) −284.191 −2.47123
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 44.4664 82.4589i 0.373668 0.692932i
\(120\) 0 0
\(121\) 190.981 1.57836
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −363.430 −2.90744
\(126\) 0 0
\(127\) 209.693i 1.65112i 0.564312 + 0.825562i \(0.309142\pi\)
−0.564312 + 0.825562i \(0.690858\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 59.6098i 0.455037i −0.973774 0.227518i \(-0.926939\pi\)
0.973774 0.227518i \(-0.0730612\pi\)
\(132\) 0 0
\(133\) 48.6085 90.1401i 0.365478 0.677745i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 155.981i 1.13854i −0.822149 0.569272i \(-0.807225\pi\)
0.822149 0.569272i \(-0.192775\pi\)
\(138\) 0 0
\(139\) 247.430 1.78008 0.890038 0.455887i \(-0.150678\pi\)
0.890038 + 0.455887i \(0.150678\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 316.566i 2.21375i
\(144\) 0 0
\(145\) 244.190i 1.68407i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.5788i 0.0777100i 0.999245 + 0.0388550i \(0.0123710\pi\)
−0.999245 + 0.0388550i \(0.987629\pi\)
\(150\) 0 0
\(151\) 126.764i 0.839499i −0.907640 0.419750i \(-0.862118\pi\)
0.907640 0.419750i \(-0.137882\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 108.723 0.701438
\(156\) 0 0
\(157\) 45.6576i 0.290813i 0.989372 + 0.145406i \(0.0464489\pi\)
−0.989372 + 0.145406i \(0.953551\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −100.308 + 186.012i −0.623032 + 1.15536i
\(162\) 0 0
\(163\) 34.6326i 0.212470i 0.994341 + 0.106235i \(0.0338796\pi\)
−0.994341 + 0.106235i \(0.966120\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 252.799i 1.51377i 0.653550 + 0.756884i \(0.273279\pi\)
−0.653550 + 0.756884i \(0.726721\pi\)
\(168\) 0 0
\(169\) −152.217 −0.900693
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 112.219 0.648665 0.324332 0.945943i \(-0.394860\pi\)
0.324332 + 0.945943i \(0.394860\pi\)
\(174\) 0 0
\(175\) −211.339 + 391.908i −1.20765 + 2.23948i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −266.447 −1.48853 −0.744267 0.667883i \(-0.767201\pi\)
−0.744267 + 0.667883i \(0.767201\pi\)
\(180\) 0 0
\(181\) 80.3276i 0.443799i 0.975070 + 0.221899i \(0.0712256\pi\)
−0.975070 + 0.221899i \(0.928774\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 168.705 0.911917
\(186\) 0 0
\(187\) 236.392 1.26413
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 60.0268 0.314277 0.157138 0.987577i \(-0.449773\pi\)
0.157138 + 0.987577i \(0.449773\pi\)
\(192\) 0 0
\(193\) −160.297 −0.830554 −0.415277 0.909695i \(-0.636315\pi\)
−0.415277 + 0.909695i \(0.636315\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 43.5521i 0.221077i −0.993872 0.110538i \(-0.964743\pi\)
0.993872 0.110538i \(-0.0352575\pi\)
\(198\) 0 0
\(199\) −27.0647 −0.136003 −0.0680017 0.997685i \(-0.521662\pi\)
−0.0680017 + 0.997685i \(0.521662\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 159.830 + 86.1895i 0.787342 + 0.424579i
\(204\) 0 0
\(205\) 119.080 0.580878
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 258.412 1.23642
\(210\) 0 0
\(211\) 328.308i 1.55596i −0.628289 0.777980i \(-0.716244\pi\)
0.628289 0.777980i \(-0.283756\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 181.211i 0.842842i
\(216\) 0 0
\(217\) 38.3749 71.1627i 0.176843 0.327939i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 239.866i 1.08536i
\(222\) 0 0
\(223\) 1.28423 0.00575888 0.00287944 0.999996i \(-0.499083\pi\)
0.00287944 + 0.999996i \(0.499083\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 194.200i 0.855505i 0.903896 + 0.427753i \(0.140695\pi\)
−0.903896 + 0.427753i \(0.859305\pi\)
\(228\) 0 0
\(229\) 289.223i 1.26298i −0.775382 0.631492i \(-0.782443\pi\)
0.775382 0.631492i \(-0.217557\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 121.042i 0.519495i 0.965677 + 0.259748i \(0.0836394\pi\)
−0.965677 + 0.259748i \(0.916361\pi\)
\(234\) 0 0
\(235\) 454.819i 1.93540i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 163.878 0.685681 0.342841 0.939394i \(-0.388611\pi\)
0.342841 + 0.939394i \(0.388611\pi\)
\(240\) 0 0
\(241\) 421.554i 1.74919i −0.484859 0.874593i \(-0.661129\pi\)
0.484859 0.874593i \(-0.338871\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 253.424 + 385.390i 1.03438 + 1.57302i
\(246\) 0 0
\(247\) 262.209i 1.06158i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 335.240i 1.33562i 0.744333 + 0.667809i \(0.232768\pi\)
−0.744333 + 0.667809i \(0.767232\pi\)
\(252\) 0 0
\(253\) −533.258 −2.10774
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 149.430 0.581441 0.290721 0.956808i \(-0.406105\pi\)
0.290721 + 0.956808i \(0.406105\pi\)
\(258\) 0 0
\(259\) 59.5461 110.423i 0.229908 0.426342i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 75.2116 0.285976 0.142988 0.989724i \(-0.454329\pi\)
0.142988 + 0.989724i \(0.454329\pi\)
\(264\) 0 0
\(265\) 32.2304i 0.121624i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −168.115 −0.624962 −0.312481 0.949924i \(-0.601160\pi\)
−0.312481 + 0.949924i \(0.601160\pi\)
\(270\) 0 0
\(271\) −282.822 −1.04362 −0.521812 0.853061i \(-0.674744\pi\)
−0.521812 + 0.853061i \(0.674744\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1123.52 −4.08552
\(276\) 0 0
\(277\) −306.571 −1.10676 −0.553378 0.832930i \(-0.686661\pi\)
−0.553378 + 0.832930i \(0.686661\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 325.990i 1.16011i 0.814578 + 0.580054i \(0.196969\pi\)
−0.814578 + 0.580054i \(0.803031\pi\)
\(282\) 0 0
\(283\) 361.362 1.27690 0.638450 0.769664i \(-0.279576\pi\)
0.638450 + 0.769664i \(0.279576\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 42.0305 77.9417i 0.146448 0.271574i
\(288\) 0 0
\(289\) −109.883 −0.380217
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 130.162 0.444240 0.222120 0.975019i \(-0.428702\pi\)
0.222120 + 0.975019i \(0.428702\pi\)
\(294\) 0 0
\(295\) 507.597i 1.72067i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 541.093i 1.80968i
\(300\) 0 0
\(301\) −118.609 63.9603i −0.394048 0.212493i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 563.555i 1.84772i
\(306\) 0 0
\(307\) −386.919 −1.26032 −0.630161 0.776464i \(-0.717011\pi\)
−0.630161 + 0.776464i \(0.717011\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 234.449i 0.753857i 0.926242 + 0.376928i \(0.123020\pi\)
−0.926242 + 0.376928i \(0.876980\pi\)
\(312\) 0 0
\(313\) 427.938i 1.36721i 0.729851 + 0.683607i \(0.239590\pi\)
−0.729851 + 0.683607i \(0.760410\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 301.716i 0.951785i −0.879504 0.475892i \(-0.842125\pi\)
0.879504 0.475892i \(-0.157875\pi\)
\(318\) 0 0
\(319\) 458.200i 1.43636i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 195.802 0.606198
\(324\) 0 0
\(325\) 1140.03i 3.50777i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −297.694 160.533i −0.904845 0.487943i
\(330\) 0 0
\(331\) 525.382i 1.58726i −0.608403 0.793628i \(-0.708189\pi\)
0.608403 0.793628i \(-0.291811\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 988.171i 2.94976i
\(336\) 0 0
\(337\) 385.024 1.14250 0.571252 0.820775i \(-0.306458\pi\)
0.571252 + 0.820775i \(0.306458\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 204.008 0.598264
\(342\) 0 0
\(343\) 341.699 29.8465i 0.996207 0.0870161i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −126.470 −0.364468 −0.182234 0.983255i \(-0.558333\pi\)
−0.182234 + 0.983255i \(0.558333\pi\)
\(348\) 0 0
\(349\) 74.0794i 0.212262i 0.994352 + 0.106131i \(0.0338463\pi\)
−0.994352 + 0.106131i \(0.966154\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 92.9638 0.263354 0.131677 0.991293i \(-0.457964\pi\)
0.131677 + 0.991293i \(0.457964\pi\)
\(354\) 0 0
\(355\) −720.473 −2.02950
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −330.371 −0.920252 −0.460126 0.887854i \(-0.652196\pi\)
−0.460126 + 0.887854i \(0.652196\pi\)
\(360\) 0 0
\(361\) −146.959 −0.407088
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1344.48i 3.68352i
\(366\) 0 0
\(367\) −2.30755 −0.00628759 −0.00314380 0.999995i \(-0.501001\pi\)
−0.00314380 + 0.999995i \(0.501001\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 21.0958 + 11.3760i 0.0568621 + 0.0306632i
\(372\) 0 0
\(373\) 332.901 0.892497 0.446249 0.894909i \(-0.352760\pi\)
0.446249 + 0.894909i \(0.352760\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 464.932 1.23324
\(378\) 0 0
\(379\) 144.379i 0.380946i 0.981692 + 0.190473i \(0.0610022\pi\)
−0.981692 + 0.190473i \(0.938998\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 255.101i 0.666061i −0.942916 0.333031i \(-0.891929\pi\)
0.942916 0.333031i \(-0.108071\pi\)
\(384\) 0 0
\(385\) −552.416 + 1024.40i −1.43485 + 2.66079i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 452.430i 1.16306i 0.813525 + 0.581530i \(0.197546\pi\)
−0.813525 + 0.581530i \(0.802454\pi\)
\(390\) 0 0
\(391\) −404.056 −1.03339
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 451.516i 1.14308i
\(396\) 0 0
\(397\) 405.310i 1.02093i −0.859898 0.510466i \(-0.829473\pi\)
0.859898 0.510466i \(-0.170527\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 18.3273i 0.0457040i −0.999739 0.0228520i \(-0.992725\pi\)
0.999739 0.0228520i \(-0.00727464\pi\)
\(402\) 0 0
\(403\) 207.006i 0.513662i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 316.558 0.777784
\(408\) 0 0
\(409\) 301.328i 0.736744i −0.929678 0.368372i \(-0.879915\pi\)
0.929678 0.368372i \(-0.120085\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 332.239 + 179.162i 0.804453 + 0.433805i
\(414\) 0 0
\(415\) 856.115i 2.06293i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 515.599i 1.23055i −0.788314 0.615273i \(-0.789046\pi\)
0.788314 0.615273i \(-0.210954\pi\)
\(420\) 0 0
\(421\) −461.666 −1.09659 −0.548297 0.836284i \(-0.684724\pi\)
−0.548297 + 0.836284i \(0.684724\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −851.303 −2.00307
\(426\) 0 0
\(427\) 368.865 + 198.913i 0.863853 + 0.465837i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −462.604 −1.07333 −0.536664 0.843796i \(-0.680316\pi\)
−0.536664 + 0.843796i \(0.680316\pi\)
\(432\) 0 0
\(433\) 579.695i 1.33879i −0.742907 0.669394i \(-0.766554\pi\)
0.742907 0.669394i \(-0.233446\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −441.694 −1.01074
\(438\) 0 0
\(439\) 331.988 0.756237 0.378119 0.925757i \(-0.376571\pi\)
0.378119 + 0.925757i \(0.376571\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −559.102 −1.26208 −0.631040 0.775750i \(-0.717372\pi\)
−0.631040 + 0.775750i \(0.717372\pi\)
\(444\) 0 0
\(445\) 1154.66 2.59473
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 569.104i 1.26749i −0.773541 0.633747i \(-0.781516\pi\)
0.773541 0.633747i \(-0.218484\pi\)
\(450\) 0 0
\(451\) 223.442 0.495437
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1039.46 + 560.533i 2.28452 + 1.23194i
\(456\) 0 0
\(457\) −413.774 −0.905413 −0.452707 0.891660i \(-0.649541\pi\)
−0.452707 + 0.891660i \(0.649541\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 475.662 1.03180 0.515902 0.856647i \(-0.327457\pi\)
0.515902 + 0.856647i \(0.327457\pi\)
\(462\) 0 0
\(463\) 630.680i 1.36216i 0.732209 + 0.681080i \(0.238489\pi\)
−0.732209 + 0.681080i \(0.761511\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 124.466i 0.266522i 0.991081 + 0.133261i \(0.0425449\pi\)
−0.991081 + 0.133261i \(0.957455\pi\)
\(468\) 0 0
\(469\) −646.790 348.785i −1.37908 0.743679i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 340.025i 0.718869i
\(474\) 0 0
\(475\) −930.602 −1.95916
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 516.970i 1.07927i 0.841899 + 0.539635i \(0.181438\pi\)
−0.841899 + 0.539635i \(0.818562\pi\)
\(480\) 0 0
\(481\) 321.210i 0.667795i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 892.209i 1.83961i
\(486\) 0 0
\(487\) 317.163i 0.651260i −0.945497 0.325630i \(-0.894424\pi\)
0.945497 0.325630i \(-0.105576\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −225.238 −0.458733 −0.229367 0.973340i \(-0.573666\pi\)
−0.229367 + 0.973340i \(0.573666\pi\)
\(492\) 0 0
\(493\) 347.183i 0.704226i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −254.299 + 471.573i −0.511667 + 0.948840i
\(498\) 0 0
\(499\) 376.347i 0.754202i −0.926172 0.377101i \(-0.876921\pi\)
0.926172 0.377101i \(-0.123079\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 35.7324i 0.0710386i 0.999369 + 0.0355193i \(0.0113085\pi\)
−0.999369 + 0.0355193i \(0.988691\pi\)
\(504\) 0 0
\(505\) −382.100 −0.756634
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 924.267 1.81585 0.907924 0.419134i \(-0.137666\pi\)
0.907924 + 0.419134i \(0.137666\pi\)
\(510\) 0 0
\(511\) 880.009 + 474.550i 1.72213 + 0.928669i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −1134.76 −2.20342
\(516\) 0 0
\(517\) 853.425i 1.65072i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1024.09 1.96563 0.982816 0.184590i \(-0.0590956\pi\)
0.982816 + 0.184590i \(0.0590956\pi\)
\(522\) 0 0
\(523\) −141.910 −0.271339 −0.135669 0.990754i \(-0.543319\pi\)
−0.135669 + 0.990754i \(0.543319\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 154.579 0.293320
\(528\) 0 0
\(529\) 382.477 0.723019
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 226.725i 0.425376i
\(534\) 0 0
\(535\) 1072.60 2.00486
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 475.525 + 723.148i 0.882236 + 1.34165i
\(540\) 0 0
\(541\) −271.944 −0.502669 −0.251335 0.967900i \(-0.580869\pi\)
−0.251335 + 0.967900i \(0.580869\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −590.081 −1.08272
\(546\) 0 0
\(547\) 167.266i 0.305789i −0.988243 0.152894i \(-0.951141\pi\)
0.988243 0.152894i \(-0.0488594\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 379.524i 0.688791i
\(552\) 0 0
\(553\) 295.532 + 159.367i 0.534416 + 0.288187i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 594.093i 1.06659i −0.845928 0.533297i \(-0.820953\pi\)
0.845928 0.533297i \(-0.179047\pi\)
\(558\) 0 0
\(559\) −345.021 −0.617212
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 379.480i 0.674032i −0.941499 0.337016i \(-0.890582\pi\)
0.941499 0.337016i \(-0.109418\pi\)
\(564\) 0 0
\(565\) 76.7362i 0.135816i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 831.502i 1.46134i −0.682731 0.730670i \(-0.739208\pi\)
0.682731 0.730670i \(-0.260792\pi\)
\(570\) 0 0
\(571\) 18.8903i 0.0330828i 0.999863 + 0.0165414i \(0.00526554\pi\)
−0.999863 + 0.0165414i \(0.994734\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1920.38 3.33980
\(576\) 0 0
\(577\) 571.465i 0.990408i −0.868777 0.495204i \(-0.835093\pi\)
0.868777 0.495204i \(-0.164907\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −560.355 302.175i −0.964467 0.520094i
\(582\) 0 0
\(583\) 60.4772i 0.103735i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 883.232i 1.50465i −0.658790 0.752327i \(-0.728931\pi\)
0.658790 0.752327i \(-0.271069\pi\)
\(588\) 0 0
\(589\) 168.979 0.286891
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 498.733 0.841033 0.420517 0.907285i \(-0.361849\pi\)
0.420517 + 0.907285i \(0.361849\pi\)
\(594\) 0 0
\(595\) −418.572 + 776.203i −0.703482 + 1.30454i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 438.918 0.732751 0.366375 0.930467i \(-0.380599\pi\)
0.366375 + 0.930467i \(0.380599\pi\)
\(600\) 0 0
\(601\) 555.392i 0.924114i −0.886850 0.462057i \(-0.847112\pi\)
0.886850 0.462057i \(-0.152888\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1797.75 −2.97148
\(606\) 0 0
\(607\) 615.415 1.01386 0.506931 0.861986i \(-0.330780\pi\)
0.506931 + 0.861986i \(0.330780\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −865.965 −1.41729
\(612\) 0 0
\(613\) −284.085 −0.463435 −0.231717 0.972783i \(-0.574434\pi\)
−0.231717 + 0.972783i \(0.574434\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 453.948i 0.735734i 0.929878 + 0.367867i \(0.119912\pi\)
−0.929878 + 0.367867i \(0.880088\pi\)
\(618\) 0 0
\(619\) −359.393 −0.580602 −0.290301 0.956935i \(-0.593755\pi\)
−0.290301 + 0.956935i \(0.593755\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 407.548 755.761i 0.654170 1.21310i
\(624\) 0 0
\(625\) 1830.83 2.92933
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 239.860 0.381335
\(630\) 0 0
\(631\) 152.887i 0.242293i −0.992635 0.121147i \(-0.961343\pi\)
0.992635 0.121147i \(-0.0386572\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1973.88i 3.10848i
\(636\) 0 0
\(637\) 733.774 482.512i 1.15192 0.757476i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 26.7862i 0.0417882i 0.999782 + 0.0208941i \(0.00665128\pi\)
−0.999782 + 0.0208941i \(0.993349\pi\)
\(642\) 0 0
\(643\) −184.314 −0.286646 −0.143323 0.989676i \(-0.545779\pi\)
−0.143323 + 0.989676i \(0.545779\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 393.760i 0.608594i −0.952577 0.304297i \(-0.901578\pi\)
0.952577 0.304297i \(-0.0984216\pi\)
\(648\) 0 0
\(649\) 952.458i 1.46758i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 128.089i 0.196155i −0.995179 0.0980776i \(-0.968731\pi\)
0.995179 0.0980776i \(-0.0312693\pi\)
\(654\) 0 0
\(655\) 561.120i 0.856672i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 983.280 1.49208 0.746040 0.665902i \(-0.231953\pi\)
0.746040 + 0.665902i \(0.231953\pi\)
\(660\) 0 0
\(661\) 668.474i 1.01131i 0.862737 + 0.505654i \(0.168749\pi\)
−0.862737 + 0.505654i \(0.831251\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −457.562 + 848.508i −0.688064 + 1.27595i
\(666\) 0 0
\(667\) 783.183i 1.17419i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1057.46i 1.57594i
\(672\) 0 0
\(673\) 16.9201 0.0251413 0.0125706 0.999921i \(-0.495999\pi\)
0.0125706 + 0.999921i \(0.495999\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1200.92 −1.77388 −0.886942 0.461881i \(-0.847175\pi\)
−0.886942 + 0.461881i \(0.847175\pi\)
\(678\) 0 0
\(679\) −583.980 314.914i −0.860059 0.463791i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1327.68 1.94390 0.971948 0.235197i \(-0.0755734\pi\)
0.971948 + 0.235197i \(0.0755734\pi\)
\(684\) 0 0
\(685\) 1468.28i 2.14347i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 61.3659 0.0890651
\(690\) 0 0
\(691\) 207.213 0.299874 0.149937 0.988696i \(-0.452093\pi\)
0.149937 + 0.988696i \(0.452093\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2329.12 −3.35124
\(696\) 0 0
\(697\) 169.305 0.242905
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 19.3505i 0.0276042i −0.999905 0.0138021i \(-0.995607\pi\)
0.999905 0.0138021i \(-0.00439348\pi\)
\(702\) 0 0
\(703\) 262.203 0.372978
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −134.866 + 250.097i −0.190758 + 0.353744i
\(708\) 0 0
\(709\) 1329.52 1.87521 0.937603 0.347707i \(-0.113040\pi\)
0.937603 + 0.347707i \(0.113040\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −348.703 −0.489065
\(714\) 0 0
\(715\) 2979.90i 4.16769i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 984.181i 1.36882i −0.729098 0.684410i \(-0.760060\pi\)
0.729098 0.684410i \(-0.239940\pi\)
\(720\) 0 0
\(721\) −400.527 + 742.740i −0.555515 + 1.03015i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1650.08i 2.27598i
\(726\) 0 0
\(727\) 166.808 0.229447 0.114724 0.993397i \(-0.463402\pi\)
0.114724 + 0.993397i \(0.463402\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 257.641i 0.352450i
\(732\) 0 0
\(733\) 989.176i 1.34949i −0.738051 0.674745i \(-0.764254\pi\)
0.738051 0.674745i \(-0.235746\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1854.21i 2.51589i
\(738\) 0 0
\(739\) 254.767i 0.344745i −0.985032 0.172373i \(-0.944857\pi\)
0.985032 0.172373i \(-0.0551433\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −159.188 −0.214250 −0.107125 0.994246i \(-0.534165\pi\)
−0.107125 + 0.994246i \(0.534165\pi\)
\(744\) 0 0
\(745\) 108.994i 0.146300i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 378.584 702.050i 0.505453 0.937317i
\(750\) 0 0
\(751\) 854.873i 1.13831i 0.822229 + 0.569156i \(0.192730\pi\)
−0.822229 + 0.569156i \(0.807270\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1193.26i 1.58048i
\(756\) 0 0
\(757\) 233.833 0.308894 0.154447 0.988001i \(-0.450640\pi\)
0.154447 + 0.988001i \(0.450640\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −508.165 −0.667760 −0.333880 0.942616i \(-0.608358\pi\)
−0.333880 + 0.942616i \(0.608358\pi\)
\(762\) 0 0
\(763\) −208.275 + 386.227i −0.272969 + 0.506195i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 966.453 1.26004
\(768\) 0 0
\(769\) 176.433i 0.229432i −0.993398 0.114716i \(-0.963404\pi\)
0.993398 0.114716i \(-0.0365958\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −213.829 −0.276623 −0.138311 0.990389i \(-0.544167\pi\)
−0.138311 + 0.990389i \(0.544167\pi\)
\(774\) 0 0
\(775\) −734.681 −0.947975
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 185.076 0.237581
\(780\) 0 0
\(781\) −1351.90 −1.73099
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 429.784i 0.547496i
\(786\) 0 0
\(787\) 118.300 0.150318 0.0751589 0.997172i \(-0.476054\pi\)
0.0751589 + 0.997172i \(0.476054\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 50.2263 + 27.0848i 0.0634973 + 0.0342413i
\(792\) 0 0
\(793\) 1072.99 1.35308
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1102.38 −1.38316 −0.691578 0.722302i \(-0.743084\pi\)
−0.691578 + 0.722302i \(0.743084\pi\)
\(798\) 0 0
\(799\) 646.650i 0.809325i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2522.80i 3.14171i
\(804\) 0 0
\(805\) 944.223 1750.97i 1.17295 2.17512i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 319.116i 0.394458i −0.980357 0.197229i \(-0.936806\pi\)
0.980357 0.197229i \(-0.0631942\pi\)
\(810\) 0 0
\(811\) 1376.15 1.69686 0.848430 0.529307i \(-0.177548\pi\)
0.848430 + 0.529307i \(0.177548\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 326.004i 0.400005i
\(816\) 0 0
\(817\) 281.641i 0.344726i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 962.109i 1.17187i 0.810357 + 0.585937i \(0.199273\pi\)
−0.810357 + 0.585937i \(0.800727\pi\)
\(822\) 0 0
\(823\) 1224.55i 1.48791i −0.668228 0.743957i \(-0.732947\pi\)
0.668228 0.743957i \(-0.267053\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 443.864 0.536716 0.268358 0.963319i \(-0.413519\pi\)
0.268358 + 0.963319i \(0.413519\pi\)
\(828\) 0 0
\(829\) 916.205i 1.10519i −0.833449 0.552597i \(-0.813637\pi\)
0.833449 0.552597i \(-0.186363\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 360.311 + 547.938i 0.432546 + 0.657789i
\(834\) 0 0
\(835\) 2379.65i 2.84988i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1067.05i 1.27182i −0.771765 0.635908i \(-0.780626\pi\)
0.771765 0.635908i \(-0.219374\pi\)
\(840\) 0 0
\(841\) 168.053 0.199825
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 1432.85 1.69568
\(846\) 0 0
\(847\) −634.534 + 1176.68i −0.749154 + 1.38924i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −541.081 −0.635817
\(852\) 0 0
\(853\) 75.2815i 0.0882550i 0.999026 + 0.0441275i \(0.0140508\pi\)
−0.999026 + 0.0441275i \(0.985949\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1247.35 1.45549 0.727744 0.685849i \(-0.240569\pi\)
0.727744 + 0.685849i \(0.240569\pi\)
\(858\) 0 0
\(859\) 946.808 1.10222 0.551111 0.834432i \(-0.314204\pi\)
0.551111 + 0.834432i \(0.314204\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −664.907 −0.770460 −0.385230 0.922821i \(-0.625878\pi\)
−0.385230 + 0.922821i \(0.625878\pi\)
\(864\) 0 0
\(865\) −1056.34 −1.22120
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 847.227i 0.974945i
\(870\) 0 0
\(871\) −1881.45 −2.16011
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1207.49 2239.19i 1.37999 2.55907i
\(876\) 0 0
\(877\) 10.7335 0.0122389 0.00611945 0.999981i \(-0.498052\pi\)
0.00611945 + 0.999981i \(0.498052\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −947.934 −1.07597 −0.537987 0.842953i \(-0.680815\pi\)
−0.537987 + 0.842953i \(0.680815\pi\)
\(882\) 0 0
\(883\) 1073.67i 1.21594i −0.793960 0.607970i \(-0.791984\pi\)
0.793960 0.607970i \(-0.208016\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 89.2166i 0.100582i 0.998735 + 0.0502912i \(0.0160149\pi\)
−0.998735 + 0.0502912i \(0.983985\pi\)
\(888\) 0 0
\(889\) −1291.97 696.702i −1.45328 0.783692i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 706.886i 0.791586i
\(894\) 0 0
\(895\) 2508.13 2.80238
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 299.622i 0.333284i
\(900\) 0 0
\(901\) 45.8243i 0.0508594i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 756.140i 0.835514i
\(906\) 0 0
\(907\) 249.600i 0.275193i −0.990488 0.137597i \(-0.956062\pi\)
0.990488 0.137597i \(-0.0439377\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1059.12 1.16259 0.581293 0.813694i \(-0.302547\pi\)
0.581293 + 0.813694i \(0.302547\pi\)
\(912\) 0 0
\(913\) 1606.42i 1.75949i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 367.271 + 198.053i 0.400514 + 0.215979i
\(918\) 0 0
\(919\) 565.363i 0.615194i 0.951517 + 0.307597i \(0.0995248\pi\)
−0.951517 + 0.307597i \(0.900475\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1371.76i 1.48620i
\(924\) 0 0
\(925\) −1140.00 −1.23243
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1100.73 −1.18485 −0.592427 0.805624i \(-0.701830\pi\)
−0.592427 + 0.805624i \(0.701830\pi\)
\(930\) 0 0
\(931\) 393.875 + 598.979i 0.423066 + 0.643372i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2225.21 −2.37990
\(936\) 0 0
\(937\) 216.886i 0.231468i 0.993280 + 0.115734i \(0.0369220\pi\)
−0.993280 + 0.115734i \(0.963078\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1217.64 1.29399 0.646994 0.762495i \(-0.276026\pi\)
0.646994 + 0.762495i \(0.276026\pi\)
\(942\) 0 0
\(943\) −381.921 −0.405006
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1191.48 1.25816 0.629081 0.777340i \(-0.283431\pi\)
0.629081 + 0.777340i \(0.283431\pi\)
\(948\) 0 0
\(949\) 2559.87 2.69744
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 581.578i 0.610260i −0.952311 0.305130i \(-0.901300\pi\)
0.952311 0.305130i \(-0.0986999\pi\)
\(954\) 0 0
\(955\) −565.045 −0.591670
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 961.036 + 518.244i 1.00212 + 0.540401i
\(960\) 0 0
\(961\) −827.597 −0.861183
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1508.91 1.56364
\(966\) 0 0
\(967\) 1017.88i 1.05262i 0.850294 + 0.526309i \(0.176424\pi\)
−0.850294 + 0.526309i \(0.823576\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 191.299i 0.197013i −0.995136 0.0985063i \(-0.968594\pi\)
0.995136 0.0985063i \(-0.0314065\pi\)
\(972\) 0 0
\(973\) −822.085 + 1524.48i −0.844898 + 1.56679i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 212.822i 0.217832i 0.994051 + 0.108916i \(0.0347380\pi\)
−0.994051 + 0.108916i \(0.965262\pi\)
\(978\) 0 0
\(979\) 2166.60 2.21308
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 625.538i 0.636357i −0.948031 0.318178i \(-0.896929\pi\)
0.948031 0.318178i \(-0.103071\pi\)
\(984\) 0 0
\(985\) 409.965i 0.416208i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 581.192i 0.587656i
\(990\) 0 0
\(991\) 528.316i 0.533114i −0.963819 0.266557i \(-0.914114\pi\)
0.963819 0.266557i \(-0.0858861\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 254.765 0.256046
\(996\) 0 0
\(997\) 164.192i 0.164687i 0.996604 + 0.0823433i \(0.0262404\pi\)
−0.996604 + 0.0823433i \(0.973760\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.3.o.b.1007.4 yes 24
3.2 odd 2 inner 1008.3.o.b.1007.24 yes 24
4.3 odd 2 inner 1008.3.o.b.1007.2 yes 24
7.6 odd 2 inner 1008.3.o.b.1007.23 yes 24
12.11 even 2 inner 1008.3.o.b.1007.22 yes 24
21.20 even 2 inner 1008.3.o.b.1007.3 yes 24
28.27 even 2 inner 1008.3.o.b.1007.21 yes 24
84.83 odd 2 inner 1008.3.o.b.1007.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.3.o.b.1007.1 24 84.83 odd 2 inner
1008.3.o.b.1007.2 yes 24 4.3 odd 2 inner
1008.3.o.b.1007.3 yes 24 21.20 even 2 inner
1008.3.o.b.1007.4 yes 24 1.1 even 1 trivial
1008.3.o.b.1007.21 yes 24 28.27 even 2 inner
1008.3.o.b.1007.22 yes 24 12.11 even 2 inner
1008.3.o.b.1007.23 yes 24 7.6 odd 2 inner
1008.3.o.b.1007.24 yes 24 3.2 odd 2 inner