Properties

Label 1008.3.dc.g.305.5
Level $1008$
Weight $3$
Character 1008.305
Analytic conductor $27.466$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,3,Mod(305,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.305"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.dc (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,24,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 90x^{14} + 2793x^{12} + 37090x^{10} + 214104x^{8} + 463326x^{6} + 257641x^{4} + 28374x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 305.5
Root \(1.76745i\) of defining polynomial
Character \(\chi\) \(=\) 1008.305
Dual form 1008.3.dc.g.737.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.29207 - 1.32333i) q^{5} +(-5.75292 - 3.98797i) q^{7} +(-1.93387 - 1.11652i) q^{11} +2.75937 q^{13} +(-0.189165 - 0.109214i) q^{17} +(-6.60668 - 11.4431i) q^{19} +(-17.4712 + 10.0870i) q^{23} +(-8.99762 + 15.5843i) q^{25} -13.5750i q^{29} +(0.993552 - 1.72088i) q^{31} +(-18.4635 - 1.52772i) q^{35} +(22.5458 + 39.0505i) q^{37} -28.7877i q^{41} -53.1897 q^{43} +(-62.8200 + 36.2691i) q^{47} +(17.1921 + 45.8850i) q^{49} +(-52.0559 - 30.0545i) q^{53} -5.91007 q^{55} +(-56.8045 - 32.7961i) q^{59} +(37.7262 + 65.3436i) q^{61} +(6.32465 - 3.65154i) q^{65} +(-16.1113 + 27.9057i) q^{67} -17.2308i q^{71} +(-7.18849 + 12.4508i) q^{73} +(6.67274 + 14.1355i) q^{77} +(18.0972 + 31.3453i) q^{79} -43.6639i q^{83} -0.578105 q^{85} +(10.2082 - 5.89370i) q^{89} +(-15.8744 - 11.0043i) q^{91} +(-30.2859 - 17.4856i) q^{95} -112.554 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 24 q^{7} - 24 q^{13} + 12 q^{19} + 92 q^{25} - 32 q^{31} - 132 q^{37} - 24 q^{43} + 64 q^{49} + 440 q^{55} + 184 q^{61} - 332 q^{67} + 188 q^{73} + 112 q^{79} + 256 q^{85} + 252 q^{91} - 1032 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.29207 1.32333i 0.458413 0.264665i −0.252963 0.967476i \(-0.581405\pi\)
0.711377 + 0.702811i \(0.248072\pi\)
\(6\) 0 0
\(7\) −5.75292 3.98797i −0.821846 0.569710i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.93387 1.11652i −0.175806 0.101502i 0.409515 0.912304i \(-0.365698\pi\)
−0.585321 + 0.810802i \(0.699031\pi\)
\(12\) 0 0
\(13\) 2.75937 0.212259 0.106129 0.994352i \(-0.466154\pi\)
0.106129 + 0.994352i \(0.466154\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.189165 0.109214i −0.0111274 0.00642438i 0.494426 0.869220i \(-0.335378\pi\)
−0.505553 + 0.862795i \(0.668712\pi\)
\(18\) 0 0
\(19\) −6.60668 11.4431i −0.347720 0.602269i 0.638124 0.769934i \(-0.279711\pi\)
−0.985844 + 0.167665i \(0.946377\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −17.4712 + 10.0870i −0.759619 + 0.438566i −0.829159 0.559013i \(-0.811180\pi\)
0.0695400 + 0.997579i \(0.477847\pi\)
\(24\) 0 0
\(25\) −8.99762 + 15.5843i −0.359905 + 0.623373i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 13.5750i 0.468103i −0.972224 0.234052i \(-0.924801\pi\)
0.972224 0.234052i \(-0.0751985\pi\)
\(30\) 0 0
\(31\) 0.993552 1.72088i 0.0320501 0.0555123i −0.849555 0.527499i \(-0.823130\pi\)
0.881606 + 0.471987i \(0.156463\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −18.4635 1.52772i −0.527527 0.0436490i
\(36\) 0 0
\(37\) 22.5458 + 39.0505i 0.609346 + 1.05542i 0.991348 + 0.131257i \(0.0419014\pi\)
−0.382002 + 0.924161i \(0.624765\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 28.7877i 0.702139i −0.936349 0.351070i \(-0.885818\pi\)
0.936349 0.351070i \(-0.114182\pi\)
\(42\) 0 0
\(43\) −53.1897 −1.23697 −0.618485 0.785797i \(-0.712253\pi\)
−0.618485 + 0.785797i \(0.712253\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −62.8200 + 36.2691i −1.33660 + 0.771684i −0.986301 0.164956i \(-0.947252\pi\)
−0.350294 + 0.936640i \(0.613918\pi\)
\(48\) 0 0
\(49\) 17.1921 + 45.8850i 0.350860 + 0.936428i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −52.0559 30.0545i −0.982187 0.567066i −0.0792573 0.996854i \(-0.525255\pi\)
−0.902930 + 0.429788i \(0.858588\pi\)
\(54\) 0 0
\(55\) −5.91007 −0.107456
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −56.8045 32.7961i −0.962788 0.555866i −0.0657580 0.997836i \(-0.520947\pi\)
−0.897030 + 0.441970i \(0.854280\pi\)
\(60\) 0 0
\(61\) 37.7262 + 65.3436i 0.618462 + 1.07121i 0.989767 + 0.142696i \(0.0455771\pi\)
−0.371305 + 0.928511i \(0.621090\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.32465 3.65154i 0.0973024 0.0561775i
\(66\) 0 0
\(67\) −16.1113 + 27.9057i −0.240468 + 0.416502i −0.960848 0.277077i \(-0.910634\pi\)
0.720380 + 0.693580i \(0.243968\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 17.2308i 0.242688i −0.992611 0.121344i \(-0.961280\pi\)
0.992611 0.121344i \(-0.0387204\pi\)
\(72\) 0 0
\(73\) −7.18849 + 12.4508i −0.0984724 + 0.170559i −0.911053 0.412290i \(-0.864729\pi\)
0.812580 + 0.582850i \(0.198062\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.67274 + 14.1355i 0.0866589 + 0.183577i
\(78\) 0 0
\(79\) 18.0972 + 31.3453i 0.229079 + 0.396776i 0.957535 0.288316i \(-0.0930953\pi\)
−0.728457 + 0.685092i \(0.759762\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 43.6639i 0.526071i −0.964786 0.263035i \(-0.915276\pi\)
0.964786 0.263035i \(-0.0847236\pi\)
\(84\) 0 0
\(85\) −0.578105 −0.00680124
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 10.2082 5.89370i 0.114699 0.0662213i −0.441553 0.897235i \(-0.645572\pi\)
0.556252 + 0.831014i \(0.312239\pi\)
\(90\) 0 0
\(91\) −15.8744 11.0043i −0.174444 0.120926i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −30.2859 17.4856i −0.318799 0.184059i
\(96\) 0 0
\(97\) −112.554 −1.16035 −0.580175 0.814492i \(-0.697016\pi\)
−0.580175 + 0.814492i \(0.697016\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −116.838 67.4566i −1.15681 0.667887i −0.206276 0.978494i \(-0.566135\pi\)
−0.950539 + 0.310606i \(0.899468\pi\)
\(102\) 0 0
\(103\) 17.4709 + 30.2604i 0.169620 + 0.293791i 0.938286 0.345860i \(-0.112413\pi\)
−0.768666 + 0.639650i \(0.779079\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 22.6307 13.0658i 0.211501 0.122110i −0.390508 0.920600i \(-0.627700\pi\)
0.602009 + 0.798489i \(0.294367\pi\)
\(108\) 0 0
\(109\) 4.03319 6.98568i 0.0370017 0.0640888i −0.846931 0.531702i \(-0.821553\pi\)
0.883933 + 0.467613i \(0.154886\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 30.1803i 0.267083i −0.991043 0.133541i \(-0.957365\pi\)
0.991043 0.133541i \(-0.0426349\pi\)
\(114\) 0 0
\(115\) −26.6968 + 46.2403i −0.232146 + 0.402089i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.652707 + 1.38269i 0.00548493 + 0.0116192i
\(120\) 0 0
\(121\) −58.0068 100.471i −0.479395 0.830336i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 113.793i 0.910347i
\(126\) 0 0
\(127\) −70.8602 −0.557954 −0.278977 0.960298i \(-0.589995\pi\)
−0.278977 + 0.960298i \(0.589995\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −80.2222 + 46.3163i −0.612383 + 0.353559i −0.773897 0.633311i \(-0.781695\pi\)
0.161515 + 0.986870i \(0.448362\pi\)
\(132\) 0 0
\(133\) −7.62710 + 92.1786i −0.0573466 + 0.693072i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −178.775 103.216i −1.30492 0.753398i −0.323680 0.946167i \(-0.604920\pi\)
−0.981244 + 0.192769i \(0.938253\pi\)
\(138\) 0 0
\(139\) 194.003 1.39570 0.697852 0.716242i \(-0.254139\pi\)
0.697852 + 0.716242i \(0.254139\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.33625 3.08089i −0.0373164 0.0215447i
\(144\) 0 0
\(145\) −17.9641 31.1148i −0.123891 0.214585i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −140.695 + 81.2302i −0.944260 + 0.545169i −0.891293 0.453427i \(-0.850201\pi\)
−0.0529671 + 0.998596i \(0.516868\pi\)
\(150\) 0 0
\(151\) −115.700 + 200.399i −0.766227 + 1.32714i 0.173368 + 0.984857i \(0.444535\pi\)
−0.939595 + 0.342287i \(0.888798\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.25917i 0.0339301i
\(156\) 0 0
\(157\) 52.2334 90.4709i 0.332697 0.576248i −0.650343 0.759641i \(-0.725375\pi\)
0.983040 + 0.183393i \(0.0587081\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 140.737 + 11.6450i 0.874145 + 0.0723291i
\(162\) 0 0
\(163\) 103.060 + 178.505i 0.632269 + 1.09512i 0.987087 + 0.160187i \(0.0512098\pi\)
−0.354817 + 0.934936i \(0.615457\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 239.559i 1.43448i −0.696824 0.717242i \(-0.745404\pi\)
0.696824 0.717242i \(-0.254596\pi\)
\(168\) 0 0
\(169\) −161.386 −0.954946
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −271.139 + 156.542i −1.56728 + 0.904870i −0.570796 + 0.821092i \(0.693365\pi\)
−0.996485 + 0.0837773i \(0.973302\pi\)
\(174\) 0 0
\(175\) 113.912 53.7731i 0.650928 0.307275i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.835046 0.482114i −0.00466506 0.00269337i 0.497666 0.867369i \(-0.334191\pi\)
−0.502331 + 0.864676i \(0.667524\pi\)
\(180\) 0 0
\(181\) −182.012 −1.00559 −0.502795 0.864406i \(-0.667695\pi\)
−0.502795 + 0.864406i \(0.667695\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 103.353 + 59.6709i 0.558665 + 0.322545i
\(186\) 0 0
\(187\) 0.243880 + 0.422413i 0.00130417 + 0.00225889i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 225.335 130.097i 1.17976 0.681136i 0.223802 0.974635i \(-0.428153\pi\)
0.955959 + 0.293499i \(0.0948196\pi\)
\(192\) 0 0
\(193\) 128.058 221.803i 0.663512 1.14924i −0.316175 0.948701i \(-0.602399\pi\)
0.979687 0.200535i \(-0.0642680\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 8.84852i 0.0449163i −0.999748 0.0224582i \(-0.992851\pi\)
0.999748 0.0224582i \(-0.00714926\pi\)
\(198\) 0 0
\(199\) 23.3812 40.4974i 0.117494 0.203505i −0.801280 0.598289i \(-0.795847\pi\)
0.918774 + 0.394784i \(0.129181\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −54.1367 + 78.0959i −0.266683 + 0.384709i
\(204\) 0 0
\(205\) −38.0955 65.9833i −0.185832 0.321870i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 29.5060i 0.141177i
\(210\) 0 0
\(211\) −64.8732 −0.307456 −0.153728 0.988113i \(-0.549128\pi\)
−0.153728 + 0.988113i \(0.549128\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −121.914 + 70.3873i −0.567043 + 0.327383i
\(216\) 0 0
\(217\) −12.5787 + 5.93784i −0.0579662 + 0.0273633i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.521976 0.301363i −0.00236188 0.00136363i
\(222\) 0 0
\(223\) 224.551 1.00696 0.503478 0.864008i \(-0.332054\pi\)
0.503478 + 0.864008i \(0.332054\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 351.802 + 203.113i 1.54979 + 0.894771i 0.998157 + 0.0606824i \(0.0193277\pi\)
0.551631 + 0.834088i \(0.314006\pi\)
\(228\) 0 0
\(229\) 185.758 + 321.742i 0.811171 + 1.40499i 0.912045 + 0.410090i \(0.134503\pi\)
−0.100875 + 0.994899i \(0.532164\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 187.339 108.160i 0.804032 0.464208i −0.0408473 0.999165i \(-0.513006\pi\)
0.844879 + 0.534957i \(0.179672\pi\)
\(234\) 0 0
\(235\) −95.9917 + 166.263i −0.408475 + 0.707500i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.556048i 0.00232656i −0.999999 0.00116328i \(-0.999630\pi\)
0.999999 0.00116328i \(-0.000370284\pi\)
\(240\) 0 0
\(241\) 117.405 203.352i 0.487160 0.843785i −0.512731 0.858549i \(-0.671366\pi\)
0.999891 + 0.0147639i \(0.00469968\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 100.126 + 82.4206i 0.408679 + 0.336411i
\(246\) 0 0
\(247\) −18.2303 31.5757i −0.0738067 0.127837i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 169.210i 0.674145i −0.941479 0.337073i \(-0.890563\pi\)
0.941479 0.337073i \(-0.109437\pi\)
\(252\) 0 0
\(253\) 45.0494 0.178061
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 303.857 175.432i 1.18232 0.682614i 0.225772 0.974180i \(-0.427510\pi\)
0.956551 + 0.291566i \(0.0941763\pi\)
\(258\) 0 0
\(259\) 26.0281 314.566i 0.100494 1.21454i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 306.035 + 176.689i 1.16363 + 0.671823i 0.952171 0.305564i \(-0.0988451\pi\)
0.211459 + 0.977387i \(0.432178\pi\)
\(264\) 0 0
\(265\) −159.088 −0.600330
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 191.178 + 110.376i 0.710698 + 0.410321i 0.811319 0.584603i \(-0.198750\pi\)
−0.100622 + 0.994925i \(0.532083\pi\)
\(270\) 0 0
\(271\) −171.040 296.249i −0.631142 1.09317i −0.987319 0.158752i \(-0.949253\pi\)
0.356176 0.934419i \(-0.384080\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 34.8004 20.0920i 0.126547 0.0730619i
\(276\) 0 0
\(277\) 90.0492 155.970i 0.325088 0.563068i −0.656443 0.754376i \(-0.727940\pi\)
0.981530 + 0.191308i \(0.0612729\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 531.477i 1.89138i −0.325074 0.945688i \(-0.605389\pi\)
0.325074 0.945688i \(-0.394611\pi\)
\(282\) 0 0
\(283\) 116.483 201.755i 0.411601 0.712914i −0.583464 0.812139i \(-0.698303\pi\)
0.995065 + 0.0992253i \(0.0316364\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −114.805 + 165.613i −0.400016 + 0.577050i
\(288\) 0 0
\(289\) −144.476 250.240i −0.499917 0.865882i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 421.281i 1.43782i 0.695103 + 0.718910i \(0.255359\pi\)
−0.695103 + 0.718910i \(0.744641\pi\)
\(294\) 0 0
\(295\) −173.600 −0.588473
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −48.2095 + 27.8338i −0.161236 + 0.0930896i
\(300\) 0 0
\(301\) 305.996 + 212.119i 1.01660 + 0.704714i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 172.942 + 99.8480i 0.567022 + 0.327370i
\(306\) 0 0
\(307\) 166.493 0.542323 0.271162 0.962534i \(-0.412592\pi\)
0.271162 + 0.962534i \(0.412592\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 139.712 + 80.6630i 0.449236 + 0.259366i 0.707507 0.706706i \(-0.249820\pi\)
−0.258272 + 0.966072i \(0.583153\pi\)
\(312\) 0 0
\(313\) 109.316 + 189.341i 0.349253 + 0.604924i 0.986117 0.166052i \(-0.0531021\pi\)
−0.636864 + 0.770976i \(0.719769\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −139.940 + 80.7944i −0.441451 + 0.254872i −0.704213 0.709989i \(-0.748700\pi\)
0.262762 + 0.964861i \(0.415367\pi\)
\(318\) 0 0
\(319\) −15.1567 + 26.2523i −0.0475133 + 0.0822955i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.88618i 0.00893555i
\(324\) 0 0
\(325\) −24.8277 + 43.0029i −0.0763930 + 0.132317i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 506.039 + 41.8710i 1.53811 + 0.127267i
\(330\) 0 0
\(331\) −176.578 305.841i −0.533467 0.923992i −0.999236 0.0390857i \(-0.987555\pi\)
0.465769 0.884906i \(-0.345778\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 85.2822i 0.254574i
\(336\) 0 0
\(337\) 274.194 0.813632 0.406816 0.913510i \(-0.366639\pi\)
0.406816 + 0.913510i \(0.366639\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −3.84280 + 2.21864i −0.0112692 + 0.00650627i
\(342\) 0 0
\(343\) 84.0830 332.534i 0.245140 0.969488i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −157.086 90.6939i −0.452698 0.261366i 0.256271 0.966605i \(-0.417506\pi\)
−0.708969 + 0.705239i \(0.750839\pi\)
\(348\) 0 0
\(349\) −40.3342 −0.115571 −0.0577854 0.998329i \(-0.518404\pi\)
−0.0577854 + 0.998329i \(0.518404\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 231.822 + 133.843i 0.656720 + 0.379158i 0.791026 0.611782i \(-0.209547\pi\)
−0.134306 + 0.990940i \(0.542881\pi\)
\(354\) 0 0
\(355\) −22.8020 39.4942i −0.0642310 0.111251i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 33.4009 19.2840i 0.0930387 0.0537159i −0.452759 0.891633i \(-0.649560\pi\)
0.545797 + 0.837917i \(0.316227\pi\)
\(360\) 0 0
\(361\) 93.2034 161.433i 0.258181 0.447183i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 38.0508i 0.104249i
\(366\) 0 0
\(367\) 56.8588 98.4824i 0.154929 0.268344i −0.778104 0.628135i \(-0.783819\pi\)
0.933033 + 0.359791i \(0.117152\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 179.617 + 380.499i 0.484143 + 1.02560i
\(372\) 0 0
\(373\) 47.7009 + 82.6203i 0.127884 + 0.221502i 0.922857 0.385143i \(-0.125848\pi\)
−0.794972 + 0.606646i \(0.792515\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 37.4584i 0.0993592i
\(378\) 0 0
\(379\) −622.681 −1.64296 −0.821479 0.570239i \(-0.806851\pi\)
−0.821479 + 0.570239i \(0.806851\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −636.322 + 367.381i −1.66142 + 0.959219i −0.689376 + 0.724403i \(0.742115\pi\)
−0.972040 + 0.234816i \(0.924551\pi\)
\(384\) 0 0
\(385\) 34.0002 + 23.5692i 0.0883121 + 0.0612187i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −563.496 325.335i −1.44858 0.836336i −0.450179 0.892938i \(-0.648640\pi\)
−0.998397 + 0.0566027i \(0.981973\pi\)
\(390\) 0 0
\(391\) 4.40660 0.0112701
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 82.9601 + 47.8970i 0.210026 + 0.121258i
\(396\) 0 0
\(397\) 325.871 + 564.425i 0.820833 + 1.42172i 0.905063 + 0.425278i \(0.139824\pi\)
−0.0842294 + 0.996446i \(0.526843\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 505.959 292.116i 1.26174 0.728468i 0.288332 0.957530i \(-0.406899\pi\)
0.973412 + 0.229062i \(0.0735659\pi\)
\(402\) 0 0
\(403\) 2.74157 4.74855i 0.00680291 0.0117830i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 100.691i 0.247399i
\(408\) 0 0
\(409\) 209.966 363.672i 0.513364 0.889173i −0.486516 0.873672i \(-0.661732\pi\)
0.999880 0.0155010i \(-0.00493431\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 196.002 + 415.208i 0.474580 + 1.00535i
\(414\) 0 0
\(415\) −57.7815 100.080i −0.139233 0.241158i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 37.2124i 0.0888123i −0.999014 0.0444061i \(-0.985860\pi\)
0.999014 0.0444061i \(-0.0141396\pi\)
\(420\) 0 0
\(421\) 189.949 0.451186 0.225593 0.974222i \(-0.427568\pi\)
0.225593 + 0.974222i \(0.427568\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 3.40407 1.96534i 0.00800958 0.00462433i
\(426\) 0 0
\(427\) 43.5531 526.368i 0.101998 1.23271i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 360.924 + 208.379i 0.837410 + 0.483479i 0.856383 0.516341i \(-0.172706\pi\)
−0.0189728 + 0.999820i \(0.506040\pi\)
\(432\) 0 0
\(433\) −838.980 −1.93760 −0.968799 0.247846i \(-0.920277\pi\)
−0.968799 + 0.247846i \(0.920277\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 230.854 + 133.284i 0.528270 + 0.304997i
\(438\) 0 0
\(439\) 49.3253 + 85.4340i 0.112358 + 0.194610i 0.916721 0.399529i \(-0.130826\pi\)
−0.804362 + 0.594139i \(0.797493\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 396.826 229.107i 0.895769 0.517172i 0.0199437 0.999801i \(-0.493651\pi\)
0.875825 + 0.482629i \(0.160318\pi\)
\(444\) 0 0
\(445\) 15.5986 27.0175i 0.0350530 0.0607135i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 476.631i 1.06154i −0.847517 0.530769i \(-0.821903\pi\)
0.847517 0.530769i \(-0.178097\pi\)
\(450\) 0 0
\(451\) −32.1420 + 55.6716i −0.0712683 + 0.123440i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −50.9475 4.21553i −0.111972 0.00926490i
\(456\) 0 0
\(457\) −208.528 361.181i −0.456298 0.790331i 0.542464 0.840079i \(-0.317492\pi\)
−0.998762 + 0.0497477i \(0.984158\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 13.7887i 0.0299105i −0.999888 0.0149552i \(-0.995239\pi\)
0.999888 0.0149552i \(-0.00476058\pi\)
\(462\) 0 0
\(463\) 599.660 1.29516 0.647581 0.761997i \(-0.275781\pi\)
0.647581 + 0.761997i \(0.275781\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −310.275 + 179.137i −0.664401 + 0.383592i −0.793952 0.607981i \(-0.791980\pi\)
0.129551 + 0.991573i \(0.458646\pi\)
\(468\) 0 0
\(469\) 203.974 96.2874i 0.434913 0.205304i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 102.862 + 59.3873i 0.217467 + 0.125555i
\(474\) 0 0
\(475\) 237.778 0.500585
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 573.217 + 330.947i 1.19669 + 0.690912i 0.959817 0.280627i \(-0.0905425\pi\)
0.236878 + 0.971539i \(0.423876\pi\)
\(480\) 0 0
\(481\) 62.2122 + 107.755i 0.129339 + 0.224022i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −257.981 + 148.945i −0.531920 + 0.307104i
\(486\) 0 0
\(487\) −289.632 + 501.658i −0.594727 + 1.03010i 0.398858 + 0.917013i \(0.369407\pi\)
−0.993585 + 0.113085i \(0.963927\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 717.779i 1.46187i −0.682446 0.730936i \(-0.739084\pi\)
0.682446 0.730936i \(-0.260916\pi\)
\(492\) 0 0
\(493\) −1.48259 + 2.56792i −0.00300728 + 0.00520875i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −68.7161 + 99.1276i −0.138262 + 0.199452i
\(498\) 0 0
\(499\) 214.779 + 372.008i 0.430419 + 0.745508i 0.996909 0.0785608i \(-0.0250325\pi\)
−0.566490 + 0.824068i \(0.691699\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 720.070i 1.43155i −0.698330 0.715776i \(-0.746073\pi\)
0.698330 0.715776i \(-0.253927\pi\)
\(504\) 0 0
\(505\) −357.068 −0.707066
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −286.350 + 165.324i −0.562573 + 0.324802i −0.754177 0.656671i \(-0.771964\pi\)
0.191605 + 0.981472i \(0.438631\pi\)
\(510\) 0 0
\(511\) 91.0083 42.9611i 0.178098 0.0840726i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 80.0888 + 46.2393i 0.155512 + 0.0897850i
\(516\) 0 0
\(517\) 161.981 0.313309
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 261.221 + 150.816i 0.501385 + 0.289475i 0.729285 0.684210i \(-0.239853\pi\)
−0.227901 + 0.973684i \(0.573186\pi\)
\(522\) 0 0
\(523\) 265.175 + 459.297i 0.507028 + 0.878197i 0.999967 + 0.00813378i \(0.00258909\pi\)
−0.492939 + 0.870064i \(0.664078\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.375891 + 0.217021i −0.000713265 + 0.000411804i
\(528\) 0 0
\(529\) −61.0039 + 105.662i −0.115319 + 0.199739i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 79.4358i 0.149035i
\(534\) 0 0
\(535\) 34.5806 59.8954i 0.0646367 0.111954i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 17.9841 107.931i 0.0333657 0.200243i
\(540\) 0 0
\(541\) −186.318 322.713i −0.344396 0.596512i 0.640848 0.767668i \(-0.278583\pi\)
−0.985244 + 0.171156i \(0.945250\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 21.3489i 0.0391722i
\(546\) 0 0
\(547\) −146.893 −0.268543 −0.134272 0.990945i \(-0.542869\pi\)
−0.134272 + 0.990945i \(0.542869\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −155.340 + 89.6857i −0.281924 + 0.162769i
\(552\) 0 0
\(553\) 20.8924 252.498i 0.0377801 0.456597i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −542.991 313.496i −0.974850 0.562830i −0.0741383 0.997248i \(-0.523621\pi\)
−0.900711 + 0.434418i \(0.856954\pi\)
\(558\) 0 0
\(559\) −146.770 −0.262558
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 13.1507 + 7.59257i 0.0233583 + 0.0134859i 0.511634 0.859204i \(-0.329041\pi\)
−0.488275 + 0.872690i \(0.662374\pi\)
\(564\) 0 0
\(565\) −39.9384 69.1754i −0.0706875 0.122434i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −181.017 + 104.510i −0.318132 + 0.183673i −0.650560 0.759455i \(-0.725466\pi\)
0.332428 + 0.943129i \(0.392132\pi\)
\(570\) 0 0
\(571\) −185.956 + 322.085i −0.325667 + 0.564071i −0.981647 0.190707i \(-0.938922\pi\)
0.655980 + 0.754778i \(0.272255\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 363.037i 0.631368i
\(576\) 0 0
\(577\) −22.9361 + 39.7264i −0.0397506 + 0.0688500i −0.885216 0.465180i \(-0.845990\pi\)
0.845466 + 0.534030i \(0.179323\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −174.130 + 251.195i −0.299708 + 0.432349i
\(582\) 0 0
\(583\) 67.1128 + 116.243i 0.115116 + 0.199387i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 71.7427i 0.122219i 0.998131 + 0.0611096i \(0.0194639\pi\)
−0.998131 + 0.0611096i \(0.980536\pi\)
\(588\) 0 0
\(589\) −26.2563 −0.0445778
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −683.978 + 394.895i −1.15342 + 0.665927i −0.949718 0.313106i \(-0.898631\pi\)
−0.203702 + 0.979033i \(0.565297\pi\)
\(594\) 0 0
\(595\) 3.32579 + 2.30547i 0.00558957 + 0.00387474i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −327.619 189.151i −0.546943 0.315777i 0.200945 0.979602i \(-0.435599\pi\)
−0.747888 + 0.663825i \(0.768932\pi\)
\(600\) 0 0
\(601\) −228.767 −0.380644 −0.190322 0.981722i \(-0.560953\pi\)
−0.190322 + 0.981722i \(0.560953\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −265.911 153.524i −0.439522 0.253758i
\(606\) 0 0
\(607\) 469.133 + 812.561i 0.772871 + 1.33865i 0.935983 + 0.352044i \(0.114513\pi\)
−0.163113 + 0.986607i \(0.552153\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −173.343 + 100.080i −0.283704 + 0.163797i
\(612\) 0 0
\(613\) −362.770 + 628.336i −0.591794 + 1.02502i 0.402197 + 0.915553i \(0.368247\pi\)
−0.993991 + 0.109464i \(0.965087\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 203.830i 0.330356i −0.986264 0.165178i \(-0.947180\pi\)
0.986264 0.165178i \(-0.0528199\pi\)
\(618\) 0 0
\(619\) −316.977 + 549.019i −0.512078 + 0.886946i 0.487824 + 0.872942i \(0.337791\pi\)
−0.999902 + 0.0140035i \(0.995542\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −82.2308 6.80400i −0.131992 0.0109213i
\(624\) 0 0
\(625\) −74.3548 128.786i −0.118968 0.206058i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 9.84932i 0.0156587i
\(630\) 0 0
\(631\) −916.941 −1.45316 −0.726578 0.687084i \(-0.758890\pi\)
−0.726578 + 0.687084i \(0.758890\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −162.416 + 93.7711i −0.255774 + 0.147671i
\(636\) 0 0
\(637\) 47.4394 + 126.613i 0.0744732 + 0.198765i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −750.341 433.210i −1.17058 0.675834i −0.216763 0.976224i \(-0.569550\pi\)
−0.953816 + 0.300390i \(0.902883\pi\)
\(642\) 0 0
\(643\) 1111.18 1.72811 0.864056 0.503395i \(-0.167916\pi\)
0.864056 + 0.503395i \(0.167916\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −341.420 197.119i −0.527697 0.304666i 0.212381 0.977187i \(-0.431878\pi\)
−0.740078 + 0.672521i \(0.765211\pi\)
\(648\) 0 0
\(649\) 73.2349 + 126.847i 0.112843 + 0.195449i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −357.841 + 206.600i −0.547995 + 0.316385i −0.748313 0.663346i \(-0.769136\pi\)
0.200318 + 0.979731i \(0.435803\pi\)
\(654\) 0 0
\(655\) −122.583 + 212.320i −0.187150 + 0.324153i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 5.11039i 0.00775477i −0.999992 0.00387739i \(-0.998766\pi\)
0.999992 0.00387739i \(-0.00123421\pi\)
\(660\) 0 0
\(661\) 242.032 419.211i 0.366160 0.634208i −0.622802 0.782380i \(-0.714006\pi\)
0.988962 + 0.148172i \(0.0473390\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 104.500 + 221.373i 0.157144 + 0.332891i
\(666\) 0 0
\(667\) 136.931 + 237.172i 0.205294 + 0.355580i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 168.488i 0.251100i
\(672\) 0 0
\(673\) −1267.99 −1.88409 −0.942043 0.335492i \(-0.891098\pi\)
−0.942043 + 0.335492i \(0.891098\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1044.20 + 602.871i −1.54240 + 0.890503i −0.543710 + 0.839273i \(0.682981\pi\)
−0.998687 + 0.0512296i \(0.983686\pi\)
\(678\) 0 0
\(679\) 647.514 + 448.862i 0.953628 + 0.661063i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1111.53 641.742i −1.62742 0.939593i −0.984858 0.173363i \(-0.944537\pi\)
−0.642566 0.766231i \(-0.722130\pi\)
\(684\) 0 0
\(685\) −546.351 −0.797593
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −143.641 82.9314i −0.208478 0.120365i
\(690\) 0 0
\(691\) 127.035 + 220.032i 0.183843 + 0.318425i 0.943186 0.332265i \(-0.107813\pi\)
−0.759343 + 0.650690i \(0.774480\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 444.668 256.729i 0.639810 0.369394i
\(696\) 0 0
\(697\) −3.14403 + 5.44563i −0.00451081 + 0.00781295i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 908.558i 1.29609i −0.761603 0.648044i \(-0.775587\pi\)
0.761603 0.648044i \(-0.224413\pi\)
\(702\) 0 0
\(703\) 297.906 515.989i 0.423764 0.733981i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 403.146 + 854.021i 0.570221 + 1.20795i
\(708\) 0 0
\(709\) 99.1393 + 171.714i 0.139830 + 0.242192i 0.927432 0.373992i \(-0.122011\pi\)
−0.787602 + 0.616184i \(0.788678\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 40.0879i 0.0562243i
\(714\) 0 0
\(715\) −16.3081 −0.0228085
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −649.862 + 375.198i −0.903841 + 0.521833i −0.878444 0.477845i \(-0.841418\pi\)
−0.0253967 + 0.999677i \(0.508085\pi\)
\(720\) 0 0
\(721\) 20.1693 243.759i 0.0279740 0.338085i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 211.557 + 122.143i 0.291803 + 0.168473i
\(726\) 0 0
\(727\) −1338.46 −1.84108 −0.920539 0.390651i \(-0.872250\pi\)
−0.920539 + 0.390651i \(0.872250\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 10.0616 + 5.80908i 0.0137642 + 0.00794676i
\(732\) 0 0
\(733\) 214.224 + 371.047i 0.292256 + 0.506203i 0.974343 0.225069i \(-0.0722606\pi\)
−0.682087 + 0.731271i \(0.738927\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 62.3144 35.9773i 0.0845515 0.0488158i
\(738\) 0 0
\(739\) −82.4864 + 142.871i −0.111619 + 0.193330i −0.916423 0.400211i \(-0.868937\pi\)
0.804804 + 0.593540i \(0.202270\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1326.94i 1.78593i −0.450131 0.892963i \(-0.648623\pi\)
0.450131 0.892963i \(-0.351377\pi\)
\(744\) 0 0
\(745\) −214.988 + 372.370i −0.288574 + 0.499826i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −182.298 15.0839i −0.243389 0.0201387i
\(750\) 0 0
\(751\) −266.641 461.835i −0.355048 0.614960i 0.632079 0.774904i \(-0.282202\pi\)
−0.987126 + 0.159944i \(0.948869\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 612.437i 0.811175i
\(756\) 0 0
\(757\) −321.071 −0.424136 −0.212068 0.977255i \(-0.568020\pi\)
−0.212068 + 0.977255i \(0.568020\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 100.748 58.1666i 0.132388 0.0764344i −0.432343 0.901709i \(-0.642313\pi\)
0.564731 + 0.825275i \(0.308980\pi\)
\(762\) 0 0
\(763\) −51.0613 + 24.1038i −0.0669218 + 0.0315909i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −156.744 90.4964i −0.204360 0.117988i
\(768\) 0 0
\(769\) 1219.26 1.58551 0.792755 0.609541i \(-0.208646\pi\)
0.792755 + 0.609541i \(0.208646\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 326.955 + 188.768i 0.422969 + 0.244202i 0.696347 0.717705i \(-0.254807\pi\)
−0.273378 + 0.961907i \(0.588141\pi\)
\(774\) 0 0
\(775\) 17.8792 + 30.9677i 0.0230699 + 0.0399583i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −329.421 + 190.191i −0.422877 + 0.244148i
\(780\) 0 0
\(781\) −19.2386 + 33.3221i −0.0246332 + 0.0426660i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 276.487i 0.352213i
\(786\) 0 0
\(787\) 215.504 373.264i 0.273830 0.474287i −0.696010 0.718033i \(-0.745043\pi\)
0.969839 + 0.243746i \(0.0783762\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −120.358 + 173.625i −0.152160 + 0.219501i
\(792\) 0 0
\(793\) 104.100 + 180.307i 0.131274 + 0.227373i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 548.830i 0.688619i −0.938856 0.344310i \(-0.888113\pi\)
0.938856 0.344310i \(-0.111887\pi\)
\(798\) 0 0
\(799\) 15.8445 0.0198304
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 27.8032 16.0522i 0.0346241 0.0199902i
\(804\) 0 0
\(805\) 337.990 159.550i 0.419863 0.198199i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −58.8905 34.0004i −0.0727942 0.0420277i 0.463161 0.886274i \(-0.346715\pi\)
−0.535955 + 0.844246i \(0.680048\pi\)
\(810\) 0 0
\(811\) −1515.41 −1.86857 −0.934285 0.356528i \(-0.883960\pi\)
−0.934285 + 0.356528i \(0.883960\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 472.441 + 272.764i 0.579682 + 0.334679i
\(816\) 0 0
\(817\) 351.407 + 608.656i 0.430119 + 0.744988i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1255.76 725.013i 1.52955 0.883086i 0.530169 0.847892i \(-0.322129\pi\)
0.999381 0.0351935i \(-0.0112048\pi\)
\(822\) 0 0
\(823\) 396.116 686.093i 0.481308 0.833649i −0.518462 0.855100i \(-0.673495\pi\)
0.999770 + 0.0214514i \(0.00682870\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 58.8654i 0.0711794i 0.999366 + 0.0355897i \(0.0113309\pi\)
−0.999366 + 0.0355897i \(0.988669\pi\)
\(828\) 0 0
\(829\) −168.454 + 291.770i −0.203201 + 0.351955i −0.949558 0.313591i \(-0.898468\pi\)
0.746357 + 0.665546i \(0.231801\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.75915 10.5575i 0.00211182 0.0126740i
\(834\) 0 0
\(835\) −317.014 549.085i −0.379658 0.657587i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 399.017i 0.475586i −0.971316 0.237793i \(-0.923576\pi\)
0.971316 0.237793i \(-0.0764240\pi\)
\(840\) 0 0
\(841\) 656.719 0.780879
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −369.907 + 213.566i −0.437760 + 0.252741i
\(846\) 0 0
\(847\) −66.9661 + 809.329i −0.0790627 + 0.955524i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −787.806 454.840i −0.925742 0.534477i
\(852\) 0 0
\(853\) 34.9637 0.0409891 0.0204946 0.999790i \(-0.493476\pi\)
0.0204946 + 0.999790i \(0.493476\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 196.472 + 113.433i 0.229256 + 0.132361i 0.610229 0.792225i \(-0.291078\pi\)
−0.380973 + 0.924586i \(0.624411\pi\)
\(858\) 0 0
\(859\) −41.7024 72.2307i −0.0485476 0.0840870i 0.840730 0.541454i \(-0.182126\pi\)
−0.889278 + 0.457367i \(0.848793\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −221.552 + 127.913i −0.256723 + 0.148219i −0.622839 0.782350i \(-0.714021\pi\)
0.366116 + 0.930569i \(0.380687\pi\)
\(864\) 0 0
\(865\) −414.313 + 717.612i −0.478975 + 0.829609i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 80.8236i 0.0930076i
\(870\) 0 0
\(871\) −44.4571 + 77.0020i −0.0510415 + 0.0884064i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 453.805 654.644i 0.518634 0.748165i
\(876\) 0 0
\(877\) 428.595 + 742.348i 0.488706 + 0.846463i 0.999916 0.0129926i \(-0.00413579\pi\)
−0.511210 + 0.859456i \(0.670802\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1047.82i 1.18935i −0.803965 0.594677i \(-0.797280\pi\)
0.803965 0.594677i \(-0.202720\pi\)
\(882\) 0 0
\(883\) −30.0703 −0.0340547 −0.0170273 0.999855i \(-0.505420\pi\)
−0.0170273 + 0.999855i \(0.505420\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1087.85 + 628.072i −1.22644 + 0.708086i −0.966284 0.257480i \(-0.917108\pi\)
−0.260157 + 0.965566i \(0.583774\pi\)
\(888\) 0 0
\(889\) 407.653 + 282.589i 0.458552 + 0.317872i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 830.064 + 479.237i 0.929523 + 0.536660i
\(894\) 0 0
\(895\) −2.55197 −0.00285137
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −23.3610 13.4875i −0.0259855 0.0150027i
\(900\) 0 0
\(901\) 6.56477 + 11.3705i 0.00728610 + 0.0126199i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −417.183 + 240.861i −0.460976 + 0.266145i
\(906\) 0 0
\(907\) −108.351 + 187.669i −0.119461 + 0.206912i −0.919554 0.392963i \(-0.871450\pi\)
0.800093 + 0.599876i \(0.204783\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1212.23i 1.33065i 0.746552 + 0.665327i \(0.231708\pi\)
−0.746552 + 0.665327i \(0.768292\pi\)
\(912\) 0 0
\(913\) −48.7515 + 84.4401i −0.0533971 + 0.0924864i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 646.220 + 53.4700i 0.704711 + 0.0583097i
\(918\) 0 0
\(919\) −406.939 704.838i −0.442806 0.766962i 0.555091 0.831790i \(-0.312684\pi\)
−0.997896 + 0.0648277i \(0.979350\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 47.5462i 0.0515127i
\(924\) 0 0
\(925\) −811.434 −0.877226
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −751.541 + 433.902i −0.808978 + 0.467064i −0.846601 0.532228i \(-0.821355\pi\)
0.0376226 + 0.999292i \(0.488022\pi\)
\(930\) 0 0
\(931\) 411.484 499.879i 0.441980 0.536927i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.11798 + 0.645466i 0.00119570 + 0.000690338i
\(936\) 0 0
\(937\) 1041.39 1.11141 0.555705 0.831379i \(-0.312448\pi\)
0.555705 + 0.831379i \(0.312448\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −293.234 169.299i −0.311619 0.179914i 0.336032 0.941851i \(-0.390915\pi\)
−0.647651 + 0.761937i \(0.724248\pi\)
\(942\) 0 0
\(943\) 290.382 + 502.957i 0.307934 + 0.533358i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −751.279 + 433.751i −0.793325 + 0.458027i −0.841132 0.540830i \(-0.818110\pi\)
0.0478066 + 0.998857i \(0.484777\pi\)
\(948\) 0 0
\(949\) −19.8357 + 34.3564i −0.0209017 + 0.0362027i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 521.238i 0.546945i 0.961880 + 0.273472i \(0.0881722\pi\)
−0.961880 + 0.273472i \(0.911828\pi\)
\(954\) 0 0
\(955\) 344.321 596.382i 0.360546 0.624484i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 616.855 + 1306.74i 0.643227 + 1.36261i
\(960\) 0 0
\(961\) 478.526 + 828.831i 0.497946 + 0.862467i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 677.848i 0.702434i
\(966\) 0 0
\(967\) −4.51741 −0.00467157 −0.00233579 0.999997i \(-0.500744\pi\)
−0.00233579 + 0.999997i \(0.500744\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1117.45 645.161i 1.15083 0.664429i 0.201737 0.979440i \(-0.435341\pi\)
0.949088 + 0.315010i \(0.102008\pi\)
\(972\) 0 0
\(973\) −1116.08 773.678i −1.14705 0.795147i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 108.427 + 62.6002i 0.110979 + 0.0640739i 0.554462 0.832209i \(-0.312924\pi\)
−0.443483 + 0.896283i \(0.646257\pi\)
\(978\) 0 0
\(979\) −26.3217 −0.0268863
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −660.866 381.551i −0.672295 0.388150i 0.124650 0.992201i \(-0.460219\pi\)
−0.796946 + 0.604051i \(0.793552\pi\)
\(984\) 0 0
\(985\) −11.7095 20.2814i −0.0118878 0.0205902i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 929.289 536.526i 0.939625 0.542493i
\(990\) 0 0
\(991\) 416.369 721.173i 0.420151 0.727722i −0.575803 0.817588i \(-0.695311\pi\)
0.995954 + 0.0898660i \(0.0286439\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 123.764i 0.124386i
\(996\) 0 0
\(997\) 177.689 307.767i 0.178224 0.308693i −0.763048 0.646341i \(-0.776298\pi\)
0.941272 + 0.337649i \(0.109632\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.3.dc.g.305.5 16
3.2 odd 2 inner 1008.3.dc.g.305.4 16
4.3 odd 2 504.3.cu.a.305.5 yes 16
7.2 even 3 inner 1008.3.dc.g.737.4 16
12.11 even 2 504.3.cu.a.305.4 yes 16
21.2 odd 6 inner 1008.3.dc.g.737.5 16
28.3 even 6 3528.3.d.j.1961.4 8
28.11 odd 6 3528.3.d.g.1961.5 8
28.23 odd 6 504.3.cu.a.233.4 16
84.11 even 6 3528.3.d.g.1961.4 8
84.23 even 6 504.3.cu.a.233.5 yes 16
84.59 odd 6 3528.3.d.j.1961.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.3.cu.a.233.4 16 28.23 odd 6
504.3.cu.a.233.5 yes 16 84.23 even 6
504.3.cu.a.305.4 yes 16 12.11 even 2
504.3.cu.a.305.5 yes 16 4.3 odd 2
1008.3.dc.g.305.4 16 3.2 odd 2 inner
1008.3.dc.g.305.5 16 1.1 even 1 trivial
1008.3.dc.g.737.4 16 7.2 even 3 inner
1008.3.dc.g.737.5 16 21.2 odd 6 inner
3528.3.d.g.1961.4 8 84.11 even 6
3528.3.d.g.1961.5 8 28.11 odd 6
3528.3.d.j.1961.4 8 28.3 even 6
3528.3.d.j.1961.5 8 84.59 odd 6