Properties

Label 1008.3.dc.f.305.4
Level $1008$
Weight $3$
Character 1008.305
Analytic conductor $27.466$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,3,Mod(305,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.305"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.dc (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0,0,40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 38 x^{14} - 120 x^{13} + 1059 x^{12} - 3540 x^{11} + 20690 x^{10} - 73200 x^{9} + 269971 x^{8} + \cdots + 352836 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 305.4
Root \(1.01836 - 3.17807i\) of defining polynomial
Character \(\chi\) \(=\) 1008.305
Dual form 1008.3.dc.f.737.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0443209 + 0.0255887i) q^{5} +(6.98675 + 0.430549i) q^{7} +(-6.88786 - 3.97671i) q^{11} +8.73248 q^{13} +(-25.1822 - 14.5390i) q^{17} +(-15.5493 - 26.9321i) q^{19} +(25.1822 - 14.5390i) q^{23} +(-12.4987 + 21.6484i) q^{25} +10.1650i q^{29} +(16.3725 - 28.3580i) q^{31} +(-0.320676 + 0.159699i) q^{35} +(13.7520 + 23.8192i) q^{37} +2.97791i q^{41} +7.18571 q^{43} +(16.3348 - 9.43088i) q^{47} +(48.6293 + 6.01627i) q^{49} +(-86.8096 - 50.1196i) q^{53} +0.407035 q^{55} +(-33.9854 - 19.6215i) q^{59} +(-5.31052 - 9.19810i) q^{61} +(-0.387031 + 0.223452i) q^{65} +(49.6552 - 86.0054i) q^{67} -16.0955i q^{71} +(-7.28156 + 12.6120i) q^{73} +(-46.4116 - 30.7498i) q^{77} +(-55.2149 - 95.6350i) q^{79} -106.655i q^{83} +1.48813 q^{85} +(13.3293 - 7.69565i) q^{89} +(61.0116 + 3.75976i) q^{91} +(1.37831 + 0.795770i) q^{95} +116.379 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 40 q^{13} + 20 q^{19} - 4 q^{25} + 56 q^{31} + 76 q^{37} - 72 q^{43} - 48 q^{49} - 648 q^{55} - 72 q^{61} + 156 q^{67} + 124 q^{73} - 184 q^{79} - 864 q^{85} + 116 q^{91} + 1112 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.0443209 + 0.0255887i −0.00886417 + 0.00511773i −0.504426 0.863455i \(-0.668296\pi\)
0.495561 + 0.868573i \(0.334962\pi\)
\(6\) 0 0
\(7\) 6.98675 + 0.430549i 0.998107 + 0.0615069i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −6.88786 3.97671i −0.626169 0.361519i 0.153098 0.988211i \(-0.451075\pi\)
−0.779267 + 0.626692i \(0.784408\pi\)
\(12\) 0 0
\(13\) 8.73248 0.671729 0.335865 0.941910i \(-0.390972\pi\)
0.335865 + 0.941910i \(0.390972\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −25.1822 14.5390i −1.48131 0.855234i −0.481533 0.876428i \(-0.659920\pi\)
−0.999775 + 0.0211937i \(0.993253\pi\)
\(18\) 0 0
\(19\) −15.5493 26.9321i −0.818383 1.41748i −0.906873 0.421404i \(-0.861538\pi\)
0.0884901 0.996077i \(-0.471796\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 25.1822 14.5390i 1.09488 0.632129i 0.160009 0.987116i \(-0.448848\pi\)
0.934872 + 0.354986i \(0.115514\pi\)
\(24\) 0 0
\(25\) −12.4987 + 21.6484i −0.499948 + 0.865935i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 10.1650i 0.350518i 0.984522 + 0.175259i \(0.0560763\pi\)
−0.984522 + 0.175259i \(0.943924\pi\)
\(30\) 0 0
\(31\) 16.3725 28.3580i 0.528146 0.914775i −0.471316 0.881964i \(-0.656221\pi\)
0.999462 0.0328106i \(-0.0104458\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.320676 + 0.159699i −0.00916217 + 0.00456283i
\(36\) 0 0
\(37\) 13.7520 + 23.8192i 0.371676 + 0.643761i 0.989823 0.142301i \(-0.0454500\pi\)
−0.618148 + 0.786062i \(0.712117\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.97791i 0.0726319i 0.999340 + 0.0363159i \(0.0115623\pi\)
−0.999340 + 0.0363159i \(0.988438\pi\)
\(42\) 0 0
\(43\) 7.18571 0.167110 0.0835548 0.996503i \(-0.473373\pi\)
0.0835548 + 0.996503i \(0.473373\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 16.3348 9.43088i 0.347548 0.200657i −0.316057 0.948740i \(-0.602359\pi\)
0.663605 + 0.748083i \(0.269026\pi\)
\(48\) 0 0
\(49\) 48.6293 + 6.01627i 0.992434 + 0.122781i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −86.8096 50.1196i −1.63792 0.945652i −0.981549 0.191212i \(-0.938758\pi\)
−0.656369 0.754440i \(-0.727908\pi\)
\(54\) 0 0
\(55\) 0.407035 0.00740063
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −33.9854 19.6215i −0.576024 0.332568i 0.183528 0.983015i \(-0.441248\pi\)
−0.759552 + 0.650447i \(0.774582\pi\)
\(60\) 0 0
\(61\) −5.31052 9.19810i −0.0870578 0.150788i 0.819208 0.573496i \(-0.194413\pi\)
−0.906266 + 0.422707i \(0.861080\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.387031 + 0.223452i −0.00595432 + 0.00343773i
\(66\) 0 0
\(67\) 49.6552 86.0054i 0.741123 1.28366i −0.210862 0.977516i \(-0.567627\pi\)
0.951984 0.306146i \(-0.0990397\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 16.0955i 0.226697i −0.993555 0.113349i \(-0.963842\pi\)
0.993555 0.113349i \(-0.0361577\pi\)
\(72\) 0 0
\(73\) −7.28156 + 12.6120i −0.0997474 + 0.172768i −0.911580 0.411123i \(-0.865137\pi\)
0.811833 + 0.583890i \(0.198470\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −46.4116 30.7498i −0.602748 0.399348i
\(78\) 0 0
\(79\) −55.2149 95.6350i −0.698923 1.21057i −0.968840 0.247686i \(-0.920330\pi\)
0.269918 0.962883i \(-0.413003\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 106.655i 1.28500i −0.766284 0.642502i \(-0.777896\pi\)
0.766284 0.642502i \(-0.222104\pi\)
\(84\) 0 0
\(85\) 1.48813 0.0175074
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 13.3293 7.69565i 0.149767 0.0864680i −0.423244 0.906016i \(-0.639109\pi\)
0.573011 + 0.819548i \(0.305775\pi\)
\(90\) 0 0
\(91\) 61.0116 + 3.75976i 0.670457 + 0.0413160i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.37831 + 0.795770i 0.0145086 + 0.00837653i
\(96\) 0 0
\(97\) 116.379 1.19978 0.599890 0.800083i \(-0.295211\pi\)
0.599890 + 0.800083i \(0.295211\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −52.5722 30.3526i −0.520517 0.300520i 0.216629 0.976254i \(-0.430494\pi\)
−0.737146 + 0.675734i \(0.763827\pi\)
\(102\) 0 0
\(103\) 80.8811 + 140.090i 0.785253 + 1.36010i 0.928848 + 0.370462i \(0.120801\pi\)
−0.143595 + 0.989637i \(0.545866\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −38.5837 + 22.2763i −0.360595 + 0.208190i −0.669342 0.742955i \(-0.733424\pi\)
0.308747 + 0.951144i \(0.400090\pi\)
\(108\) 0 0
\(109\) 50.2502 87.0359i 0.461011 0.798495i −0.538001 0.842944i \(-0.680820\pi\)
0.999012 + 0.0444499i \(0.0141535\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 181.815i 1.60899i −0.593963 0.804493i \(-0.702437\pi\)
0.593963 0.804493i \(-0.297563\pi\)
\(114\) 0 0
\(115\) −0.744066 + 1.28876i −0.00647014 + 0.0112066i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −169.682 112.422i −1.42590 0.944726i
\(120\) 0 0
\(121\) −28.8716 50.0070i −0.238608 0.413281i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.55873i 0.0204699i
\(126\) 0 0
\(127\) 87.6886 0.690461 0.345231 0.938518i \(-0.387801\pi\)
0.345231 + 0.938518i \(0.387801\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −65.7880 + 37.9827i −0.502198 + 0.289944i −0.729621 0.683852i \(-0.760303\pi\)
0.227423 + 0.973796i \(0.426970\pi\)
\(132\) 0 0
\(133\) −97.0433 194.863i −0.729649 1.46513i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 129.676 + 74.8682i 0.946537 + 0.546484i 0.892004 0.452028i \(-0.149299\pi\)
0.0545337 + 0.998512i \(0.482633\pi\)
\(138\) 0 0
\(139\) −127.565 −0.917734 −0.458867 0.888505i \(-0.651745\pi\)
−0.458867 + 0.888505i \(0.651745\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −60.1481 34.7265i −0.420616 0.242843i
\(144\) 0 0
\(145\) −0.260109 0.450522i −0.00179386 0.00310705i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −162.279 + 93.6918i −1.08912 + 0.628804i −0.933342 0.358988i \(-0.883122\pi\)
−0.155779 + 0.987792i \(0.549789\pi\)
\(150\) 0 0
\(151\) 12.4372 21.5419i 0.0823657 0.142662i −0.821900 0.569632i \(-0.807086\pi\)
0.904266 + 0.426970i \(0.140419\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.67580i 0.0108116i
\(156\) 0 0
\(157\) 71.7550 124.283i 0.457038 0.791613i −0.541765 0.840530i \(-0.682244\pi\)
0.998803 + 0.0489172i \(0.0155770\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 182.202 90.7380i 1.13169 0.563590i
\(162\) 0 0
\(163\) 90.4979 + 156.747i 0.555202 + 0.961637i 0.997888 + 0.0649608i \(0.0206922\pi\)
−0.442686 + 0.896677i \(0.645974\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.7017i 0.0940219i 0.998894 + 0.0470110i \(0.0149696\pi\)
−0.998894 + 0.0470110i \(0.985030\pi\)
\(168\) 0 0
\(169\) −92.7438 −0.548780
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 206.741 119.362i 1.19503 0.689952i 0.235589 0.971853i \(-0.424298\pi\)
0.959444 + 0.281901i \(0.0909648\pi\)
\(174\) 0 0
\(175\) −96.6459 + 145.870i −0.552262 + 0.833545i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 156.153 + 90.1549i 0.872362 + 0.503659i 0.868133 0.496332i \(-0.165320\pi\)
0.00422981 + 0.999991i \(0.498654\pi\)
\(180\) 0 0
\(181\) 161.018 0.889602 0.444801 0.895630i \(-0.353274\pi\)
0.444801 + 0.895630i \(0.353274\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.21900 0.703791i −0.00658920 0.00380427i
\(186\) 0 0
\(187\) 115.635 + 200.285i 0.618367 + 1.07104i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −98.1384 + 56.6602i −0.513813 + 0.296650i −0.734400 0.678717i \(-0.762536\pi\)
0.220586 + 0.975367i \(0.429203\pi\)
\(192\) 0 0
\(193\) −176.314 + 305.384i −0.913542 + 1.58230i −0.104520 + 0.994523i \(0.533331\pi\)
−0.809022 + 0.587779i \(0.800003\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 236.056i 1.19825i 0.800654 + 0.599127i \(0.204485\pi\)
−0.800654 + 0.599127i \(0.795515\pi\)
\(198\) 0 0
\(199\) 52.5555 91.0288i 0.264098 0.457431i −0.703229 0.710963i \(-0.748259\pi\)
0.967327 + 0.253532i \(0.0815925\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4.37653 + 71.0204i −0.0215593 + 0.349854i
\(204\) 0 0
\(205\) −0.0762006 0.131983i −0.000371710 0.000643821i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 247.340i 1.18344i
\(210\) 0 0
\(211\) −112.163 −0.531577 −0.265788 0.964031i \(-0.585632\pi\)
−0.265788 + 0.964031i \(0.585632\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −0.318477 + 0.183873i −0.00148129 + 0.000855222i
\(216\) 0 0
\(217\) 126.600 191.081i 0.583411 0.880558i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −219.903 126.961i −0.995038 0.574486i
\(222\) 0 0
\(223\) −139.127 −0.623887 −0.311944 0.950101i \(-0.600980\pi\)
−0.311944 + 0.950101i \(0.600980\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −104.485 60.3245i −0.460287 0.265747i 0.251878 0.967759i \(-0.418952\pi\)
−0.712165 + 0.702012i \(0.752285\pi\)
\(228\) 0 0
\(229\) −162.831 282.031i −0.711051 1.23158i −0.964463 0.264219i \(-0.914886\pi\)
0.253411 0.967359i \(-0.418447\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 171.696 99.1288i 0.736893 0.425446i −0.0840454 0.996462i \(-0.526784\pi\)
0.820939 + 0.571016i \(0.193451\pi\)
\(234\) 0 0
\(235\) −0.482647 + 0.835969i −0.00205382 + 0.00355732i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 268.284i 1.12253i 0.827636 + 0.561265i \(0.189685\pi\)
−0.827636 + 0.561265i \(0.810315\pi\)
\(240\) 0 0
\(241\) 26.9282 46.6409i 0.111735 0.193531i −0.804735 0.593634i \(-0.797693\pi\)
0.916470 + 0.400104i \(0.131026\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.30924 + 0.977712i −0.00942546 + 0.00399066i
\(246\) 0 0
\(247\) −135.784 235.184i −0.549732 0.952163i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 302.100i 1.20358i −0.798653 0.601792i \(-0.794454\pi\)
0.798653 0.601792i \(-0.205546\pi\)
\(252\) 0 0
\(253\) −231.269 −0.914107
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 387.349 223.636i 1.50719 0.870178i 0.507228 0.861812i \(-0.330670\pi\)
0.999965 0.00836616i \(-0.00266306\pi\)
\(258\) 0 0
\(259\) 85.8265 + 172.339i 0.331376 + 0.665403i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 86.7847 + 50.1052i 0.329980 + 0.190514i 0.655832 0.754907i \(-0.272318\pi\)
−0.325852 + 0.945421i \(0.605651\pi\)
\(264\) 0 0
\(265\) 5.12997 0.0193584
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −262.872 151.769i −0.977219 0.564198i −0.0757896 0.997124i \(-0.524148\pi\)
−0.901429 + 0.432926i \(0.857481\pi\)
\(270\) 0 0
\(271\) 66.0670 + 114.431i 0.243789 + 0.422256i 0.961791 0.273786i \(-0.0882761\pi\)
−0.718001 + 0.696042i \(0.754943\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 172.178 99.4073i 0.626104 0.361481i
\(276\) 0 0
\(277\) −177.128 + 306.794i −0.639450 + 1.10756i 0.346103 + 0.938196i \(0.387505\pi\)
−0.985554 + 0.169364i \(0.945829\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 378.390i 1.34658i 0.739376 + 0.673292i \(0.235120\pi\)
−0.739376 + 0.673292i \(0.764880\pi\)
\(282\) 0 0
\(283\) 118.430 205.127i 0.418481 0.724830i −0.577306 0.816528i \(-0.695896\pi\)
0.995787 + 0.0916981i \(0.0292295\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.28213 + 20.8059i −0.00446736 + 0.0724943i
\(288\) 0 0
\(289\) 278.264 + 481.967i 0.962850 + 1.66771i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 329.073i 1.12312i 0.827437 + 0.561558i \(0.189798\pi\)
−0.827437 + 0.561558i \(0.810202\pi\)
\(294\) 0 0
\(295\) 2.00835 0.00680797
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 219.903 126.961i 0.735463 0.424620i
\(300\) 0 0
\(301\) 50.2047 + 3.09380i 0.166793 + 0.0102784i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.470734 + 0.271778i 0.00154339 + 0.000891077i
\(306\) 0 0
\(307\) −559.322 −1.82189 −0.910947 0.412523i \(-0.864648\pi\)
−0.910947 + 0.412523i \(0.864648\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 402.938 + 232.636i 1.29562 + 0.748027i 0.979644 0.200740i \(-0.0643348\pi\)
0.315976 + 0.948767i \(0.397668\pi\)
\(312\) 0 0
\(313\) 225.238 + 390.124i 0.719611 + 1.24640i 0.961154 + 0.276013i \(0.0890134\pi\)
−0.241542 + 0.970390i \(0.577653\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −466.859 + 269.541i −1.47274 + 0.850287i −0.999530 0.0306621i \(-0.990238\pi\)
−0.473211 + 0.880949i \(0.656905\pi\)
\(318\) 0 0
\(319\) 40.4233 70.0152i 0.126719 0.219484i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 904.282i 2.79964i
\(324\) 0 0
\(325\) −109.145 + 189.044i −0.335829 + 0.581674i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 118.187 58.8583i 0.359232 0.178900i
\(330\) 0 0
\(331\) −214.709 371.887i −0.648668 1.12353i −0.983441 0.181227i \(-0.941993\pi\)
0.334773 0.942299i \(-0.391340\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.08244i 0.0151715i
\(336\) 0 0
\(337\) −445.340 −1.32148 −0.660742 0.750613i \(-0.729758\pi\)
−0.660742 + 0.750613i \(0.729758\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −225.543 + 130.217i −0.661417 + 0.381869i
\(342\) 0 0
\(343\) 337.170 + 62.9714i 0.983003 + 0.183590i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 512.667 + 295.988i 1.47743 + 0.852992i 0.999675 0.0255029i \(-0.00811872\pi\)
0.477751 + 0.878495i \(0.341452\pi\)
\(348\) 0 0
\(349\) 276.865 0.793311 0.396655 0.917968i \(-0.370171\pi\)
0.396655 + 0.917968i \(0.370171\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 514.365 + 296.969i 1.45712 + 0.841271i 0.998869 0.0475496i \(-0.0151412\pi\)
0.458255 + 0.888821i \(0.348475\pi\)
\(354\) 0 0
\(355\) 0.411862 + 0.713367i 0.00116018 + 0.00200948i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 305.428 176.339i 0.850775 0.491195i −0.0101374 0.999949i \(-0.503227\pi\)
0.860912 + 0.508754i \(0.169894\pi\)
\(360\) 0 0
\(361\) −303.060 + 524.915i −0.839501 + 1.45406i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0.745302i 0.00204192i
\(366\) 0 0
\(367\) −27.6654 + 47.9179i −0.0753826 + 0.130567i −0.901253 0.433294i \(-0.857351\pi\)
0.825870 + 0.563861i \(0.190684\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −584.938 387.548i −1.57665 1.04460i
\(372\) 0 0
\(373\) −195.809 339.151i −0.524957 0.909252i −0.999578 0.0290617i \(-0.990748\pi\)
0.474621 0.880190i \(-0.342585\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 88.7658i 0.235453i
\(378\) 0 0
\(379\) −96.5047 −0.254630 −0.127315 0.991862i \(-0.540636\pi\)
−0.127315 + 0.991862i \(0.540636\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 281.443 162.491i 0.734838 0.424259i −0.0853514 0.996351i \(-0.527201\pi\)
0.820190 + 0.572092i \(0.193868\pi\)
\(384\) 0 0
\(385\) 2.84385 + 0.175248i 0.00738662 + 0.000455190i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 275.937 + 159.312i 0.709350 + 0.409543i 0.810820 0.585295i \(-0.199021\pi\)
−0.101470 + 0.994839i \(0.532355\pi\)
\(390\) 0 0
\(391\) −845.528 −2.16247
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.89434 + 2.82575i 0.0123907 + 0.00715380i
\(396\) 0 0
\(397\) −67.5631 117.023i −0.170184 0.294768i 0.768300 0.640090i \(-0.221103\pi\)
−0.938484 + 0.345322i \(0.887770\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −70.0122 + 40.4216i −0.174594 + 0.100802i −0.584750 0.811213i \(-0.698808\pi\)
0.410156 + 0.912015i \(0.365474\pi\)
\(402\) 0 0
\(403\) 142.973 247.636i 0.354771 0.614481i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 218.751i 0.537471i
\(408\) 0 0
\(409\) −260.419 + 451.059i −0.636722 + 1.10283i 0.349426 + 0.936964i \(0.386377\pi\)
−0.986148 + 0.165870i \(0.946957\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −228.999 151.723i −0.554478 0.367367i
\(414\) 0 0
\(415\) 2.72917 + 4.72706i 0.00657631 + 0.0113905i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 452.306i 1.07949i 0.841829 + 0.539744i \(0.181479\pi\)
−0.841829 + 0.539744i \(0.818521\pi\)
\(420\) 0 0
\(421\) 8.02945 0.0190723 0.00953616 0.999955i \(-0.496964\pi\)
0.00953616 + 0.999955i \(0.496964\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 629.490 363.436i 1.48115 0.855144i
\(426\) 0 0
\(427\) −33.1431 66.5512i −0.0776184 0.155858i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 582.041 + 336.042i 1.35044 + 0.779679i 0.988311 0.152448i \(-0.0487157\pi\)
0.362132 + 0.932127i \(0.382049\pi\)
\(432\) 0 0
\(433\) 161.009 0.371846 0.185923 0.982564i \(-0.440472\pi\)
0.185923 + 0.982564i \(0.440472\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −783.132 452.141i −1.79206 1.03465i
\(438\) 0 0
\(439\) 342.661 + 593.506i 0.780548 + 1.35195i 0.931623 + 0.363427i \(0.118393\pi\)
−0.151075 + 0.988522i \(0.548273\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −68.1622 + 39.3535i −0.153865 + 0.0888340i −0.574956 0.818185i \(-0.694981\pi\)
0.421091 + 0.907019i \(0.361647\pi\)
\(444\) 0 0
\(445\) −0.393843 + 0.682156i −0.000885040 + 0.00153293i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.47467i 0.0166474i −0.999965 0.00832369i \(-0.997350\pi\)
0.999965 0.00832369i \(-0.00264954\pi\)
\(450\) 0 0
\(451\) 11.8423 20.5114i 0.0262578 0.0454798i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.80029 + 1.39457i −0.00615449 + 0.00306499i
\(456\) 0 0
\(457\) 101.732 + 176.206i 0.222609 + 0.385571i 0.955600 0.294669i \(-0.0952092\pi\)
−0.732990 + 0.680239i \(0.761876\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 884.717i 1.91913i 0.281494 + 0.959563i \(0.409170\pi\)
−0.281494 + 0.959563i \(0.590830\pi\)
\(462\) 0 0
\(463\) −388.379 −0.838831 −0.419415 0.907794i \(-0.637765\pi\)
−0.419415 + 0.907794i \(0.637765\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −55.5028 + 32.0445i −0.118850 + 0.0686178i −0.558246 0.829675i \(-0.688526\pi\)
0.439397 + 0.898293i \(0.355192\pi\)
\(468\) 0 0
\(469\) 383.958 579.519i 0.818674 1.23565i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −49.4942 28.5755i −0.104639 0.0604133i
\(474\) 0 0
\(475\) 777.382 1.63659
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −716.263 413.535i −1.49533 0.863329i −0.495345 0.868696i \(-0.664958\pi\)
−0.999986 + 0.00536689i \(0.998292\pi\)
\(480\) 0 0
\(481\) 120.089 + 208.000i 0.249665 + 0.432433i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5.15800 + 2.97797i −0.0106351 + 0.00614015i
\(486\) 0 0
\(487\) 288.976 500.522i 0.593380 1.02777i −0.400393 0.916344i \(-0.631126\pi\)
0.993773 0.111421i \(-0.0355404\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 390.760i 0.795845i −0.917419 0.397923i \(-0.869731\pi\)
0.917419 0.397923i \(-0.130269\pi\)
\(492\) 0 0
\(493\) 147.789 255.978i 0.299775 0.519225i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 6.92990 112.455i 0.0139435 0.226268i
\(498\) 0 0
\(499\) −273.835 474.296i −0.548767 0.950492i −0.998359 0.0572584i \(-0.981764\pi\)
0.449592 0.893234i \(-0.351569\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 45.8671i 0.0911870i −0.998960 0.0455935i \(-0.985482\pi\)
0.998960 0.0455935i \(-0.0145179\pi\)
\(504\) 0 0
\(505\) 3.10673 0.00615193
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 370.961 214.174i 0.728804 0.420775i −0.0891808 0.996015i \(-0.528425\pi\)
0.817984 + 0.575241i \(0.195092\pi\)
\(510\) 0 0
\(511\) −56.3045 + 84.9820i −0.110185 + 0.166305i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7.16944 4.13928i −0.0139212 0.00803743i
\(516\) 0 0
\(517\) −150.015 −0.290165
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −246.599 142.374i −0.473318 0.273270i 0.244310 0.969697i \(-0.421439\pi\)
−0.717628 + 0.696427i \(0.754772\pi\)
\(522\) 0 0
\(523\) 491.642 + 851.548i 0.940041 + 1.62820i 0.765388 + 0.643569i \(0.222547\pi\)
0.174653 + 0.984630i \(0.444120\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −824.593 + 476.079i −1.56469 + 0.903376i
\(528\) 0 0
\(529\) 158.264 274.121i 0.299175 0.518187i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 26.0045i 0.0487889i
\(534\) 0 0
\(535\) 1.14004 1.97461i 0.00213092 0.00369086i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −311.027 234.824i −0.577044 0.435665i
\(540\) 0 0
\(541\) −70.0577 121.343i −0.129497 0.224295i 0.793985 0.607937i \(-0.208003\pi\)
−0.923482 + 0.383643i \(0.874669\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.14334i 0.00943732i
\(546\) 0 0
\(547\) −154.927 −0.283231 −0.141615 0.989922i \(-0.545230\pi\)
−0.141615 + 0.989922i \(0.545230\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 273.766 158.059i 0.496852 0.286858i
\(552\) 0 0
\(553\) −344.597 691.950i −0.623141 1.25127i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −37.6509 21.7378i −0.0675960 0.0390265i 0.465821 0.884879i \(-0.345759\pi\)
−0.533417 + 0.845852i \(0.679092\pi\)
\(558\) 0 0
\(559\) 62.7491 0.112252
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4.46739 2.57925i −0.00793498 0.00458126i 0.496027 0.868307i \(-0.334792\pi\)
−0.503962 + 0.863726i \(0.668125\pi\)
\(564\) 0 0
\(565\) 4.65241 + 8.05821i 0.00823436 + 0.0142623i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 262.711 151.676i 0.461706 0.266566i −0.251055 0.967973i \(-0.580778\pi\)
0.712761 + 0.701407i \(0.247444\pi\)
\(570\) 0 0
\(571\) −546.563 + 946.674i −0.957202 + 1.65792i −0.227957 + 0.973671i \(0.573204\pi\)
−0.729246 + 0.684252i \(0.760129\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 726.873i 1.26413i
\(576\) 0 0
\(577\) 420.854 728.940i 0.729383 1.26333i −0.227762 0.973717i \(-0.573141\pi\)
0.957144 0.289611i \(-0.0935259\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 45.9203 745.174i 0.0790367 1.28257i
\(582\) 0 0
\(583\) 398.622 + 690.433i 0.683742 + 1.18428i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 803.940i 1.36957i −0.728743 0.684787i \(-0.759895\pi\)
0.728743 0.684787i \(-0.240105\pi\)
\(588\) 0 0
\(589\) −1018.32 −1.72890
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 748.506 432.150i 1.26224 0.728752i 0.288729 0.957411i \(-0.406767\pi\)
0.973507 + 0.228658i \(0.0734339\pi\)
\(594\) 0 0
\(595\) 10.3972 + 0.640713i 0.0174743 + 0.00107683i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −595.095 343.578i −0.993480 0.573586i −0.0871675 0.996194i \(-0.527782\pi\)
−0.906313 + 0.422608i \(0.861115\pi\)
\(600\) 0 0
\(601\) 733.136 1.21986 0.609930 0.792455i \(-0.291198\pi\)
0.609930 + 0.792455i \(0.291198\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.55923 + 1.47757i 0.00423013 + 0.00244226i
\(606\) 0 0
\(607\) −216.418 374.848i −0.356538 0.617542i 0.630842 0.775911i \(-0.282710\pi\)
−0.987380 + 0.158370i \(0.949376\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 142.643 82.3550i 0.233458 0.134787i
\(612\) 0 0
\(613\) −1.59035 + 2.75456i −0.00259437 + 0.00449358i −0.867320 0.497752i \(-0.834159\pi\)
0.864725 + 0.502245i \(0.167492\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 692.934i 1.12307i 0.827453 + 0.561535i \(0.189789\pi\)
−0.827453 + 0.561535i \(0.810211\pi\)
\(618\) 0 0
\(619\) 147.819 256.030i 0.238803 0.413619i −0.721568 0.692344i \(-0.756578\pi\)
0.960371 + 0.278725i \(0.0899116\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 96.4415 48.0287i 0.154802 0.0770925i
\(624\) 0 0
\(625\) −312.402 541.096i −0.499843 0.865753i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 799.760i 1.27148i
\(630\) 0 0
\(631\) 355.577 0.563514 0.281757 0.959486i \(-0.409083\pi\)
0.281757 + 0.959486i \(0.409083\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.88643 + 2.24383i −0.00612037 + 0.00353360i
\(636\) 0 0
\(637\) 424.654 + 52.5369i 0.666647 + 0.0824755i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 432.469 + 249.686i 0.674679 + 0.389526i 0.797847 0.602860i \(-0.205972\pi\)
−0.123168 + 0.992386i \(0.539305\pi\)
\(642\) 0 0
\(643\) −20.0253 −0.0311436 −0.0155718 0.999879i \(-0.504957\pi\)
−0.0155718 + 0.999879i \(0.504957\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1045.02 603.341i −1.61517 0.932521i −0.988145 0.153526i \(-0.950937\pi\)
−0.627030 0.778995i \(-0.715730\pi\)
\(648\) 0 0
\(649\) 156.058 + 270.300i 0.240459 + 0.416487i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −477.039 + 275.419i −0.730534 + 0.421774i −0.818618 0.574339i \(-0.805259\pi\)
0.0880832 + 0.996113i \(0.471926\pi\)
\(654\) 0 0
\(655\) 1.94385 3.36685i 0.00296771 0.00514023i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 521.731i 0.791702i 0.918315 + 0.395851i \(0.129550\pi\)
−0.918315 + 0.395851i \(0.870450\pi\)
\(660\) 0 0
\(661\) 506.319 876.971i 0.765990 1.32673i −0.173732 0.984793i \(-0.555583\pi\)
0.939722 0.341940i \(-0.111084\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 9.28732 + 6.15328i 0.0139659 + 0.00925305i
\(666\) 0 0
\(667\) 147.789 + 255.978i 0.221573 + 0.383775i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 84.4736i 0.125892i
\(672\) 0 0
\(673\) −229.880 −0.341576 −0.170788 0.985308i \(-0.554631\pi\)
−0.170788 + 0.985308i \(0.554631\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −258.781 + 149.407i −0.382247 + 0.220690i −0.678795 0.734328i \(-0.737498\pi\)
0.296549 + 0.955018i \(0.404164\pi\)
\(678\) 0 0
\(679\) 813.108 + 50.1066i 1.19751 + 0.0737948i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −275.387 158.995i −0.403202 0.232789i 0.284663 0.958628i \(-0.408118\pi\)
−0.687865 + 0.725839i \(0.741452\pi\)
\(684\) 0 0
\(685\) −7.66311 −0.0111870
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −758.063 437.668i −1.10024 0.635222i
\(690\) 0 0
\(691\) −30.7568 53.2724i −0.0445106 0.0770946i 0.842912 0.538052i \(-0.180840\pi\)
−0.887422 + 0.460957i \(0.847506\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.65379 3.26422i 0.00813495 0.00469672i
\(696\) 0 0
\(697\) 43.2957 74.9904i 0.0621172 0.107590i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 58.4919i 0.0834407i 0.999129 + 0.0417204i \(0.0132839\pi\)
−0.999129 + 0.0417204i \(0.986716\pi\)
\(702\) 0 0
\(703\) 427.667 740.742i 0.608346 1.05369i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −354.240 234.701i −0.501047 0.331967i
\(708\) 0 0
\(709\) −99.4793 172.303i −0.140309 0.243023i 0.787304 0.616565i \(-0.211476\pi\)
−0.927613 + 0.373542i \(0.878143\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 952.158i 1.33543i
\(714\) 0 0
\(715\) 3.55442 0.00497122
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 632.241 365.024i 0.879333 0.507683i 0.00889476 0.999960i \(-0.497169\pi\)
0.870439 + 0.492277i \(0.163835\pi\)
\(720\) 0 0
\(721\) 504.780 + 1013.60i 0.700111 + 1.40582i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −220.056 127.049i −0.303526 0.175241i
\(726\) 0 0
\(727\) −427.442 −0.587953 −0.293976 0.955813i \(-0.594979\pi\)
−0.293976 + 0.955813i \(0.594979\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −180.952 104.473i −0.247541 0.142918i
\(732\) 0 0
\(733\) −51.3845 89.0005i −0.0701016 0.121420i 0.828844 0.559480i \(-0.188999\pi\)
−0.898946 + 0.438060i \(0.855666\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −684.037 + 394.929i −0.928136 + 0.535860i
\(738\) 0 0
\(739\) −163.820 + 283.744i −0.221678 + 0.383957i −0.955318 0.295581i \(-0.904487\pi\)
0.733640 + 0.679539i \(0.237820\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 267.882i 0.360541i 0.983617 + 0.180271i \(0.0576973\pi\)
−0.983617 + 0.180271i \(0.942303\pi\)
\(744\) 0 0
\(745\) 4.79490 8.30500i 0.00643610 0.0111477i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −279.165 + 139.027i −0.372717 + 0.185616i
\(750\) 0 0
\(751\) −488.726 846.498i −0.650766 1.12716i −0.982937 0.183941i \(-0.941114\pi\)
0.332171 0.943219i \(-0.392219\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.27301i 0.00168610i
\(756\) 0 0
\(757\) 1371.04 1.81115 0.905575 0.424187i \(-0.139440\pi\)
0.905575 + 0.424187i \(0.139440\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 484.380 279.657i 0.636504 0.367486i −0.146762 0.989172i \(-0.546885\pi\)
0.783267 + 0.621686i \(0.213552\pi\)
\(762\) 0 0
\(763\) 388.559 586.463i 0.509251 0.768627i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −296.777 171.344i −0.386932 0.223395i
\(768\) 0 0
\(769\) −861.068 −1.11972 −0.559862 0.828586i \(-0.689146\pi\)
−0.559862 + 0.828586i \(0.689146\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 105.336 + 60.8156i 0.136269 + 0.0786748i 0.566585 0.824004i \(-0.308264\pi\)
−0.430316 + 0.902678i \(0.641598\pi\)
\(774\) 0 0
\(775\) 409.270 + 708.876i 0.528090 + 0.914679i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 80.2014 46.3043i 0.102954 0.0594407i
\(780\) 0 0
\(781\) −64.0071 + 110.864i −0.0819554 + 0.141951i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7.34445i 0.00935599i
\(786\) 0 0
\(787\) 52.1249 90.2830i 0.0662324 0.114718i −0.831008 0.556261i \(-0.812235\pi\)
0.897240 + 0.441543i \(0.145569\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 78.2803 1270.30i 0.0989637 1.60594i
\(792\) 0 0
\(793\) −46.3740 80.3222i −0.0584792 0.101289i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 529.515i 0.664386i −0.943212 0.332193i \(-0.892212\pi\)
0.943212 0.332193i \(-0.107788\pi\)
\(798\) 0 0
\(799\) −548.461 −0.686435
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 100.309 57.9133i 0.124918 0.0721212i
\(804\) 0 0
\(805\) −5.75347 + 8.68388i −0.00714717 + 0.0107874i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −173.384 100.104i −0.214319 0.123737i 0.388998 0.921239i \(-0.372821\pi\)
−0.603317 + 0.797501i \(0.706155\pi\)
\(810\) 0 0
\(811\) 1042.03 1.28487 0.642435 0.766340i \(-0.277924\pi\)
0.642435 + 0.766340i \(0.277924\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −8.02189 4.63144i −0.00984281 0.00568275i
\(816\) 0 0
\(817\) −111.733 193.527i −0.136760 0.236875i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 597.404 344.911i 0.727654 0.420111i −0.0899092 0.995950i \(-0.528658\pi\)
0.817563 + 0.575839i \(0.195324\pi\)
\(822\) 0 0
\(823\) 142.393 246.632i 0.173017 0.299674i −0.766456 0.642296i \(-0.777982\pi\)
0.939473 + 0.342622i \(0.111315\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 420.531i 0.508502i −0.967138 0.254251i \(-0.918171\pi\)
0.967138 0.254251i \(-0.0818289\pi\)
\(828\) 0 0
\(829\) 322.601 558.761i 0.389145 0.674019i −0.603190 0.797598i \(-0.706104\pi\)
0.992335 + 0.123579i \(0.0394372\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1137.12 858.523i −1.36509 1.03064i
\(834\) 0 0
\(835\) −0.401784 0.695911i −0.000481179 0.000833426i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 156.230i 0.186209i 0.995656 + 0.0931046i \(0.0296791\pi\)
−0.995656 + 0.0931046i \(0.970321\pi\)
\(840\) 0 0
\(841\) 737.672 0.877137
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4.11049 2.37319i 0.00486448 0.00280851i
\(846\) 0 0
\(847\) −180.188 361.817i −0.212737 0.427175i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 692.613 + 399.880i 0.813881 + 0.469894i
\(852\) 0 0
\(853\) −1185.28 −1.38955 −0.694773 0.719229i \(-0.744495\pi\)
−0.694773 + 0.719229i \(0.744495\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −677.280 391.028i −0.790292 0.456275i 0.0497736 0.998761i \(-0.484150\pi\)
−0.840065 + 0.542485i \(0.817483\pi\)
\(858\) 0 0
\(859\) −590.775 1023.25i −0.687747 1.19121i −0.972565 0.232631i \(-0.925266\pi\)
0.284818 0.958582i \(-0.408067\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1055.01 + 609.108i −1.22249 + 0.705803i −0.965448 0.260597i \(-0.916080\pi\)
−0.257040 + 0.966401i \(0.582747\pi\)
\(864\) 0 0
\(865\) −6.10861 + 10.5804i −0.00706198 + 0.0122317i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 878.294i 1.01070i
\(870\) 0 0
\(871\) 433.613 751.040i 0.497834 0.862273i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.10166 17.8772i 0.00125904 0.0204311i
\(876\) 0 0
\(877\) 342.141 + 592.605i 0.390126 + 0.675718i 0.992466 0.122522i \(-0.0390980\pi\)
−0.602340 + 0.798240i \(0.705765\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 932.418i 1.05836i 0.848509 + 0.529181i \(0.177501\pi\)
−0.848509 + 0.529181i \(0.822499\pi\)
\(882\) 0 0
\(883\) 155.535 0.176143 0.0880717 0.996114i \(-0.471930\pi\)
0.0880717 + 0.996114i \(0.471930\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1207.39 697.087i 1.36121 0.785893i 0.371422 0.928464i \(-0.378870\pi\)
0.989785 + 0.142571i \(0.0455369\pi\)
\(888\) 0 0
\(889\) 612.658 + 37.7542i 0.689154 + 0.0424681i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −507.987 293.287i −0.568855 0.328429i
\(894\) 0 0
\(895\) −9.22777 −0.0103104
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 288.260 + 166.427i 0.320645 + 0.185124i
\(900\) 0 0
\(901\) 1457.37 + 2524.25i 1.61751 + 2.80161i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −7.13645 + 4.12023i −0.00788558 + 0.00455274i
\(906\) 0 0
\(907\) 16.3106 28.2507i 0.0179830 0.0311474i −0.856894 0.515493i \(-0.827609\pi\)
0.874877 + 0.484345i \(0.160942\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 4.10899i 0.00451042i 0.999997 + 0.00225521i \(0.000717856\pi\)
−0.999997 + 0.00225521i \(0.999282\pi\)
\(912\) 0 0
\(913\) −424.137 + 734.627i −0.464553 + 0.804630i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −475.997 + 237.051i −0.519081 + 0.258507i
\(918\) 0 0
\(919\) −120.625 208.928i −0.131256 0.227343i 0.792905 0.609346i \(-0.208568\pi\)
−0.924161 + 0.382003i \(0.875234\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 140.554i 0.152279i
\(924\) 0 0
\(925\) −687.528 −0.743274
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1485.20 + 857.482i −1.59871 + 0.923016i −0.606974 + 0.794722i \(0.707617\pi\)
−0.991736 + 0.128294i \(0.959050\pi\)
\(930\) 0 0
\(931\) −594.119 1403.24i −0.638151 1.50724i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −10.2500 5.91787i −0.0109626 0.00632927i
\(936\) 0 0
\(937\) −671.057 −0.716176 −0.358088 0.933688i \(-0.616571\pi\)
−0.358088 + 0.933688i \(0.616571\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 805.187 + 464.875i 0.855672 + 0.494022i 0.862560 0.505954i \(-0.168859\pi\)
−0.00688889 + 0.999976i \(0.502193\pi\)
\(942\) 0 0
\(943\) 43.2957 + 74.9904i 0.0459127 + 0.0795232i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −462.810 + 267.203i −0.488711 + 0.282158i −0.724040 0.689758i \(-0.757717\pi\)
0.235328 + 0.971916i \(0.424383\pi\)
\(948\) 0 0
\(949\) −63.5861 + 110.134i −0.0670033 + 0.116053i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 381.768i 0.400596i −0.979735 0.200298i \(-0.935809\pi\)
0.979735 0.200298i \(-0.0641911\pi\)
\(954\) 0 0
\(955\) 2.89972 5.02246i 0.00303635 0.00525912i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 873.776 + 578.917i 0.911133 + 0.603667i
\(960\) 0 0
\(961\) −55.6183 96.3338i −0.0578755 0.100243i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 18.0465i 0.0187011i
\(966\) 0 0
\(967\) −1035.54 −1.07087 −0.535437 0.844575i \(-0.679853\pi\)
−0.535437 + 0.844575i \(0.679853\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1611.66 930.493i 1.65979 0.958283i 0.686987 0.726670i \(-0.258933\pi\)
0.972808 0.231613i \(-0.0744003\pi\)
\(972\) 0 0
\(973\) −891.265 54.9229i −0.915996 0.0564470i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1196.81 + 690.978i 1.22498 + 0.707245i 0.965976 0.258630i \(-0.0832711\pi\)
0.259008 + 0.965875i \(0.416604\pi\)
\(978\) 0 0
\(979\) −122.413 −0.125039
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 443.915 + 256.294i 0.451592 + 0.260727i 0.708502 0.705708i \(-0.249371\pi\)
−0.256910 + 0.966435i \(0.582704\pi\)
\(984\) 0 0
\(985\) −6.04036 10.4622i −0.00613234 0.0106215i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 180.952 104.473i 0.182965 0.105635i
\(990\) 0 0
\(991\) −760.070 + 1316.48i −0.766973 + 1.32844i 0.172225 + 0.985058i \(0.444904\pi\)
−0.939197 + 0.343378i \(0.888429\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5.37930i 0.00540633i
\(996\) 0 0
\(997\) −666.258 + 1153.99i −0.668263 + 1.15747i 0.310126 + 0.950695i \(0.399629\pi\)
−0.978390 + 0.206770i \(0.933705\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.3.dc.f.305.4 16
3.2 odd 2 inner 1008.3.dc.f.305.5 16
4.3 odd 2 504.3.cu.b.305.4 yes 16
7.2 even 3 inner 1008.3.dc.f.737.5 16
12.11 even 2 504.3.cu.b.305.5 yes 16
21.2 odd 6 inner 1008.3.dc.f.737.4 16
28.3 even 6 3528.3.d.f.1961.5 8
28.11 odd 6 3528.3.d.k.1961.4 8
28.23 odd 6 504.3.cu.b.233.5 yes 16
84.11 even 6 3528.3.d.k.1961.5 8
84.23 even 6 504.3.cu.b.233.4 16
84.59 odd 6 3528.3.d.f.1961.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.3.cu.b.233.4 16 84.23 even 6
504.3.cu.b.233.5 yes 16 28.23 odd 6
504.3.cu.b.305.4 yes 16 4.3 odd 2
504.3.cu.b.305.5 yes 16 12.11 even 2
1008.3.dc.f.305.4 16 1.1 even 1 trivial
1008.3.dc.f.305.5 16 3.2 odd 2 inner
1008.3.dc.f.737.4 16 21.2 odd 6 inner
1008.3.dc.f.737.5 16 7.2 even 3 inner
3528.3.d.f.1961.4 8 84.59 odd 6
3528.3.d.f.1961.5 8 28.3 even 6
3528.3.d.k.1961.4 8 28.11 odd 6
3528.3.d.k.1961.5 8 84.11 even 6