Properties

Label 1008.3.dc.e.305.6
Level $1008$
Weight $3$
Character 1008.305
Analytic conductor $27.466$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,3,Mod(305,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.305"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.dc (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,2,0,0,0,0,0,-52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 20x^{10} + 307x^{8} - 1824x^{6} + 8289x^{4} - 1674x^{2} + 324 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{5} \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 305.6
Root \(0.389477 + 0.224865i\) of defining polynomial
Character \(\chi\) \(=\) 1008.305
Dual form 1008.3.dc.e.737.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(7.49023 - 4.32449i) q^{5} +(-6.25176 - 3.14888i) q^{7} +(6.95899 + 4.01778i) q^{11} -10.8897 q^{13} +(-10.2166 - 5.89854i) q^{17} +(-5.44485 - 9.43076i) q^{19} +(20.2398 - 11.6854i) q^{23} +(24.9024 - 43.1322i) q^{25} -38.3888i q^{29} +(10.9575 - 18.9790i) q^{31} +(-60.4445 + 3.44983i) q^{35} +(3.94838 + 6.83879i) q^{37} +35.1994i q^{41} -28.1174 q^{43} +(-46.1528 + 26.6463i) q^{47} +(29.1691 + 39.3721i) q^{49} +(-61.0817 - 35.2655i) q^{53} +69.4993 q^{55} +(-23.6821 - 13.6729i) q^{59} +(-17.5678 - 30.4284i) q^{61} +(-81.5664 + 47.0924i) q^{65} +(15.9024 - 27.5438i) q^{67} -127.309i q^{71} +(14.5969 - 25.2826i) q^{73} +(-30.8545 - 47.0312i) q^{77} +(35.5164 + 61.5161i) q^{79} -1.94121i q^{83} -102.033 q^{85} +(-66.4198 + 38.3475i) q^{89} +(68.0798 + 34.2904i) q^{91} +(-81.5664 - 47.0924i) q^{95} +169.973 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 2 q^{7} - 52 q^{13} - 26 q^{19} + 106 q^{25} - 22 q^{31} - 146 q^{37} - 108 q^{43} + 114 q^{49} - 16 q^{55} - 136 q^{61} - 2 q^{67} - 482 q^{73} - 42 q^{79} - 288 q^{85} - 222 q^{91} + 568 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 7.49023 4.32449i 1.49805 0.864898i 0.498049 0.867149i \(-0.334050\pi\)
0.999997 + 0.00225107i \(0.000716537\pi\)
\(6\) 0 0
\(7\) −6.25176 3.14888i −0.893109 0.449840i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.95899 + 4.01778i 0.632636 + 0.365252i 0.781772 0.623564i \(-0.214316\pi\)
−0.149136 + 0.988817i \(0.547649\pi\)
\(12\) 0 0
\(13\) −10.8897 −0.837669 −0.418835 0.908063i \(-0.637561\pi\)
−0.418835 + 0.908063i \(0.637561\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −10.2166 5.89854i −0.600975 0.346973i 0.168450 0.985710i \(-0.446124\pi\)
−0.769425 + 0.638737i \(0.779457\pi\)
\(18\) 0 0
\(19\) −5.44485 9.43076i −0.286571 0.496356i 0.686418 0.727207i \(-0.259182\pi\)
−0.972989 + 0.230852i \(0.925849\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 20.2398 11.6854i 0.879991 0.508063i 0.00933533 0.999956i \(-0.497028\pi\)
0.870655 + 0.491894i \(0.163695\pi\)
\(24\) 0 0
\(25\) 24.9024 43.1322i 0.996096 1.72529i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 38.3888i 1.32375i −0.749613 0.661876i \(-0.769760\pi\)
0.749613 0.661876i \(-0.230240\pi\)
\(30\) 0 0
\(31\) 10.9575 18.9790i 0.353469 0.612227i −0.633385 0.773836i \(-0.718335\pi\)
0.986855 + 0.161610i \(0.0516685\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −60.4445 + 3.44983i −1.72698 + 0.0985666i
\(36\) 0 0
\(37\) 3.94838 + 6.83879i 0.106713 + 0.184832i 0.914437 0.404729i \(-0.132634\pi\)
−0.807724 + 0.589561i \(0.799301\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 35.1994i 0.858521i 0.903181 + 0.429260i \(0.141226\pi\)
−0.903181 + 0.429260i \(0.858774\pi\)
\(42\) 0 0
\(43\) −28.1174 −0.653892 −0.326946 0.945043i \(-0.606020\pi\)
−0.326946 + 0.945043i \(0.606020\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −46.1528 + 26.6463i −0.981974 + 0.566943i −0.902866 0.429923i \(-0.858541\pi\)
−0.0791087 + 0.996866i \(0.525207\pi\)
\(48\) 0 0
\(49\) 29.1691 + 39.3721i 0.595288 + 0.803513i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −61.0817 35.2655i −1.15248 0.665387i −0.202993 0.979180i \(-0.565067\pi\)
−0.949491 + 0.313793i \(0.898400\pi\)
\(54\) 0 0
\(55\) 69.4993 1.26362
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −23.6821 13.6729i −0.401391 0.231743i 0.285693 0.958321i \(-0.407776\pi\)
−0.687084 + 0.726578i \(0.741110\pi\)
\(60\) 0 0
\(61\) −17.5678 30.4284i −0.287997 0.498826i 0.685334 0.728229i \(-0.259656\pi\)
−0.973332 + 0.229402i \(0.926323\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −81.5664 + 47.0924i −1.25487 + 0.724498i
\(66\) 0 0
\(67\) 15.9024 27.5438i 0.237349 0.411101i −0.722604 0.691263i \(-0.757055\pi\)
0.959953 + 0.280162i \(0.0903881\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 127.309i 1.79309i −0.442956 0.896543i \(-0.646070\pi\)
0.442956 0.896543i \(-0.353930\pi\)
\(72\) 0 0
\(73\) 14.5969 25.2826i 0.199958 0.346337i −0.748557 0.663071i \(-0.769253\pi\)
0.948514 + 0.316734i \(0.102586\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −30.8545 47.0312i −0.400708 0.610795i
\(78\) 0 0
\(79\) 35.5164 + 61.5161i 0.449574 + 0.778685i 0.998358 0.0572789i \(-0.0182424\pi\)
−0.548784 + 0.835964i \(0.684909\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.94121i 0.0233881i −0.999932 0.0116941i \(-0.996278\pi\)
0.999932 0.0116941i \(-0.00372242\pi\)
\(84\) 0 0
\(85\) −102.033 −1.20038
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −66.4198 + 38.3475i −0.746289 + 0.430870i −0.824352 0.566078i \(-0.808460\pi\)
0.0780622 + 0.996948i \(0.475127\pi\)
\(90\) 0 0
\(91\) 68.0798 + 34.2904i 0.748130 + 0.376817i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −81.5664 47.0924i −0.858594 0.495709i
\(96\) 0 0
\(97\) 169.973 1.75230 0.876151 0.482038i \(-0.160103\pi\)
0.876151 + 0.482038i \(0.160103\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 121.412 + 70.0970i 1.20209 + 0.694030i 0.961020 0.276477i \(-0.0891670\pi\)
0.241074 + 0.970507i \(0.422500\pi\)
\(102\) 0 0
\(103\) −48.6818 84.3194i −0.472639 0.818635i 0.526871 0.849945i \(-0.323365\pi\)
−0.999510 + 0.0313108i \(0.990032\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −83.6756 + 48.3101i −0.782015 + 0.451496i −0.837144 0.546983i \(-0.815776\pi\)
0.0551290 + 0.998479i \(0.482443\pi\)
\(108\) 0 0
\(109\) 7.41721 12.8470i 0.0680478 0.117862i −0.829994 0.557772i \(-0.811656\pi\)
0.898042 + 0.439910i \(0.144990\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 40.2522i 0.356214i −0.984011 0.178107i \(-0.943003\pi\)
0.984011 0.178107i \(-0.0569974\pi\)
\(114\) 0 0
\(115\) 101.067 175.053i 0.878845 1.52220i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 45.2978 + 69.0471i 0.380654 + 0.580227i
\(120\) 0 0
\(121\) −28.2150 48.8697i −0.233181 0.403882i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 214.536i 1.71629i
\(126\) 0 0
\(127\) −88.6423 −0.697971 −0.348985 0.937128i \(-0.613474\pi\)
−0.348985 + 0.937128i \(0.613474\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 141.626 81.7676i 1.08111 0.624180i 0.149916 0.988699i \(-0.452100\pi\)
0.931196 + 0.364519i \(0.118766\pi\)
\(132\) 0 0
\(133\) 4.34359 + 76.1041i 0.0326586 + 0.572211i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −20.8199 12.0204i −0.151970 0.0877399i 0.422087 0.906555i \(-0.361298\pi\)
−0.574057 + 0.818816i \(0.694631\pi\)
\(138\) 0 0
\(139\) −167.635 −1.20601 −0.603004 0.797738i \(-0.706030\pi\)
−0.603004 + 0.797738i \(0.706030\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −75.7813 43.7524i −0.529939 0.305961i
\(144\) 0 0
\(145\) −166.012 287.541i −1.14491 1.98304i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 13.5974 7.85046i 0.0912576 0.0526876i −0.453677 0.891166i \(-0.649888\pi\)
0.544934 + 0.838479i \(0.316555\pi\)
\(150\) 0 0
\(151\) 96.3155 166.823i 0.637851 1.10479i −0.348052 0.937475i \(-0.613157\pi\)
0.985903 0.167315i \(-0.0535098\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 189.543i 1.22286i
\(156\) 0 0
\(157\) 58.4739 101.280i 0.372445 0.645094i −0.617496 0.786574i \(-0.711853\pi\)
0.989941 + 0.141480i \(0.0451861\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −163.330 + 9.32198i −1.01447 + 0.0579005i
\(162\) 0 0
\(163\) 54.5932 + 94.5583i 0.334928 + 0.580112i 0.983471 0.181066i \(-0.0579547\pi\)
−0.648543 + 0.761178i \(0.724621\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 217.273i 1.30103i 0.759492 + 0.650517i \(0.225448\pi\)
−0.759492 + 0.650517i \(0.774552\pi\)
\(168\) 0 0
\(169\) −50.4144 −0.298310
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.58828 + 4.95845i −0.0496433 + 0.0286615i −0.524616 0.851339i \(-0.675791\pi\)
0.474973 + 0.880000i \(0.342458\pi\)
\(174\) 0 0
\(175\) −291.502 + 191.238i −1.66573 + 1.09279i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −37.5658 21.6886i −0.209865 0.121165i 0.391384 0.920228i \(-0.371996\pi\)
−0.601248 + 0.799062i \(0.705330\pi\)
\(180\) 0 0
\(181\) 183.194 1.01212 0.506060 0.862498i \(-0.331101\pi\)
0.506060 + 0.862498i \(0.331101\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 59.1486 + 34.1494i 0.319722 + 0.184592i
\(186\) 0 0
\(187\) −47.3980 82.0958i −0.253465 0.439015i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 32.5684 18.8034i 0.170515 0.0984471i −0.412313 0.911042i \(-0.635279\pi\)
0.582829 + 0.812595i \(0.301946\pi\)
\(192\) 0 0
\(193\) 16.8013 29.1007i 0.0870532 0.150781i −0.819211 0.573492i \(-0.805588\pi\)
0.906264 + 0.422712i \(0.138922\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 172.788i 0.877095i −0.898708 0.438548i \(-0.855493\pi\)
0.898708 0.438548i \(-0.144507\pi\)
\(198\) 0 0
\(199\) 89.4485 154.929i 0.449490 0.778540i −0.548863 0.835912i \(-0.684939\pi\)
0.998353 + 0.0573729i \(0.0182724\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −120.882 + 239.998i −0.595477 + 1.18226i
\(204\) 0 0
\(205\) 152.219 + 263.651i 0.742533 + 1.28610i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 87.5048i 0.418683i
\(210\) 0 0
\(211\) 293.408 1.39056 0.695279 0.718740i \(-0.255281\pi\)
0.695279 + 0.718740i \(0.255281\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −210.606 + 121.593i −0.979561 + 0.565550i
\(216\) 0 0
\(217\) −128.267 + 84.1484i −0.591091 + 0.387781i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 111.255 + 64.2334i 0.503418 + 0.290649i
\(222\) 0 0
\(223\) 102.718 0.460621 0.230311 0.973117i \(-0.426026\pi\)
0.230311 + 0.973117i \(0.426026\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 192.733 + 111.274i 0.849042 + 0.490195i 0.860328 0.509742i \(-0.170259\pi\)
−0.0112855 + 0.999936i \(0.503592\pi\)
\(228\) 0 0
\(229\) 186.758 + 323.474i 0.815537 + 1.41255i 0.908942 + 0.416923i \(0.136892\pi\)
−0.0934045 + 0.995628i \(0.529775\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −257.051 + 148.408i −1.10322 + 0.636945i −0.937065 0.349155i \(-0.886469\pi\)
−0.166156 + 0.986099i \(0.553136\pi\)
\(234\) 0 0
\(235\) −230.463 + 399.174i −0.980696 + 1.69861i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 73.8411i 0.308959i −0.987996 0.154479i \(-0.950630\pi\)
0.987996 0.154479i \(-0.0493700\pi\)
\(240\) 0 0
\(241\) −90.1564 + 156.155i −0.374093 + 0.647948i −0.990191 0.139722i \(-0.955379\pi\)
0.616098 + 0.787670i \(0.288713\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 388.748 + 168.765i 1.58673 + 0.688836i
\(246\) 0 0
\(247\) 59.2928 + 102.698i 0.240052 + 0.415782i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 141.050i 0.561954i −0.959715 0.280977i \(-0.909342\pi\)
0.959715 0.280977i \(-0.0906584\pi\)
\(252\) 0 0
\(253\) 187.798 0.742285
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −222.864 + 128.671i −0.867177 + 0.500665i −0.866409 0.499335i \(-0.833578\pi\)
−0.000767847 1.00000i \(0.500244\pi\)
\(258\) 0 0
\(259\) −3.14979 55.1875i −0.0121614 0.213079i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 377.586 + 217.999i 1.43569 + 0.828895i 0.997546 0.0700101i \(-0.0223031\pi\)
0.438143 + 0.898905i \(0.355636\pi\)
\(264\) 0 0
\(265\) −610.021 −2.30197
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 438.287 + 253.045i 1.62932 + 0.940688i 0.984296 + 0.176524i \(0.0564853\pi\)
0.645022 + 0.764164i \(0.276848\pi\)
\(270\) 0 0
\(271\) 183.222 + 317.350i 0.676097 + 1.17103i 0.976147 + 0.217110i \(0.0696631\pi\)
−0.300051 + 0.953923i \(0.597004\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 346.591 200.105i 1.26033 0.727653i
\(276\) 0 0
\(277\) 14.7159 25.4887i 0.0531260 0.0920170i −0.838239 0.545302i \(-0.816415\pi\)
0.891365 + 0.453285i \(0.149748\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 67.1419i 0.238939i 0.992838 + 0.119470i \(0.0381194\pi\)
−0.992838 + 0.119470i \(0.961881\pi\)
\(282\) 0 0
\(283\) −222.216 + 384.889i −0.785214 + 1.36003i 0.143657 + 0.989627i \(0.454114\pi\)
−0.928871 + 0.370403i \(0.879220\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 110.839 220.058i 0.386197 0.766753i
\(288\) 0 0
\(289\) −74.9144 129.756i −0.259219 0.448981i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 334.732i 1.14243i 0.820800 + 0.571215i \(0.193528\pi\)
−0.820800 + 0.571215i \(0.806472\pi\)
\(294\) 0 0
\(295\) −236.513 −0.801737
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −220.405 + 127.251i −0.737141 + 0.425589i
\(300\) 0 0
\(301\) 175.783 + 88.5382i 0.583997 + 0.294147i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −263.175 151.944i −0.862867 0.498177i
\(306\) 0 0
\(307\) 258.213 0.841086 0.420543 0.907273i \(-0.361840\pi\)
0.420543 + 0.907273i \(0.361840\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 183.756 + 106.092i 0.590856 + 0.341131i 0.765436 0.643512i \(-0.222523\pi\)
−0.174580 + 0.984643i \(0.555857\pi\)
\(312\) 0 0
\(313\) −109.144 189.042i −0.348702 0.603969i 0.637317 0.770602i \(-0.280044\pi\)
−0.986019 + 0.166632i \(0.946711\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 282.647 163.186i 0.891631 0.514783i 0.0171555 0.999853i \(-0.494539\pi\)
0.874476 + 0.485069i \(0.161206\pi\)
\(318\) 0 0
\(319\) 154.238 267.147i 0.483504 0.837453i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 128.467i 0.397730i
\(324\) 0 0
\(325\) −271.180 + 469.697i −0.834399 + 1.44522i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 372.442 21.2569i 1.13204 0.0646107i
\(330\) 0 0
\(331\) 1.83301 + 3.17486i 0.00553779 + 0.00959174i 0.868781 0.495196i \(-0.164904\pi\)
−0.863243 + 0.504788i \(0.831571\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 275.079i 0.821131i
\(336\) 0 0
\(337\) −117.056 −0.347347 −0.173673 0.984803i \(-0.555564\pi\)
−0.173673 + 0.984803i \(0.555564\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 152.507 88.0499i 0.447235 0.258211i
\(342\) 0 0
\(343\) −58.3803 337.995i −0.170205 0.985409i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −296.287 171.061i −0.853853 0.492972i 0.00809576 0.999967i \(-0.497423\pi\)
−0.861949 + 0.506995i \(0.830756\pi\)
\(348\) 0 0
\(349\) 161.765 0.463509 0.231755 0.972774i \(-0.425553\pi\)
0.231755 + 0.972774i \(0.425553\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 41.8270 + 24.1488i 0.118490 + 0.0684103i 0.558074 0.829791i \(-0.311541\pi\)
−0.439584 + 0.898202i \(0.644874\pi\)
\(354\) 0 0
\(355\) −550.547 953.575i −1.55084 2.68613i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 176.022 101.626i 0.490312 0.283082i −0.234392 0.972142i \(-0.575310\pi\)
0.724704 + 0.689060i \(0.241977\pi\)
\(360\) 0 0
\(361\) 121.207 209.937i 0.335754 0.581543i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 252.497i 0.691771i
\(366\) 0 0
\(367\) −350.904 + 607.783i −0.956142 + 1.65609i −0.224408 + 0.974495i \(0.572045\pi\)
−0.731734 + 0.681590i \(0.761289\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 270.821 + 412.810i 0.729976 + 1.11270i
\(372\) 0 0
\(373\) −174.154 301.644i −0.466902 0.808697i 0.532383 0.846503i \(-0.321296\pi\)
−0.999285 + 0.0378060i \(0.987963\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 418.043i 1.10887i
\(378\) 0 0
\(379\) 464.851 1.22652 0.613260 0.789881i \(-0.289858\pi\)
0.613260 + 0.789881i \(0.289858\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −173.981 + 100.448i −0.454257 + 0.262266i −0.709627 0.704578i \(-0.751136\pi\)
0.255369 + 0.966844i \(0.417803\pi\)
\(384\) 0 0
\(385\) −434.493 218.845i −1.12855 0.568429i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 10.5433 + 6.08718i 0.0271036 + 0.0156483i 0.513491 0.858095i \(-0.328352\pi\)
−0.486387 + 0.873744i \(0.661685\pi\)
\(390\) 0 0
\(391\) −275.708 −0.705137
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 532.052 + 307.180i 1.34697 + 0.777671i
\(396\) 0 0
\(397\) −47.9960 83.1315i −0.120897 0.209399i 0.799225 0.601032i \(-0.205244\pi\)
−0.920122 + 0.391633i \(0.871910\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 449.101 259.289i 1.11995 0.646606i 0.178565 0.983928i \(-0.442855\pi\)
0.941389 + 0.337323i \(0.109521\pi\)
\(402\) 0 0
\(403\) −119.324 + 206.676i −0.296090 + 0.512844i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 63.4548i 0.155909i
\(408\) 0 0
\(409\) −76.8817 + 133.163i −0.187975 + 0.325582i −0.944575 0.328296i \(-0.893526\pi\)
0.756600 + 0.653878i \(0.226859\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 105.001 + 160.052i 0.254239 + 0.387534i
\(414\) 0 0
\(415\) −8.39476 14.5402i −0.0202283 0.0350365i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 76.4753i 0.182519i −0.995827 0.0912593i \(-0.970911\pi\)
0.995827 0.0912593i \(-0.0290892\pi\)
\(420\) 0 0
\(421\) 639.803 1.51972 0.759861 0.650086i \(-0.225267\pi\)
0.759861 + 0.650086i \(0.225267\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −508.834 + 293.776i −1.19726 + 0.691237i
\(426\) 0 0
\(427\) 14.0146 + 245.550i 0.0328211 + 0.575059i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 126.587 + 73.0849i 0.293705 + 0.169570i 0.639611 0.768698i \(-0.279095\pi\)
−0.345907 + 0.938269i \(0.612429\pi\)
\(432\) 0 0
\(433\) 426.699 0.985448 0.492724 0.870186i \(-0.336001\pi\)
0.492724 + 0.870186i \(0.336001\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −220.405 127.251i −0.504360 0.291192i
\(438\) 0 0
\(439\) 356.170 + 616.904i 0.811321 + 1.40525i 0.911940 + 0.410324i \(0.134584\pi\)
−0.100619 + 0.994925i \(0.532082\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 49.7225 28.7073i 0.112240 0.0648020i −0.442829 0.896606i \(-0.646025\pi\)
0.555069 + 0.831804i \(0.312692\pi\)
\(444\) 0 0
\(445\) −331.666 + 574.463i −0.745318 + 1.29093i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 405.746i 0.903666i 0.892103 + 0.451833i \(0.149230\pi\)
−0.892103 + 0.451833i \(0.850770\pi\)
\(450\) 0 0
\(451\) −141.423 + 244.952i −0.313577 + 0.543131i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 658.222 37.5676i 1.44664 0.0825662i
\(456\) 0 0
\(457\) 124.387 + 215.445i 0.272182 + 0.471433i 0.969420 0.245406i \(-0.0789214\pi\)
−0.697238 + 0.716839i \(0.745588\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 835.580i 1.81254i −0.422702 0.906269i \(-0.638918\pi\)
0.422702 0.906269i \(-0.361082\pi\)
\(462\) 0 0
\(463\) 323.497 0.698698 0.349349 0.936993i \(-0.386403\pi\)
0.349349 + 0.936993i \(0.386403\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −212.171 + 122.497i −0.454327 + 0.262306i −0.709656 0.704549i \(-0.751149\pi\)
0.255329 + 0.966854i \(0.417816\pi\)
\(468\) 0 0
\(469\) −186.150 + 122.122i −0.396908 + 0.260389i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −195.668 112.969i −0.413675 0.238836i
\(474\) 0 0
\(475\) −542.359 −1.14181
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −613.130 353.991i −1.28002 0.739020i −0.303169 0.952937i \(-0.598045\pi\)
−0.976852 + 0.213917i \(0.931378\pi\)
\(480\) 0 0
\(481\) −42.9967 74.4724i −0.0893902 0.154828i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1273.14 735.047i 2.62503 1.51556i
\(486\) 0 0
\(487\) 401.598 695.589i 0.824637 1.42831i −0.0775585 0.996988i \(-0.524712\pi\)
0.902196 0.431326i \(-0.141954\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 389.098i 0.792461i 0.918151 + 0.396230i \(0.129682\pi\)
−0.918151 + 0.396230i \(0.870318\pi\)
\(492\) 0 0
\(493\) −226.438 + 392.202i −0.459306 + 0.795542i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −400.881 + 795.907i −0.806602 + 1.60142i
\(498\) 0 0
\(499\) −155.635 269.567i −0.311893 0.540215i 0.666879 0.745166i \(-0.267630\pi\)
−0.978772 + 0.204951i \(0.934296\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 800.342i 1.59114i 0.605864 + 0.795568i \(0.292827\pi\)
−0.605864 + 0.795568i \(0.707173\pi\)
\(504\) 0 0
\(505\) 1212.53 2.40106
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −485.974 + 280.577i −0.954762 + 0.551232i −0.894557 0.446954i \(-0.852509\pi\)
−0.0602049 + 0.998186i \(0.519175\pi\)
\(510\) 0 0
\(511\) −170.868 + 112.097i −0.334380 + 0.219367i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −729.276 421.048i −1.41607 0.817569i
\(516\) 0 0
\(517\) −428.236 −0.828309
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −406.597 234.749i −0.780416 0.450573i 0.0561618 0.998422i \(-0.482114\pi\)
−0.836578 + 0.547848i \(0.815447\pi\)
\(522\) 0 0
\(523\) −68.4449 118.550i −0.130870 0.226673i 0.793142 0.609036i \(-0.208444\pi\)
−0.924012 + 0.382363i \(0.875110\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −223.897 + 129.267i −0.424852 + 0.245289i
\(528\) 0 0
\(529\) 8.59927 14.8944i 0.0162557 0.0281557i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 383.310i 0.719157i
\(534\) 0 0
\(535\) −417.833 + 723.708i −0.780997 + 1.35273i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 44.7992 + 391.185i 0.0831155 + 0.725761i
\(540\) 0 0
\(541\) 326.316 + 565.195i 0.603171 + 1.04472i 0.992338 + 0.123556i \(0.0394298\pi\)
−0.389166 + 0.921168i \(0.627237\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 128.303i 0.235418i
\(546\) 0 0
\(547\) 994.957 1.81894 0.909468 0.415775i \(-0.136490\pi\)
0.909468 + 0.415775i \(0.136490\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −362.036 + 209.021i −0.657052 + 0.379349i
\(552\) 0 0
\(553\) −28.3329 496.421i −0.0512350 0.897687i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 557.400 + 321.815i 1.00072 + 0.577764i 0.908460 0.417971i \(-0.137259\pi\)
0.0922569 + 0.995735i \(0.470592\pi\)
\(558\) 0 0
\(559\) 306.190 0.547745
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 45.3507 + 26.1832i 0.0805518 + 0.0465066i 0.539735 0.841835i \(-0.318524\pi\)
−0.459183 + 0.888342i \(0.651858\pi\)
\(564\) 0 0
\(565\) −174.070 301.499i −0.308089 0.533626i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −682.939 + 394.295i −1.20024 + 0.692961i −0.960610 0.277902i \(-0.910361\pi\)
−0.239635 + 0.970863i \(0.577028\pi\)
\(570\) 0 0
\(571\) −356.934 + 618.228i −0.625103 + 1.08271i 0.363417 + 0.931626i \(0.381610\pi\)
−0.988521 + 0.151084i \(0.951723\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1163.98i 2.02432i
\(576\) 0 0
\(577\) 184.770 320.031i 0.320225 0.554646i −0.660309 0.750994i \(-0.729575\pi\)
0.980534 + 0.196347i \(0.0629081\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −6.11265 + 12.1360i −0.0105209 + 0.0208882i
\(582\) 0 0
\(583\) −283.378 490.825i −0.486068 0.841895i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1125.62i 1.91758i −0.284113 0.958791i \(-0.591699\pi\)
0.284113 0.958791i \(-0.408301\pi\)
\(588\) 0 0
\(589\) −238.649 −0.405176
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −777.102 + 448.660i −1.31046 + 0.756594i −0.982172 0.187984i \(-0.939805\pi\)
−0.328287 + 0.944578i \(0.606471\pi\)
\(594\) 0 0
\(595\) 637.884 + 321.289i 1.07207 + 0.539981i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −788.076 454.996i −1.31565 0.759593i −0.332627 0.943058i \(-0.607935\pi\)
−0.983026 + 0.183466i \(0.941268\pi\)
\(600\) 0 0
\(601\) −62.2700 −0.103611 −0.0518053 0.998657i \(-0.516498\pi\)
−0.0518053 + 0.998657i \(0.516498\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −422.673 244.030i −0.698633 0.403356i
\(606\) 0 0
\(607\) −121.764 210.901i −0.200599 0.347448i 0.748122 0.663561i \(-0.230956\pi\)
−0.948722 + 0.316113i \(0.897622\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 502.590 290.171i 0.822570 0.474911i
\(612\) 0 0
\(613\) 258.552 447.825i 0.421781 0.730546i −0.574333 0.818622i \(-0.694738\pi\)
0.996114 + 0.0880757i \(0.0280717\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 543.011i 0.880083i −0.897977 0.440042i \(-0.854964\pi\)
0.897977 0.440042i \(-0.145036\pi\)
\(618\) 0 0
\(619\) 443.162 767.579i 0.715932 1.24003i −0.246667 0.969100i \(-0.579335\pi\)
0.962599 0.270930i \(-0.0873313\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 535.992 30.5914i 0.860341 0.0491034i
\(624\) 0 0
\(625\) −305.199 528.620i −0.488318 0.845792i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 93.1587i 0.148106i
\(630\) 0 0
\(631\) 26.8549 0.0425593 0.0212797 0.999774i \(-0.493226\pi\)
0.0212797 + 0.999774i \(0.493226\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −663.952 + 383.333i −1.04559 + 0.603673i
\(636\) 0 0
\(637\) −317.643 428.751i −0.498654 0.673078i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −21.0385 12.1466i −0.0328214 0.0189494i 0.483500 0.875345i \(-0.339365\pi\)
−0.516321 + 0.856395i \(0.672699\pi\)
\(642\) 0 0
\(643\) 670.076 1.04211 0.521055 0.853523i \(-0.325539\pi\)
0.521055 + 0.853523i \(0.325539\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 867.091 + 500.615i 1.34017 + 0.773748i 0.986832 0.161747i \(-0.0517128\pi\)
0.353339 + 0.935495i \(0.385046\pi\)
\(648\) 0 0
\(649\) −109.869 190.299i −0.169290 0.293218i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −499.826 + 288.575i −0.765431 + 0.441922i −0.831242 0.555910i \(-0.812370\pi\)
0.0658113 + 0.997832i \(0.479036\pi\)
\(654\) 0 0
\(655\) 707.206 1224.92i 1.07970 1.87010i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 188.823i 0.286530i −0.989684 0.143265i \(-0.954240\pi\)
0.989684 0.143265i \(-0.0457601\pi\)
\(660\) 0 0
\(661\) 55.7396 96.5438i 0.0843261 0.146057i −0.820778 0.571248i \(-0.806460\pi\)
0.905104 + 0.425191i \(0.139793\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 361.646 + 551.253i 0.543828 + 0.828952i
\(666\) 0 0
\(667\) −448.590 776.981i −0.672549 1.16489i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 282.335i 0.420767i
\(672\) 0 0
\(673\) −92.6835 −0.137717 −0.0688585 0.997626i \(-0.521936\pi\)
−0.0688585 + 0.997626i \(0.521936\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 164.532 94.9929i 0.243032 0.140314i −0.373538 0.927615i \(-0.621855\pi\)
0.616569 + 0.787301i \(0.288522\pi\)
\(678\) 0 0
\(679\) −1062.63 535.225i −1.56500 0.788255i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −29.9576 17.2960i −0.0438618 0.0253236i 0.477909 0.878409i \(-0.341395\pi\)
−0.521771 + 0.853086i \(0.674728\pi\)
\(684\) 0 0
\(685\) −207.928 −0.303544
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 665.161 + 384.031i 0.965401 + 0.557374i
\(690\) 0 0
\(691\) −81.1658 140.583i −0.117461 0.203449i 0.801300 0.598263i \(-0.204142\pi\)
−0.918761 + 0.394814i \(0.870809\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1255.63 + 724.936i −1.80666 + 1.04307i
\(696\) 0 0
\(697\) 207.625 359.617i 0.297884 0.515950i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 873.813i 1.24652i −0.782013 0.623262i \(-0.785807\pi\)
0.782013 0.623262i \(-0.214193\pi\)
\(702\) 0 0
\(703\) 42.9967 74.4724i 0.0611617 0.105935i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −538.309 820.540i −0.761399 1.16059i
\(708\) 0 0
\(709\) −14.2034 24.6011i −0.0200330 0.0346982i 0.855835 0.517249i \(-0.173044\pi\)
−0.875868 + 0.482551i \(0.839710\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 512.175i 0.718339i
\(714\) 0 0
\(715\) −756.827 −1.05850
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −762.868 + 440.442i −1.06101 + 0.612576i −0.925712 0.378228i \(-0.876533\pi\)
−0.135301 + 0.990805i \(0.543200\pi\)
\(720\) 0 0
\(721\) 38.8356 + 680.438i 0.0538635 + 0.943742i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1655.79 955.974i −2.28386 1.31858i
\(726\) 0 0
\(727\) 614.261 0.844926 0.422463 0.906380i \(-0.361166\pi\)
0.422463 + 0.906380i \(0.361166\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 287.263 + 165.851i 0.392973 + 0.226883i
\(732\) 0 0
\(733\) −491.390 851.112i −0.670382 1.16114i −0.977796 0.209559i \(-0.932797\pi\)
0.307414 0.951576i \(-0.400536\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 221.329 127.785i 0.300311 0.173385i
\(738\) 0 0
\(739\) −156.790 + 271.568i −0.212165 + 0.367481i −0.952392 0.304876i \(-0.901385\pi\)
0.740227 + 0.672357i \(0.234718\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 969.364i 1.30466i −0.757934 0.652331i \(-0.773791\pi\)
0.757934 0.652331i \(-0.226209\pi\)
\(744\) 0 0
\(745\) 67.8984 117.604i 0.0911388 0.157857i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 675.243 38.5391i 0.901526 0.0514540i
\(750\) 0 0
\(751\) 359.002 + 621.810i 0.478033 + 0.827977i 0.999683 0.0251827i \(-0.00801676\pi\)
−0.521650 + 0.853159i \(0.674683\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1666.06i 2.20670i
\(756\) 0 0
\(757\) 941.339 1.24351 0.621757 0.783211i \(-0.286419\pi\)
0.621757 + 0.783211i \(0.286419\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 198.359 114.523i 0.260656 0.150490i −0.363978 0.931408i \(-0.618582\pi\)
0.624634 + 0.780918i \(0.285248\pi\)
\(762\) 0 0
\(763\) −86.8243 + 56.9604i −0.113793 + 0.0746532i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 257.891 + 148.893i 0.336233 + 0.194124i
\(768\) 0 0
\(769\) 144.825 0.188328 0.0941642 0.995557i \(-0.469982\pi\)
0.0941642 + 0.995557i \(0.469982\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 321.268 + 185.484i 0.415612 + 0.239954i 0.693198 0.720747i \(-0.256201\pi\)
−0.277586 + 0.960701i \(0.589534\pi\)
\(774\) 0 0
\(775\) −545.739 945.247i −0.704179 1.21967i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 331.957 191.655i 0.426132 0.246027i
\(780\) 0 0
\(781\) 511.500 885.943i 0.654929 1.13437i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1011.48i 1.28851i
\(786\) 0 0
\(787\) −122.010 + 211.328i −0.155032 + 0.268524i −0.933071 0.359693i \(-0.882882\pi\)
0.778038 + 0.628217i \(0.216215\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −126.749 + 251.647i −0.160239 + 0.318138i
\(792\) 0 0
\(793\) 191.309 + 331.356i 0.241247 + 0.417851i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1229.06i 1.54211i 0.636767 + 0.771056i \(0.280271\pi\)
−0.636767 + 0.771056i \(0.719729\pi\)
\(798\) 0 0
\(799\) 628.698 0.786856
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 203.159 117.294i 0.253001 0.146070i
\(804\) 0 0
\(805\) −1183.07 + 776.144i −1.46965 + 0.964155i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −498.214 287.644i −0.615839 0.355555i 0.159408 0.987213i \(-0.449041\pi\)
−0.775247 + 0.631658i \(0.782375\pi\)
\(810\) 0 0
\(811\) 597.338 0.736545 0.368273 0.929718i \(-0.379949\pi\)
0.368273 + 0.929718i \(0.379949\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 817.832 + 472.176i 1.00348 + 0.579357i
\(816\) 0 0
\(817\) 153.095 + 265.168i 0.187387 + 0.324563i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −910.909 + 525.913i −1.10951 + 0.640577i −0.938703 0.344728i \(-0.887971\pi\)
−0.170809 + 0.985304i \(0.554638\pi\)
\(822\) 0 0
\(823\) −365.162 + 632.480i −0.443697 + 0.768505i −0.997960 0.0638357i \(-0.979667\pi\)
0.554264 + 0.832341i \(0.313000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1604.57i 1.94023i 0.242639 + 0.970117i \(0.421987\pi\)
−0.242639 + 0.970117i \(0.578013\pi\)
\(828\) 0 0
\(829\) 208.909 361.840i 0.252001 0.436478i −0.712076 0.702103i \(-0.752245\pi\)
0.964077 + 0.265624i \(0.0855781\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −65.7703 574.303i −0.0789559 0.689440i
\(834\) 0 0
\(835\) 939.593 + 1627.42i 1.12526 + 1.94901i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 526.847i 0.627946i 0.949432 + 0.313973i \(0.101660\pi\)
−0.949432 + 0.313973i \(0.898340\pi\)
\(840\) 0 0
\(841\) −632.701 −0.752320
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −377.616 + 218.016i −0.446882 + 0.258008i
\(846\) 0 0
\(847\) 22.5083 + 394.368i 0.0265741 + 0.465605i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 159.829 + 92.2771i 0.187813 + 0.108434i
\(852\) 0 0
\(853\) 1298.77 1.52259 0.761297 0.648403i \(-0.224563\pi\)
0.761297 + 0.648403i \(0.224563\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −776.026 448.039i −0.905515 0.522799i −0.0265297 0.999648i \(-0.508446\pi\)
−0.878985 + 0.476849i \(0.841779\pi\)
\(858\) 0 0
\(859\) −699.841 1212.16i −0.814716 1.41113i −0.909532 0.415634i \(-0.863560\pi\)
0.0948158 0.995495i \(-0.469774\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 287.391 165.925i 0.333013 0.192265i −0.324165 0.946001i \(-0.605083\pi\)
0.657178 + 0.753735i \(0.271750\pi\)
\(864\) 0 0
\(865\) −42.8855 + 74.2799i −0.0495786 + 0.0858727i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 570.787i 0.656832i
\(870\) 0 0
\(871\) −173.172 + 299.943i −0.198820 + 0.344367i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −675.549 + 1341.23i −0.772056 + 1.53283i
\(876\) 0 0
\(877\) 494.521 + 856.536i 0.563878 + 0.976666i 0.997153 + 0.0754040i \(0.0240246\pi\)
−0.433275 + 0.901262i \(0.642642\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 676.723i 0.768131i 0.923306 + 0.384065i \(0.125476\pi\)
−0.923306 + 0.384065i \(0.874524\pi\)
\(882\) 0 0
\(883\) −230.145 −0.260640 −0.130320 0.991472i \(-0.541601\pi\)
−0.130320 + 0.991472i \(0.541601\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −928.185 + 535.888i −1.04643 + 0.604157i −0.921648 0.388027i \(-0.873157\pi\)
−0.124783 + 0.992184i \(0.539824\pi\)
\(888\) 0 0
\(889\) 554.171 + 279.124i 0.623364 + 0.313975i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 502.590 + 290.171i 0.562811 + 0.324939i
\(894\) 0 0
\(895\) −375.168 −0.419183
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −728.583 420.647i −0.810437 0.467906i
\(900\) 0 0
\(901\) 416.030 + 720.586i 0.461743 + 0.799762i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1372.16 792.219i 1.51620 0.875381i
\(906\) 0 0
\(907\) 312.161 540.679i 0.344169 0.596118i −0.641034 0.767513i \(-0.721494\pi\)
0.985202 + 0.171395i \(0.0548274\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1652.45i 1.81389i −0.421253 0.906943i \(-0.638409\pi\)
0.421253 0.906943i \(-0.361591\pi\)
\(912\) 0 0
\(913\) 7.79937 13.5089i 0.00854257 0.0147962i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1142.89 + 65.2296i −1.24633 + 0.0711336i
\(918\) 0 0
\(919\) 592.158 + 1025.65i 0.644351 + 1.11605i 0.984451 + 0.175659i \(0.0562056\pi\)
−0.340101 + 0.940389i \(0.610461\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1386.36i 1.50201i
\(924\) 0 0
\(925\) 393.296 0.425185
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 78.6575 45.4129i 0.0846690 0.0488837i −0.457068 0.889432i \(-0.651100\pi\)
0.541737 + 0.840548i \(0.317767\pi\)
\(930\) 0 0
\(931\) 212.487 489.462i 0.228236 0.525738i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −710.045 409.945i −0.759406 0.438443i
\(936\) 0 0
\(937\) −435.637 −0.464928 −0.232464 0.972605i \(-0.574679\pi\)
−0.232464 + 0.972605i \(0.574679\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 999.310 + 576.952i 1.06197 + 0.613126i 0.925975 0.377584i \(-0.123245\pi\)
0.135990 + 0.990710i \(0.456578\pi\)
\(942\) 0 0
\(943\) 411.320 + 712.427i 0.436183 + 0.755490i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −568.610 + 328.287i −0.600433 + 0.346660i −0.769212 0.638994i \(-0.779351\pi\)
0.168779 + 0.985654i \(0.446018\pi\)
\(948\) 0 0
\(949\) −158.956 + 275.320i −0.167498 + 0.290116i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1559.33i 1.63623i −0.575055 0.818114i \(-0.695020\pi\)
0.575055 0.818114i \(-0.304980\pi\)
\(954\) 0 0
\(955\) 162.630 281.684i 0.170293 0.294957i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 92.3103 + 140.708i 0.0962568 + 0.146723i
\(960\) 0 0
\(961\) 240.364 + 416.323i 0.250119 + 0.433219i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 290.628i 0.301169i
\(966\) 0 0
\(967\) −1677.36 −1.73460 −0.867299 0.497788i \(-0.834146\pi\)
−0.867299 + 0.497788i \(0.834146\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −118.068 + 68.1669i −0.121595 + 0.0702028i −0.559564 0.828787i \(-0.689031\pi\)
0.437969 + 0.898990i \(0.355698\pi\)
\(972\) 0 0
\(973\) 1048.01 + 527.863i 1.07710 + 0.542510i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −472.748 272.941i −0.483877 0.279367i 0.238154 0.971227i \(-0.423458\pi\)
−0.722031 + 0.691861i \(0.756791\pi\)
\(978\) 0 0
\(979\) −616.286 −0.629506
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −515.332 297.527i −0.524245 0.302673i 0.214425 0.976740i \(-0.431212\pi\)
−0.738670 + 0.674068i \(0.764546\pi\)
\(984\) 0 0
\(985\) −747.219 1294.22i −0.758598 1.31393i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −569.089 + 328.564i −0.575419 + 0.332218i
\(990\) 0 0
\(991\) 865.832 1499.67i 0.873696 1.51329i 0.0155496 0.999879i \(-0.495050\pi\)
0.858146 0.513406i \(-0.171616\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1547.28i 1.55505i
\(996\) 0 0
\(997\) 851.605 1475.02i 0.854168 1.47946i −0.0232474 0.999730i \(-0.507401\pi\)
0.877415 0.479732i \(-0.159266\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.3.dc.e.305.6 12
3.2 odd 2 inner 1008.3.dc.e.305.1 12
4.3 odd 2 63.3.q.a.53.4 yes 12
7.2 even 3 inner 1008.3.dc.e.737.1 12
12.11 even 2 63.3.q.a.53.3 yes 12
21.2 odd 6 inner 1008.3.dc.e.737.6 12
28.3 even 6 441.3.b.c.197.4 6
28.11 odd 6 441.3.b.d.197.4 6
28.19 even 6 441.3.q.d.422.3 12
28.23 odd 6 63.3.q.a.44.3 12
28.27 even 2 441.3.q.d.116.4 12
84.11 even 6 441.3.b.d.197.3 6
84.23 even 6 63.3.q.a.44.4 yes 12
84.47 odd 6 441.3.q.d.422.4 12
84.59 odd 6 441.3.b.c.197.3 6
84.83 odd 2 441.3.q.d.116.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.3.q.a.44.3 12 28.23 odd 6
63.3.q.a.44.4 yes 12 84.23 even 6
63.3.q.a.53.3 yes 12 12.11 even 2
63.3.q.a.53.4 yes 12 4.3 odd 2
441.3.b.c.197.3 6 84.59 odd 6
441.3.b.c.197.4 6 28.3 even 6
441.3.b.d.197.3 6 84.11 even 6
441.3.b.d.197.4 6 28.11 odd 6
441.3.q.d.116.3 12 84.83 odd 2
441.3.q.d.116.4 12 28.27 even 2
441.3.q.d.422.3 12 28.19 even 6
441.3.q.d.422.4 12 84.47 odd 6
1008.3.dc.e.305.1 12 3.2 odd 2 inner
1008.3.dc.e.305.6 12 1.1 even 1 trivial
1008.3.dc.e.737.1 12 7.2 even 3 inner
1008.3.dc.e.737.6 12 21.2 odd 6 inner