Properties

Label 1008.3.cd.o.991.1
Level $1008$
Weight $3$
Character 1008.991
Analytic conductor $27.466$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,3,Mod(415,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 0, 2])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.415"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1008.cd (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.4660106475\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.364488705441.8
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 15x^{6} + 104x^{4} + 1815x^{2} + 14641 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 991.1
Root \(-0.375047 - 3.29535i\) of defining polynomial
Character \(\chi\) \(=\) 1008.991
Dual form 1008.3.cd.o.415.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.04138 - 5.26783i) q^{5} +(-2.29129 - 6.61438i) q^{7} +(13.9374 + 8.04674i) q^{11} +14.0000 q^{13} +(-6.08276 + 10.5357i) q^{17} +(4.58258 - 2.64575i) q^{19} +(27.8747 - 16.0935i) q^{23} +(-6.00000 + 10.3923i) q^{25} +42.5793 q^{29} +(-20.6216 - 11.9059i) q^{31} +(-27.8747 + 32.1870i) q^{35} +(-19.0000 - 32.9090i) q^{37} -24.3311 q^{41} -74.0810i q^{43} +(-38.5000 + 30.3109i) q^{49} +(-21.2897 + 36.8748i) q^{53} -97.8928i q^{55} +(-97.5615 - 56.3272i) q^{59} +(-42.5793 - 73.7496i) q^{65} +(-96.2341 - 55.5608i) q^{67} -64.3739i q^{71} +(7.00000 - 12.1244i) q^{73} +(21.2897 - 110.624i) q^{77} +(48.1170 - 27.7804i) q^{79} +112.654i q^{83} +74.0000 q^{85} +(66.9104 + 115.892i) q^{89} +(-32.0780 - 92.6013i) q^{91} +(-27.8747 - 16.0935i) q^{95} +35.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 112 q^{13} - 48 q^{25} - 152 q^{37} - 308 q^{49} + 56 q^{73} + 592 q^{85} + 280 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.04138 5.26783i −0.608276 1.05357i −0.991524 0.129920i \(-0.958528\pi\)
0.383248 0.923645i \(-0.374805\pi\)
\(6\) 0 0
\(7\) −2.29129 6.61438i −0.327327 0.944911i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 13.9374 + 8.04674i 1.26703 + 0.731522i 0.974425 0.224711i \(-0.0721438\pi\)
0.292607 + 0.956233i \(0.405477\pi\)
\(12\) 0 0
\(13\) 14.0000 1.07692 0.538462 0.842650i \(-0.319006\pi\)
0.538462 + 0.842650i \(0.319006\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.08276 + 10.5357i −0.357810 + 0.619744i −0.987595 0.157025i \(-0.949810\pi\)
0.629785 + 0.776769i \(0.283143\pi\)
\(18\) 0 0
\(19\) 4.58258 2.64575i 0.241188 0.139250i −0.374535 0.927213i \(-0.622197\pi\)
0.615723 + 0.787963i \(0.288864\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 27.8747 16.0935i 1.21194 0.699716i 0.248762 0.968565i \(-0.419976\pi\)
0.963183 + 0.268848i \(0.0866430\pi\)
\(24\) 0 0
\(25\) −6.00000 + 10.3923i −0.240000 + 0.415692i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 42.5793 1.46825 0.734127 0.679013i \(-0.237592\pi\)
0.734127 + 0.679013i \(0.237592\pi\)
\(30\) 0 0
\(31\) −20.6216 11.9059i −0.665213 0.384061i 0.129048 0.991638i \(-0.458808\pi\)
−0.794260 + 0.607578i \(0.792141\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −27.8747 + 32.1870i −0.796421 + 0.919627i
\(36\) 0 0
\(37\) −19.0000 32.9090i −0.513514 0.889431i −0.999877 0.0156750i \(-0.995010\pi\)
0.486364 0.873757i \(-0.338323\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −24.3311 −0.593440 −0.296720 0.954964i \(-0.595893\pi\)
−0.296720 + 0.954964i \(0.595893\pi\)
\(42\) 0 0
\(43\) 74.0810i 1.72281i −0.507915 0.861407i \(-0.669583\pi\)
0.507915 0.861407i \(-0.330417\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(48\) 0 0
\(49\) −38.5000 + 30.3109i −0.785714 + 0.618590i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −21.2897 + 36.8748i −0.401692 + 0.695751i −0.993930 0.110012i \(-0.964911\pi\)
0.592238 + 0.805763i \(0.298244\pi\)
\(54\) 0 0
\(55\) 97.8928i 1.77987i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −97.5615 56.3272i −1.65359 0.954698i −0.975581 0.219640i \(-0.929512\pi\)
−0.678004 0.735058i \(-0.737155\pi\)
\(60\) 0 0
\(61\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −42.5793 73.7496i −0.655067 1.13461i
\(66\) 0 0
\(67\) −96.2341 55.5608i −1.43633 0.829265i −0.438737 0.898615i \(-0.644574\pi\)
−0.997592 + 0.0693500i \(0.977907\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 64.3739i 0.906675i −0.891339 0.453337i \(-0.850233\pi\)
0.891339 0.453337i \(-0.149767\pi\)
\(72\) 0 0
\(73\) 7.00000 12.1244i 0.0958904 0.166087i −0.814089 0.580739i \(-0.802763\pi\)
0.909980 + 0.414652i \(0.136097\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 21.2897 110.624i 0.276489 1.43668i
\(78\) 0 0
\(79\) 48.1170 27.7804i 0.609077 0.351650i −0.163527 0.986539i \(-0.552287\pi\)
0.772604 + 0.634888i \(0.218954\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 112.654i 1.35728i 0.734471 + 0.678641i \(0.237431\pi\)
−0.734471 + 0.678641i \(0.762569\pi\)
\(84\) 0 0
\(85\) 74.0000 0.870588
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 66.9104 + 115.892i 0.751802 + 1.30216i 0.946949 + 0.321385i \(0.104148\pi\)
−0.195146 + 0.980774i \(0.562518\pi\)
\(90\) 0 0
\(91\) −32.0780 92.6013i −0.352506 1.01760i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −27.8747 16.0935i −0.293418 0.169405i
\(96\) 0 0
\(97\) 35.0000 0.360825 0.180412 0.983591i \(-0.442257\pi\)
0.180412 + 0.983591i \(0.442257\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −79.0759 + 136.963i −0.782930 + 1.35607i 0.147298 + 0.989092i \(0.452942\pi\)
−0.930228 + 0.366982i \(0.880391\pi\)
\(102\) 0 0
\(103\) 73.3212 42.3320i 0.711856 0.410990i −0.0998916 0.994998i \(-0.531850\pi\)
0.811748 + 0.584008i \(0.198516\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 13.9374 8.04674i 0.130256 0.0752032i −0.433456 0.901175i \(-0.642706\pi\)
0.563712 + 0.825971i \(0.309373\pi\)
\(108\) 0 0
\(109\) 17.0000 29.4449i 0.155963 0.270136i −0.777446 0.628950i \(-0.783485\pi\)
0.933409 + 0.358813i \(0.116819\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 170.317 1.50723 0.753617 0.657314i \(-0.228308\pi\)
0.753617 + 0.657314i \(0.228308\pi\)
\(114\) 0 0
\(115\) −169.555 97.8928i −1.47439 0.851242i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 83.6242 + 16.0935i 0.702724 + 0.135239i
\(120\) 0 0
\(121\) 69.0000 + 119.512i 0.570248 + 0.987698i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −79.0759 −0.632607
\(126\) 0 0
\(127\) 129.642i 1.02080i −0.859937 0.510401i \(-0.829497\pi\)
0.859937 0.510401i \(-0.170503\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 97.5615 56.3272i 0.744744 0.429978i −0.0790474 0.996871i \(-0.525188\pi\)
0.823792 + 0.566892i \(0.191855\pi\)
\(132\) 0 0
\(133\) −28.0000 24.2487i −0.210526 0.182321i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 42.5793 73.7496i 0.310798 0.538318i −0.667737 0.744397i \(-0.732737\pi\)
0.978535 + 0.206079i \(0.0660704\pi\)
\(138\) 0 0
\(139\) 153.454i 1.10398i −0.833850 0.551991i \(-0.813868\pi\)
0.833850 0.551991i \(-0.186132\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 195.123 + 112.654i 1.36450 + 0.787793i
\(144\) 0 0
\(145\) −129.500 224.301i −0.893103 1.54690i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −42.5793 73.7496i −0.285767 0.494964i 0.687028 0.726631i \(-0.258915\pi\)
−0.972795 + 0.231668i \(0.925582\pi\)
\(150\) 0 0
\(151\) 16.0390 + 9.26013i 0.106219 + 0.0613254i 0.552168 0.833733i \(-0.313801\pi\)
−0.445950 + 0.895058i \(0.647134\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 144.841i 0.934460i
\(156\) 0 0
\(157\) −126.000 + 218.238i −0.802548 + 1.39005i 0.115386 + 0.993321i \(0.463189\pi\)
−0.917934 + 0.396733i \(0.870144\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −170.317 147.499i −1.05787 0.916144i
\(162\) 0 0
\(163\) −32.0780 + 18.5203i −0.196798 + 0.113621i −0.595161 0.803607i \(-0.702912\pi\)
0.398363 + 0.917228i \(0.369578\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 225.309i 1.34915i −0.738205 0.674577i \(-0.764326\pi\)
0.738205 0.674577i \(-0.235674\pi\)
\(168\) 0 0
\(169\) 27.0000 0.159763
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −18.2483 31.6070i −0.105481 0.182699i 0.808453 0.588560i \(-0.200305\pi\)
−0.913935 + 0.405861i \(0.866972\pi\)
\(174\) 0 0
\(175\) 82.4864 + 15.8745i 0.471351 + 0.0907115i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 55.7494 + 32.1870i 0.311449 + 0.179815i 0.647575 0.762002i \(-0.275783\pi\)
−0.336125 + 0.941817i \(0.609117\pi\)
\(180\) 0 0
\(181\) −168.000 −0.928177 −0.464088 0.885789i \(-0.653618\pi\)
−0.464088 + 0.885789i \(0.653618\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −115.572 + 200.177i −0.624716 + 1.08204i
\(186\) 0 0
\(187\) −169.555 + 97.8928i −0.906713 + 0.523491i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −167.248 + 96.5609i −0.875646 + 0.505554i −0.869220 0.494425i \(-0.835379\pi\)
−0.00642541 + 0.999979i \(0.502045\pi\)
\(192\) 0 0
\(193\) 139.500 241.621i 0.722798 1.25192i −0.237076 0.971491i \(-0.576189\pi\)
0.959874 0.280432i \(-0.0904776\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 255.476 1.29683 0.648416 0.761286i \(-0.275432\pi\)
0.648416 + 0.761286i \(0.275432\pi\)
\(198\) 0 0
\(199\) 238.294 + 137.579i 1.19746 + 0.691352i 0.959987 0.280043i \(-0.0903487\pi\)
0.237469 + 0.971395i \(0.423682\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −97.5615 281.636i −0.480599 1.38737i
\(204\) 0 0
\(205\) 74.0000 + 128.172i 0.360976 + 0.625228i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 85.1587 0.407458
\(210\) 0 0
\(211\) 74.0810i 0.351095i 0.984471 + 0.175547i \(0.0561696\pi\)
−0.984471 + 0.175547i \(0.943830\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −390.246 + 225.309i −1.81510 + 1.04795i
\(216\) 0 0
\(217\) −31.5000 + 163.679i −0.145161 + 0.754280i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −85.1587 + 147.499i −0.385333 + 0.667417i
\(222\) 0 0
\(223\) 336.010i 1.50677i 0.657578 + 0.753387i \(0.271581\pi\)
−0.657578 + 0.753387i \(0.728419\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 97.5615 + 56.3272i 0.429786 + 0.248137i 0.699256 0.714872i \(-0.253515\pi\)
−0.269469 + 0.963009i \(0.586848\pi\)
\(228\) 0 0
\(229\) −112.000 193.990i −0.489083 0.847117i 0.510838 0.859677i \(-0.329335\pi\)
−0.999921 + 0.0125604i \(0.996002\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −42.5793 73.7496i −0.182744 0.316522i 0.760070 0.649841i \(-0.225165\pi\)
−0.942814 + 0.333319i \(0.891831\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 32.1870i 0.134673i 0.997730 + 0.0673367i \(0.0214502\pi\)
−0.997730 + 0.0673367i \(0.978550\pi\)
\(240\) 0 0
\(241\) −87.5000 + 151.554i −0.363071 + 0.628857i −0.988465 0.151453i \(-0.951605\pi\)
0.625394 + 0.780309i \(0.284938\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 276.766 + 110.624i 1.12966 + 0.451528i
\(246\) 0 0
\(247\) 64.1561 37.0405i 0.259741 0.149962i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 337.963i 1.34647i −0.739430 0.673233i \(-0.764905\pi\)
0.739430 0.673233i \(-0.235095\pi\)
\(252\) 0 0
\(253\) 518.000 2.04743
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 66.9104 + 115.892i 0.260352 + 0.450942i 0.966335 0.257286i \(-0.0828282\pi\)
−0.705984 + 0.708228i \(0.749495\pi\)
\(258\) 0 0
\(259\) −174.138 + 201.077i −0.672347 + 0.776359i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −222.998 128.748i −0.847900 0.489535i 0.0120416 0.999927i \(-0.496167\pi\)
−0.859942 + 0.510392i \(0.829500\pi\)
\(264\) 0 0
\(265\) 259.000 0.977358
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 185.524 321.337i 0.689681 1.19456i −0.282260 0.959338i \(-0.591084\pi\)
0.971941 0.235225i \(-0.0755827\pi\)
\(270\) 0 0
\(271\) 249.750 144.193i 0.921588 0.532079i 0.0374467 0.999299i \(-0.488078\pi\)
0.884141 + 0.467219i \(0.154744\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −167.248 + 96.5609i −0.608176 + 0.351130i
\(276\) 0 0
\(277\) 74.0000 128.172i 0.267148 0.462714i −0.700976 0.713185i \(-0.747252\pi\)
0.968124 + 0.250471i \(0.0805854\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −425.793 −1.51528 −0.757639 0.652673i \(-0.773647\pi\)
−0.757639 + 0.652673i \(0.773647\pi\)
\(282\) 0 0
\(283\) 27.4955 + 15.8745i 0.0971571 + 0.0560937i 0.547791 0.836615i \(-0.315469\pi\)
−0.450634 + 0.892709i \(0.648802\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 55.7494 + 160.935i 0.194249 + 0.560748i
\(288\) 0 0
\(289\) 70.5000 + 122.110i 0.243945 + 0.422525i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −322.386 −1.10029 −0.550147 0.835068i \(-0.685429\pi\)
−0.550147 + 0.835068i \(0.685429\pi\)
\(294\) 0 0
\(295\) 685.250i 2.32288i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 390.246 225.309i 1.30517 0.753541i
\(300\) 0 0
\(301\) −490.000 + 169.741i −1.62791 + 0.563924i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 269.867i 0.879044i 0.898232 + 0.439522i \(0.144852\pi\)
−0.898232 + 0.439522i \(0.855148\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(312\) 0 0
\(313\) −262.500 454.663i −0.838658 1.45260i −0.891017 0.453970i \(-0.850007\pi\)
0.0523587 0.998628i \(-0.483326\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 63.8690 + 110.624i 0.201480 + 0.348973i 0.949005 0.315260i \(-0.102092\pi\)
−0.747526 + 0.664233i \(0.768758\pi\)
\(318\) 0 0
\(319\) 593.444 + 342.625i 1.86032 + 1.07406i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 64.3739i 0.199300i
\(324\) 0 0
\(325\) −84.0000 + 145.492i −0.258462 + 0.447669i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −513.248 + 296.324i −1.55060 + 0.895239i −0.552507 + 0.833508i \(0.686329\pi\)
−0.998093 + 0.0617307i \(0.980338\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 675.926i 2.01769i
\(336\) 0 0
\(337\) 205.000 0.608309 0.304154 0.952623i \(-0.401626\pi\)
0.304154 + 0.952623i \(0.401626\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −191.607 331.873i −0.561897 0.973235i
\(342\) 0 0
\(343\) 288.702 + 185.203i 0.841698 + 0.539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 167.248 + 96.5609i 0.481984 + 0.278273i 0.721243 0.692682i \(-0.243571\pi\)
−0.239259 + 0.970956i \(0.576905\pi\)
\(348\) 0 0
\(349\) 238.000 0.681948 0.340974 0.940073i \(-0.389243\pi\)
0.340974 + 0.940073i \(0.389243\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 121.655 210.713i 0.344632 0.596921i −0.640654 0.767829i \(-0.721337\pi\)
0.985287 + 0.170908i \(0.0546702\pi\)
\(354\) 0 0
\(355\) −339.111 + 195.786i −0.955241 + 0.551509i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 473.870 273.589i 1.31997 0.762087i 0.336249 0.941773i \(-0.390842\pi\)
0.983724 + 0.179687i \(0.0575083\pi\)
\(360\) 0 0
\(361\) −166.500 + 288.386i −0.461219 + 0.798854i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −85.1587 −0.233311
\(366\) 0 0
\(367\) 524.705 + 302.939i 1.42971 + 0.825446i 0.997098 0.0761327i \(-0.0242573\pi\)
0.432616 + 0.901578i \(0.357591\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 292.685 + 56.3272i 0.788907 + 0.151825i
\(372\) 0 0
\(373\) −100.000 173.205i −0.268097 0.464357i 0.700274 0.713874i \(-0.253061\pi\)
−0.968370 + 0.249518i \(0.919728\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 596.111 1.58120
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 195.123 112.654i 0.509460 0.294137i −0.223152 0.974784i \(-0.571635\pi\)
0.732612 + 0.680647i \(0.238301\pi\)
\(384\) 0 0
\(385\) −647.500 + 224.301i −1.68182 + 0.582599i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −42.5793 + 73.7496i −0.109458 + 0.189588i −0.915551 0.402202i \(-0.868245\pi\)
0.806093 + 0.591789i \(0.201578\pi\)
\(390\) 0 0
\(391\) 391.571i 1.00146i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −292.685 168.982i −0.740974 0.427801i
\(396\) 0 0
\(397\) −308.000 533.472i −0.775819 1.34376i −0.934333 0.356401i \(-0.884004\pi\)
0.158515 0.987357i \(-0.449330\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 340.635 + 589.997i 0.849463 + 1.47131i 0.881688 + 0.471833i \(0.156407\pi\)
−0.0322251 + 0.999481i \(0.510259\pi\)
\(402\) 0 0
\(403\) −288.702 166.682i −0.716383 0.413604i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 611.552i 1.50259i
\(408\) 0 0
\(409\) −199.500 + 345.544i −0.487775 + 0.844851i −0.999901 0.0140591i \(-0.995525\pi\)
0.512126 + 0.858910i \(0.328858\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −149.028 + 774.371i −0.360842 + 1.87499i
\(414\) 0 0
\(415\) 593.444 342.625i 1.42998 0.825602i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 450.617i 1.07546i 0.843117 + 0.537730i \(0.180718\pi\)
−0.843117 + 0.537730i \(0.819282\pi\)
\(420\) 0 0
\(421\) 740.000 1.75772 0.878860 0.477080i \(-0.158305\pi\)
0.878860 + 0.477080i \(0.158305\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −72.9932 126.428i −0.171749 0.297477i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 278.747 + 160.935i 0.646745 + 0.373399i 0.787208 0.616687i \(-0.211526\pi\)
−0.140463 + 0.990086i \(0.544859\pi\)
\(432\) 0 0
\(433\) 322.000 0.743649 0.371824 0.928303i \(-0.378732\pi\)
0.371824 + 0.928303i \(0.378732\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 85.1587 147.499i 0.194871 0.337527i
\(438\) 0 0
\(439\) −364.315 + 210.337i −0.829874 + 0.479128i −0.853810 0.520585i \(-0.825714\pi\)
0.0239354 + 0.999714i \(0.492380\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 41.8121 24.1402i 0.0943839 0.0544926i −0.452065 0.891985i \(-0.649313\pi\)
0.546449 + 0.837492i \(0.315979\pi\)
\(444\) 0 0
\(445\) 407.000 704.945i 0.914607 1.58415i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −766.428 −1.70697 −0.853483 0.521120i \(-0.825514\pi\)
−0.853483 + 0.521120i \(0.825514\pi\)
\(450\) 0 0
\(451\) −339.111 195.786i −0.751908 0.434114i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −390.246 + 450.617i −0.857684 + 0.990368i
\(456\) 0 0
\(457\) 124.500 + 215.640i 0.272429 + 0.471861i 0.969483 0.245158i \(-0.0788397\pi\)
−0.697054 + 0.717018i \(0.745506\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 231.145 0.501399 0.250700 0.968065i \(-0.419339\pi\)
0.250700 + 0.968065i \(0.419339\pi\)
\(462\) 0 0
\(463\) 74.0810i 0.160002i −0.996795 0.0800011i \(-0.974508\pi\)
0.996795 0.0800011i \(-0.0254924\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −390.246 + 225.309i −0.835645 + 0.482460i −0.855781 0.517338i \(-0.826923\pi\)
0.0201367 + 0.999797i \(0.493590\pi\)
\(468\) 0 0
\(469\) −147.000 + 763.834i −0.313433 + 1.62864i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 596.111 1032.49i 1.26028 2.18286i
\(474\) 0 0
\(475\) 63.4980i 0.133680i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −780.492 450.617i −1.62942 0.940746i −0.984266 0.176693i \(-0.943460\pi\)
−0.645154 0.764053i \(-0.723207\pi\)
\(480\) 0 0
\(481\) −266.000 460.726i −0.553015 0.957849i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −106.448 184.374i −0.219481 0.380152i
\(486\) 0 0
\(487\) 368.897 + 212.983i 0.757489 + 0.437337i 0.828394 0.560146i \(-0.189255\pi\)
−0.0709042 + 0.997483i \(0.522588\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 177.028i 0.360546i 0.983617 + 0.180273i \(0.0576982\pi\)
−0.983617 + 0.180273i \(0.942302\pi\)
\(492\) 0 0
\(493\) −259.000 + 448.601i −0.525355 + 0.909941i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −425.793 + 147.499i −0.856727 + 0.296779i
\(498\) 0 0
\(499\) −160.390 + 92.6013i −0.321423 + 0.185574i −0.652027 0.758196i \(-0.726081\pi\)
0.330604 + 0.943770i \(0.392748\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 675.926i 1.34379i −0.740647 0.671895i \(-0.765481\pi\)
0.740647 0.671895i \(-0.234519\pi\)
\(504\) 0 0
\(505\) 962.000 1.90495
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −215.938 374.016i −0.424240 0.734805i 0.572109 0.820177i \(-0.306125\pi\)
−0.996349 + 0.0853725i \(0.972792\pi\)
\(510\) 0 0
\(511\) −96.2341 18.5203i −0.188325 0.0362432i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −445.996 257.496i −0.866011 0.499992i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 121.655 210.713i 0.233503 0.404440i −0.725333 0.688398i \(-0.758314\pi\)
0.958837 + 0.283958i \(0.0916477\pi\)
\(522\) 0 0
\(523\) 581.987 336.010i 1.11279 0.642467i 0.173236 0.984880i \(-0.444578\pi\)
0.939550 + 0.342413i \(0.111244\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 250.872 144.841i 0.476039 0.274841i
\(528\) 0 0
\(529\) 253.500 439.075i 0.479206 0.830009i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −340.635 −0.639089
\(534\) 0 0
\(535\) −84.7777 48.9464i −0.158463 0.0914886i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −780.492 + 112.654i −1.44804 + 0.209006i
\(540\) 0 0
\(541\) 268.000 + 464.190i 0.495379 + 0.858021i 0.999986 0.00532776i \(-0.00169589\pi\)
−0.504607 + 0.863349i \(0.668363\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −206.814 −0.379475
\(546\) 0 0
\(547\) 185.203i 0.338579i 0.985566 + 0.169289i \(0.0541473\pi\)
−0.985566 + 0.169289i \(0.945853\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 195.123 112.654i 0.354125 0.204454i
\(552\) 0 0
\(553\) −294.000 254.611i −0.531646 0.460419i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −489.662 + 848.120i −0.879107 + 1.52266i −0.0267838 + 0.999641i \(0.508527\pi\)
−0.852323 + 0.523016i \(0.824807\pi\)
\(558\) 0 0
\(559\) 1037.13i 1.85534i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 292.685 + 168.982i 0.519866 + 0.300145i 0.736880 0.676024i \(-0.236298\pi\)
−0.217014 + 0.976169i \(0.569632\pi\)
\(564\) 0 0
\(565\) −518.000 897.202i −0.916814 1.58797i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 383.214 + 663.746i 0.673487 + 1.16651i 0.976909 + 0.213657i \(0.0685375\pi\)
−0.303422 + 0.952856i \(0.598129\pi\)
\(570\) 0 0
\(571\) −705.717 407.446i −1.23593 0.713565i −0.267671 0.963510i \(-0.586254\pi\)
−0.968260 + 0.249945i \(0.919587\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 386.243i 0.671728i
\(576\) 0 0
\(577\) −479.500 + 830.518i −0.831023 + 1.43937i 0.0662056 + 0.997806i \(0.478911\pi\)
−0.897228 + 0.441567i \(0.854423\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 745.138 258.124i 1.28251 0.444275i
\(582\) 0 0
\(583\) −593.444 + 342.625i −1.01791 + 0.587693i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 112.654i 0.191915i −0.995385 0.0959577i \(-0.969409\pi\)
0.995385 0.0959577i \(-0.0305914\pi\)
\(588\) 0 0
\(589\) −126.000 −0.213922
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 444.042 + 769.103i 0.748806 + 1.29697i 0.948396 + 0.317090i \(0.102706\pi\)
−0.199590 + 0.979879i \(0.563961\pi\)
\(594\) 0 0
\(595\) −169.555 489.464i −0.284967 0.822629i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 585.369 + 337.963i 0.977244 + 0.564212i 0.901437 0.432910i \(-0.142513\pi\)
0.0758070 + 0.997123i \(0.475847\pi\)
\(600\) 0 0
\(601\) −133.000 −0.221298 −0.110649 0.993860i \(-0.535293\pi\)
−0.110649 + 0.993860i \(0.535293\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 419.711 726.960i 0.693737 1.20159i
\(606\) 0 0
\(607\) 795.077 459.038i 1.30985 0.756240i 0.327776 0.944755i \(-0.393701\pi\)
0.982070 + 0.188515i \(0.0603674\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 193.000 334.286i 0.314845 0.545328i −0.664560 0.747235i \(-0.731381\pi\)
0.979405 + 0.201908i \(0.0647141\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −681.269 −1.10416 −0.552082 0.833790i \(-0.686167\pi\)
−0.552082 + 0.833790i \(0.686167\pi\)
\(618\) 0 0
\(619\) −568.239 328.073i −0.917996 0.530005i −0.0350007 0.999387i \(-0.511143\pi\)
−0.882995 + 0.469382i \(0.844477\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 613.244 708.113i 0.984340 1.13662i
\(624\) 0 0
\(625\) 390.500 + 676.366i 0.624800 + 1.08219i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 462.290 0.734960
\(630\) 0 0
\(631\) 1166.78i 1.84909i −0.381072 0.924545i \(-0.624445\pi\)
0.381072 0.924545i \(-0.375555\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −682.931 + 394.290i −1.07548 + 0.620929i
\(636\) 0 0
\(637\) −539.000 + 424.352i −0.846154 + 0.666173i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 170.317 294.998i 0.265706 0.460216i −0.702043 0.712135i \(-0.747728\pi\)
0.967748 + 0.251919i \(0.0810617\pi\)
\(642\) 0 0
\(643\) 703.770i 1.09451i −0.836966 0.547255i \(-0.815673\pi\)
0.836966 0.547255i \(-0.184327\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 780.492 + 450.617i 1.20632 + 0.696472i 0.961954 0.273210i \(-0.0880854\pi\)
0.244370 + 0.969682i \(0.421419\pi\)
\(648\) 0 0
\(649\) −906.500 1570.10i −1.39676 2.41927i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 21.2897 + 36.8748i 0.0326029 + 0.0564698i 0.881866 0.471499i \(-0.156287\pi\)
−0.849264 + 0.527969i \(0.822954\pi\)
\(654\) 0 0
\(655\) −593.444 342.625i −0.906021 0.523091i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 450.617i 0.683790i −0.939738 0.341895i \(-0.888931\pi\)
0.939738 0.341895i \(-0.111069\pi\)
\(660\) 0 0
\(661\) −336.000 + 581.969i −0.508321 + 0.880437i 0.491633 + 0.870803i \(0.336400\pi\)
−0.999954 + 0.00963474i \(0.996933\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −42.5793 + 221.249i −0.0640291 + 0.332705i
\(666\) 0 0
\(667\) 1186.89 685.250i 1.77944 1.02736i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 985.000 1.46360 0.731798 0.681522i \(-0.238681\pi\)
0.731798 + 0.681522i \(0.238681\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −209.855 363.480i −0.309978 0.536898i 0.668379 0.743821i \(-0.266988\pi\)
−0.978357 + 0.206923i \(0.933655\pi\)
\(678\) 0 0
\(679\) −80.1951 231.503i −0.118108 0.340947i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 320.559 + 185.075i 0.469340 + 0.270974i 0.715963 0.698138i \(-0.245988\pi\)
−0.246623 + 0.969111i \(0.579321\pi\)
\(684\) 0 0
\(685\) −518.000 −0.756204
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −298.055 + 516.247i −0.432591 + 0.749270i
\(690\) 0 0
\(691\) −1182.30 + 682.604i −1.71101 + 0.987849i −0.777795 + 0.628518i \(0.783662\pi\)
−0.933210 + 0.359331i \(0.883005\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −808.367 + 466.711i −1.16312 + 0.671526i
\(696\) 0 0
\(697\) 148.000 256.344i 0.212339 0.367781i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 723.849 1.03259 0.516297 0.856409i \(-0.327310\pi\)
0.516297 + 0.856409i \(0.327310\pi\)
\(702\) 0 0
\(703\) −174.138 100.539i −0.247707 0.143014i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1087.11 + 209.215i 1.53764 + 0.295920i
\(708\) 0 0
\(709\) 495.000 + 857.365i 0.698166 + 1.20926i 0.969102 + 0.246662i \(0.0793338\pi\)
−0.270935 + 0.962598i \(0.587333\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −766.428 −1.07493
\(714\) 0 0
\(715\) 1370.50i 1.91678i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 975.615 563.272i 1.35691 0.783410i 0.367700 0.929944i \(-0.380145\pi\)
0.989206 + 0.146535i \(0.0468120\pi\)
\(720\) 0 0
\(721\) −448.000 387.979i −0.621359 0.538113i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −255.476 + 442.497i −0.352381 + 0.610341i
\(726\) 0 0
\(727\) 394.217i 0.542252i 0.962544 + 0.271126i \(0.0873959\pi\)
−0.962544 + 0.271126i \(0.912604\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 780.492 + 450.617i 1.06770 + 0.616440i
\(732\) 0 0
\(733\) −98.0000 169.741i −0.133697 0.231570i 0.791402 0.611296i \(-0.209352\pi\)
−0.925099 + 0.379726i \(0.876018\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −894.166 1548.74i −1.21325 2.10141i
\(738\) 0 0
\(739\) −32.0780 18.5203i −0.0434073 0.0250612i 0.478139 0.878284i \(-0.341311\pi\)
−0.521547 + 0.853223i \(0.674645\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 997.796i 1.34293i 0.741037 + 0.671464i \(0.234334\pi\)
−0.741037 + 0.671464i \(0.765666\pi\)
\(744\) 0 0
\(745\) −259.000 + 448.601i −0.347651 + 0.602149i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −85.1587 73.7496i −0.113696 0.0984641i
\(750\) 0 0
\(751\) 272.663 157.422i 0.363067 0.209617i −0.307358 0.951594i \(-0.599445\pi\)
0.670425 + 0.741977i \(0.266112\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 112.654i 0.149211i
\(756\) 0 0
\(757\) 912.000 1.20476 0.602378 0.798211i \(-0.294220\pi\)
0.602378 + 0.798211i \(0.294220\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −188.566 326.605i −0.247787 0.429179i 0.715125 0.698997i \(-0.246370\pi\)
−0.962911 + 0.269818i \(0.913037\pi\)
\(762\) 0 0
\(763\) −233.711 44.9778i −0.306306 0.0589486i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1365.86 788.580i −1.78078 1.02814i
\(768\) 0 0
\(769\) 1085.00 1.41092 0.705462 0.708748i \(-0.250740\pi\)
0.705462 + 0.708748i \(0.250740\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −249.393 + 431.962i −0.322630 + 0.558812i −0.981030 0.193856i \(-0.937900\pi\)
0.658400 + 0.752669i \(0.271234\pi\)
\(774\) 0 0
\(775\) 247.459 142.871i 0.319302 0.184349i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −111.499 + 64.3739i −0.143131 + 0.0826366i
\(780\) 0 0
\(781\) 518.000 897.202i 0.663252 1.14879i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1532.86 1.95268
\(786\) 0 0
\(787\) 137.477 + 79.3725i 0.174685 + 0.100855i 0.584793 0.811182i \(-0.301176\pi\)
−0.410108 + 0.912037i \(0.634509\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −390.246 1126.54i −0.493358 1.42420i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −407.545 −0.511349 −0.255674 0.966763i \(-0.582298\pi\)
−0.255674 + 0.966763i \(0.582298\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 195.123 112.654i 0.242993 0.140292i
\(804\) 0 0
\(805\) −259.000 + 1345.80i −0.321739 + 1.67181i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −85.1587 + 147.499i −0.105264 + 0.182323i −0.913846 0.406061i \(-0.866902\pi\)
0.808582 + 0.588384i \(0.200235\pi\)
\(810\) 0 0
\(811\) 1285.84i 1.58549i −0.609551 0.792747i \(-0.708650\pi\)
0.609551 0.792747i \(-0.291350\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 195.123 + 112.654i 0.239415 + 0.138226i
\(816\) 0 0
\(817\) −196.000 339.482i −0.239902 0.415523i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 234.186 + 405.623i 0.285245 + 0.494059i 0.972669 0.232198i \(-0.0745916\pi\)
−0.687423 + 0.726257i \(0.741258\pi\)
\(822\) 0 0
\(823\) −384.936 222.243i −0.467723 0.270040i 0.247563 0.968872i \(-0.420370\pi\)
−0.715286 + 0.698832i \(0.753704\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 337.963i 0.408661i −0.978902 0.204331i \(-0.934498\pi\)
0.978902 0.204331i \(-0.0655018\pi\)
\(828\) 0 0
\(829\) 287.000 497.099i 0.346200 0.599636i −0.639371 0.768899i \(-0.720805\pi\)
0.985571 + 0.169262i \(0.0541384\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −85.1587 589.997i −0.102231 0.708279i
\(834\) 0 0
\(835\) −1186.89 + 685.250i −1.42142 + 0.820658i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 225.309i 0.268544i 0.990944 + 0.134272i \(0.0428696\pi\)
−0.990944 + 0.134272i \(0.957130\pi\)
\(840\) 0 0
\(841\) 972.000 1.15577
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −82.1173 142.231i −0.0971802 0.168321i
\(846\) 0 0
\(847\) 632.395 730.227i 0.746630 0.862134i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1059.24 611.552i −1.24470 0.718628i
\(852\) 0 0
\(853\) −518.000 −0.607268 −0.303634 0.952789i \(-0.598200\pi\)
−0.303634 + 0.952789i \(0.598200\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −462.290 + 800.710i −0.539428 + 0.934317i 0.459507 + 0.888174i \(0.348026\pi\)
−0.998935 + 0.0461427i \(0.985307\pi\)
\(858\) 0 0
\(859\) 1008.17 582.065i 1.17365 0.677608i 0.219114 0.975699i \(-0.429683\pi\)
0.954537 + 0.298091i \(0.0963500\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1310.11 + 756.393i −1.51809 + 0.876470i −0.518317 + 0.855189i \(0.673441\pi\)
−0.999774 + 0.0212810i \(0.993226\pi\)
\(864\) 0 0
\(865\) −111.000 + 192.258i −0.128324 + 0.222263i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 894.166 1.02896
\(870\) 0 0
\(871\) −1347.28 777.851i −1.54682 0.893055i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 181.186 + 523.038i 0.207069 + 0.597758i
\(876\) 0 0
\(877\) −404.000 699.749i −0.460661 0.797889i 0.538333 0.842732i \(-0.319054\pi\)
−0.998994 + 0.0448436i \(0.985721\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1131.39 1.28422 0.642108 0.766614i \(-0.278060\pi\)
0.642108 + 0.766614i \(0.278060\pi\)
\(882\) 0 0
\(883\) 444.486i 0.503382i 0.967808 + 0.251691i \(0.0809866\pi\)
−0.967808 + 0.251691i \(0.919013\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −975.615 + 563.272i −1.09990 + 0.635030i −0.936196 0.351479i \(-0.885679\pi\)
−0.163708 + 0.986509i \(0.552346\pi\)
\(888\) 0 0
\(889\) −857.500 + 297.047i −0.964567 + 0.334136i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 391.571i 0.437510i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −878.054 506.945i −0.976700 0.563898i
\(900\) 0 0
\(901\) −259.000 448.601i −0.287458 0.497893i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 510.952 + 884.995i 0.564588 + 0.977895i
\(906\) 0 0
\(907\) 994.419 + 574.128i 1.09638 + 0.632997i 0.935268 0.353939i \(-0.115158\pi\)
0.161114 + 0.986936i \(0.448491\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 321.870i 0.353315i 0.984272 + 0.176657i \(0.0565284\pi\)
−0.984272 + 0.176657i \(0.943472\pi\)
\(912\) 0 0
\(913\) −906.500 + 1570.10i −0.992881 + 1.71972i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −596.111 516.247i −0.650066 0.562974i
\(918\) 0 0
\(919\) 64.1561 37.0405i 0.0698107 0.0403052i −0.464688 0.885474i \(-0.653834\pi\)
0.534499 + 0.845169i \(0.320500\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 901.235i 0.976419i
\(924\) 0 0
\(925\) 456.000 0.492973
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 535.283 + 927.138i 0.576193 + 0.997995i 0.995911 + 0.0903407i \(0.0287956\pi\)
−0.419718 + 0.907655i \(0.637871\pi\)
\(930\) 0 0
\(931\) −96.2341 + 240.763i −0.103366 + 0.258607i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1031.36 + 595.459i 1.10306 + 0.636854i
\(936\) 0 0
\(937\) 1127.00 1.20277 0.601387 0.798958i \(-0.294615\pi\)
0.601387 + 0.798958i \(0.294615\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −538.324 + 932.405i −0.572077 + 0.990866i 0.424275 + 0.905533i \(0.360529\pi\)
−0.996352 + 0.0853333i \(0.972804\pi\)
\(942\) 0 0
\(943\) −678.221 + 391.571i −0.719217 + 0.415240i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 836.242 482.804i 0.883043 0.509825i 0.0113824 0.999935i \(-0.496377\pi\)
0.871660 + 0.490110i \(0.163043\pi\)
\(948\) 0 0
\(949\) 98.0000 169.741i 0.103267 0.178863i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 510.952 0.536151 0.268076 0.963398i \(-0.413612\pi\)
0.268076 + 0.963398i \(0.413612\pi\)
\(954\) 0 0
\(955\) 1017.33 + 587.357i 1.06527 + 0.615033i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −585.369 112.654i −0.610395 0.117471i
\(960\) 0 0
\(961\) −197.000 341.214i −0.204995 0.355061i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1697.09 −1.75864
\(966\) 0 0
\(967\) 1314.94i 1.35981i 0.733299 + 0.679906i \(0.237979\pi\)
−0.733299 + 0.679906i \(0.762021\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −487.808 + 281.636i −0.502377 + 0.290047i −0.729694 0.683773i \(-0.760338\pi\)
0.227318 + 0.973821i \(0.427004\pi\)
\(972\) 0 0
\(973\) −1015.00 + 351.606i −1.04317 + 0.361363i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 85.1587 147.499i 0.0871634 0.150971i −0.819148 0.573583i \(-0.805553\pi\)
0.906311 + 0.422611i \(0.138886\pi\)
\(978\) 0 0
\(979\) 2153.64i 2.19984i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −390.246 225.309i −0.396995 0.229205i 0.288192 0.957573i \(-0.406946\pi\)
−0.685187 + 0.728368i \(0.740279\pi\)
\(984\) 0 0
\(985\) −777.000 1345.80i −0.788832 1.36630i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1192.22 2064.99i −1.20548 2.08796i
\(990\) 0 0
\(991\) −689.678 398.186i −0.695941 0.401802i 0.109893 0.993943i \(-0.464949\pi\)
−0.805834 + 0.592142i \(0.798283\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1673.72i 1.68213i
\(996\) 0 0
\(997\) 259.000 448.601i 0.259779 0.449951i −0.706403 0.707810i \(-0.749684\pi\)
0.966183 + 0.257858i \(0.0830168\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.3.cd.o.991.1 yes 8
3.2 odd 2 inner 1008.3.cd.o.991.3 yes 8
4.3 odd 2 inner 1008.3.cd.o.991.2 yes 8
7.2 even 3 inner 1008.3.cd.o.415.2 yes 8
12.11 even 2 inner 1008.3.cd.o.991.4 yes 8
21.2 odd 6 inner 1008.3.cd.o.415.4 yes 8
28.23 odd 6 inner 1008.3.cd.o.415.1 8
84.23 even 6 inner 1008.3.cd.o.415.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.3.cd.o.415.1 8 28.23 odd 6 inner
1008.3.cd.o.415.2 yes 8 7.2 even 3 inner
1008.3.cd.o.415.3 yes 8 84.23 even 6 inner
1008.3.cd.o.415.4 yes 8 21.2 odd 6 inner
1008.3.cd.o.991.1 yes 8 1.1 even 1 trivial
1008.3.cd.o.991.2 yes 8 4.3 odd 2 inner
1008.3.cd.o.991.3 yes 8 3.2 odd 2 inner
1008.3.cd.o.991.4 yes 8 12.11 even 2 inner