Properties

Label 1008.2.cz.i.607.6
Level $1008$
Weight $2$
Character 1008.607
Analytic conductor $8.049$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(367,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.367"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 4, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.cz (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 607.6
Character \(\chi\) \(=\) 1008.607
Dual form 1008.2.cz.i.367.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.891691 - 1.48489i) q^{3} +(2.03373 - 1.17418i) q^{5} +(1.63327 - 2.08145i) q^{7} +(-1.40978 + 2.64812i) q^{9} +(0.383599 + 0.221471i) q^{11} +(1.96099 + 1.13218i) q^{13} +(-3.55698 - 1.97286i) q^{15} +(4.01950 - 2.32066i) q^{17} +(3.30879 - 5.73100i) q^{19} +(-4.54709 - 0.569213i) q^{21} +(0.984190 - 0.568223i) q^{23} +(0.257380 - 0.445795i) q^{25} +(5.18924 - 0.267947i) q^{27} +(4.37712 + 7.58140i) q^{29} -4.64068 q^{31} +(-0.0131924 - 0.767085i) q^{33} +(0.877649 - 6.15086i) q^{35} +(-1.41316 + 2.44767i) q^{37} +(-0.0674408 - 3.92140i) q^{39} +(-4.55283 - 2.62858i) q^{41} +(-3.81500 + 2.20259i) q^{43} +(0.242252 + 7.04089i) q^{45} -5.34726 q^{47} +(-1.66485 - 6.79914i) q^{49} +(-7.03007 - 3.89919i) q^{51} +(-1.54428 - 2.67478i) q^{53} +1.04018 q^{55} +(-11.4603 + 0.197096i) q^{57} -1.37914 q^{59} -10.2608i q^{61} +(3.20938 + 7.25947i) q^{63} +5.31751 q^{65} +2.43388i q^{67} +(-1.72134 - 0.954732i) q^{69} -7.20644i q^{71} +(3.17824 - 1.83496i) q^{73} +(-0.891458 + 0.0153314i) q^{75} +(1.08750 - 0.436720i) q^{77} -8.38938i q^{79} +(-5.02507 - 7.46650i) q^{81} +(7.87941 + 13.6475i) q^{83} +(5.44973 - 9.43920i) q^{85} +(7.35448 - 13.2598i) q^{87} +(5.32537 + 3.07461i) q^{89} +(5.55940 - 2.23255i) q^{91} +(4.13805 + 6.89088i) q^{93} -15.5404i q^{95} +(-14.9489 + 8.63074i) q^{97} +(-1.12727 + 0.703592i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{9} + 6 q^{13} - 18 q^{17} + 4 q^{21} + 16 q^{25} - 12 q^{29} + 2 q^{37} - 36 q^{41} + 12 q^{45} + 2 q^{49} - 12 q^{53} - 46 q^{57} - 36 q^{65} + 42 q^{69} + 42 q^{77} + 20 q^{81} - 12 q^{85}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.891691 1.48489i −0.514818 0.857300i
\(4\) 0 0
\(5\) 2.03373 1.17418i 0.909513 0.525108i 0.0292386 0.999572i \(-0.490692\pi\)
0.880274 + 0.474465i \(0.157358\pi\)
\(6\) 0 0
\(7\) 1.63327 2.08145i 0.617318 0.786713i
\(8\) 0 0
\(9\) −1.40978 + 2.64812i −0.469925 + 0.882706i
\(10\) 0 0
\(11\) 0.383599 + 0.221471i 0.115660 + 0.0667761i 0.556714 0.830704i \(-0.312062\pi\)
−0.441054 + 0.897480i \(0.645395\pi\)
\(12\) 0 0
\(13\) 1.96099 + 1.13218i 0.543881 + 0.314010i 0.746650 0.665217i \(-0.231661\pi\)
−0.202769 + 0.979226i \(0.564994\pi\)
\(14\) 0 0
\(15\) −3.55698 1.97286i −0.918408 0.509390i
\(16\) 0 0
\(17\) 4.01950 2.32066i 0.974872 0.562843i 0.0741541 0.997247i \(-0.476374\pi\)
0.900718 + 0.434404i \(0.143041\pi\)
\(18\) 0 0
\(19\) 3.30879 5.73100i 0.759089 1.31478i −0.184227 0.982884i \(-0.558978\pi\)
0.943316 0.331897i \(-0.107689\pi\)
\(20\) 0 0
\(21\) −4.54709 0.569213i −0.992256 0.124213i
\(22\) 0 0
\(23\) 0.984190 0.568223i 0.205218 0.118483i −0.393869 0.919167i \(-0.628864\pi\)
0.599087 + 0.800684i \(0.295530\pi\)
\(24\) 0 0
\(25\) 0.257380 0.445795i 0.0514760 0.0891590i
\(26\) 0 0
\(27\) 5.18924 0.267947i 0.998670 0.0515664i
\(28\) 0 0
\(29\) 4.37712 + 7.58140i 0.812811 + 1.40783i 0.910889 + 0.412652i \(0.135397\pi\)
−0.0980775 + 0.995179i \(0.531269\pi\)
\(30\) 0 0
\(31\) −4.64068 −0.833490 −0.416745 0.909023i \(-0.636829\pi\)
−0.416745 + 0.909023i \(0.636829\pi\)
\(32\) 0 0
\(33\) −0.0131924 0.767085i −0.00229651 0.133532i
\(34\) 0 0
\(35\) 0.877649 6.15086i 0.148350 1.03968i
\(36\) 0 0
\(37\) −1.41316 + 2.44767i −0.232323 + 0.402395i −0.958491 0.285122i \(-0.907966\pi\)
0.726169 + 0.687517i \(0.241299\pi\)
\(38\) 0 0
\(39\) −0.0674408 3.92140i −0.0107992 0.627927i
\(40\) 0 0
\(41\) −4.55283 2.62858i −0.711032 0.410515i 0.100411 0.994946i \(-0.467984\pi\)
−0.811443 + 0.584431i \(0.801318\pi\)
\(42\) 0 0
\(43\) −3.81500 + 2.20259i −0.581782 + 0.335892i −0.761841 0.647764i \(-0.775704\pi\)
0.180059 + 0.983656i \(0.442371\pi\)
\(44\) 0 0
\(45\) 0.242252 + 7.04089i 0.0361128 + 1.04959i
\(46\) 0 0
\(47\) −5.34726 −0.779979 −0.389989 0.920819i \(-0.627521\pi\)
−0.389989 + 0.920819i \(0.627521\pi\)
\(48\) 0 0
\(49\) −1.66485 6.79914i −0.237836 0.971305i
\(50\) 0 0
\(51\) −7.03007 3.89919i −0.984406 0.545996i
\(52\) 0 0
\(53\) −1.54428 2.67478i −0.212124 0.367409i 0.740255 0.672326i \(-0.234705\pi\)
−0.952379 + 0.304917i \(0.901371\pi\)
\(54\) 0 0
\(55\) 1.04018 0.140259
\(56\) 0 0
\(57\) −11.4603 + 0.197096i −1.51795 + 0.0261060i
\(58\) 0 0
\(59\) −1.37914 −0.179549 −0.0897743 0.995962i \(-0.528615\pi\)
−0.0897743 + 0.995962i \(0.528615\pi\)
\(60\) 0 0
\(61\) 10.2608i 1.31375i −0.753997 0.656877i \(-0.771877\pi\)
0.753997 0.656877i \(-0.228123\pi\)
\(62\) 0 0
\(63\) 3.20938 + 7.25947i 0.404344 + 0.914607i
\(64\) 0 0
\(65\) 5.31751 0.659556
\(66\) 0 0
\(67\) 2.43388i 0.297346i 0.988886 + 0.148673i \(0.0475001\pi\)
−0.988886 + 0.148673i \(0.952500\pi\)
\(68\) 0 0
\(69\) −1.72134 0.954732i −0.207225 0.114936i
\(70\) 0 0
\(71\) 7.20644i 0.855247i −0.903957 0.427623i \(-0.859351\pi\)
0.903957 0.427623i \(-0.140649\pi\)
\(72\) 0 0
\(73\) 3.17824 1.83496i 0.371984 0.214765i −0.302341 0.953200i \(-0.597768\pi\)
0.674325 + 0.738435i \(0.264435\pi\)
\(74\) 0 0
\(75\) −0.891458 + 0.0153314i −0.102937 + 0.00177032i
\(76\) 0 0
\(77\) 1.08750 0.436720i 0.123932 0.0497688i
\(78\) 0 0
\(79\) 8.38938i 0.943879i −0.881631 0.471939i \(-0.843554\pi\)
0.881631 0.471939i \(-0.156446\pi\)
\(80\) 0 0
\(81\) −5.02507 7.46650i −0.558341 0.829612i
\(82\) 0 0
\(83\) 7.87941 + 13.6475i 0.864878 + 1.49801i 0.867168 + 0.498015i \(0.165938\pi\)
−0.00229000 + 0.999997i \(0.500729\pi\)
\(84\) 0 0
\(85\) 5.44973 9.43920i 0.591106 1.02383i
\(86\) 0 0
\(87\) 7.35448 13.2598i 0.788483 1.42160i
\(88\) 0 0
\(89\) 5.32537 + 3.07461i 0.564488 + 0.325908i 0.754945 0.655788i \(-0.227664\pi\)
−0.190457 + 0.981696i \(0.560997\pi\)
\(90\) 0 0
\(91\) 5.55940 2.23255i 0.582783 0.234034i
\(92\) 0 0
\(93\) 4.13805 + 6.89088i 0.429096 + 0.714551i
\(94\) 0 0
\(95\) 15.5404i 1.59441i
\(96\) 0 0
\(97\) −14.9489 + 8.63074i −1.51783 + 0.876319i −0.518049 + 0.855351i \(0.673341\pi\)
−0.999780 + 0.0209677i \(0.993325\pi\)
\(98\) 0 0
\(99\) −1.12727 + 0.703592i −0.113295 + 0.0707137i
\(100\) 0 0
\(101\) 15.0400 + 8.68337i 1.49654 + 0.864028i 0.999992 0.00398168i \(-0.00126741\pi\)
0.496548 + 0.868009i \(0.334601\pi\)
\(102\) 0 0
\(103\) −4.61944 8.00111i −0.455167 0.788373i 0.543531 0.839389i \(-0.317087\pi\)
−0.998698 + 0.0510167i \(0.983754\pi\)
\(104\) 0 0
\(105\) −9.91592 + 4.18145i −0.967694 + 0.408068i
\(106\) 0 0
\(107\) −7.76296 4.48195i −0.750474 0.433286i 0.0753911 0.997154i \(-0.475979\pi\)
−0.825865 + 0.563868i \(0.809313\pi\)
\(108\) 0 0
\(109\) −6.46206 11.1926i −0.618953 1.07206i −0.989677 0.143315i \(-0.954224\pi\)
0.370724 0.928743i \(-0.379110\pi\)
\(110\) 0 0
\(111\) 4.89462 0.0841783i 0.464577 0.00798985i
\(112\) 0 0
\(113\) −2.12502 + 3.68064i −0.199905 + 0.346246i −0.948497 0.316785i \(-0.897397\pi\)
0.748592 + 0.663031i \(0.230730\pi\)
\(114\) 0 0
\(115\) 1.33439 2.31123i 0.124432 0.215523i
\(116\) 0 0
\(117\) −5.76270 + 3.59682i −0.532762 + 0.332526i
\(118\) 0 0
\(119\) 1.73460 12.1566i 0.159010 1.11440i
\(120\) 0 0
\(121\) −5.40190 9.35637i −0.491082 0.850579i
\(122\) 0 0
\(123\) 0.156577 + 9.10431i 0.0141181 + 0.820908i
\(124\) 0 0
\(125\) 10.5329i 0.942094i
\(126\) 0 0
\(127\) 19.6660i 1.74507i 0.488549 + 0.872536i \(0.337526\pi\)
−0.488549 + 0.872536i \(0.662474\pi\)
\(128\) 0 0
\(129\) 6.67240 + 3.70081i 0.587472 + 0.325838i
\(130\) 0 0
\(131\) 8.53684 + 14.7862i 0.745867 + 1.29188i 0.949789 + 0.312892i \(0.101298\pi\)
−0.203922 + 0.978987i \(0.565369\pi\)
\(132\) 0 0
\(133\) −6.52462 16.2473i −0.565756 1.40882i
\(134\) 0 0
\(135\) 10.2389 6.63801i 0.881225 0.571309i
\(136\) 0 0
\(137\) 1.75681 3.04288i 0.150094 0.259971i −0.781168 0.624321i \(-0.785376\pi\)
0.931262 + 0.364351i \(0.118709\pi\)
\(138\) 0 0
\(139\) −8.66086 + 15.0011i −0.734605 + 1.27237i 0.220292 + 0.975434i \(0.429299\pi\)
−0.954896 + 0.296939i \(0.904034\pi\)
\(140\) 0 0
\(141\) 4.76811 + 7.94008i 0.401547 + 0.668675i
\(142\) 0 0
\(143\) 0.501490 + 0.868606i 0.0419367 + 0.0726365i
\(144\) 0 0
\(145\) 17.8038 + 10.2790i 1.47853 + 0.853627i
\(146\) 0 0
\(147\) −8.61141 + 8.53485i −0.710257 + 0.703942i
\(148\) 0 0
\(149\) 3.04266 + 5.27005i 0.249265 + 0.431739i 0.963322 0.268348i \(-0.0864777\pi\)
−0.714057 + 0.700087i \(0.753144\pi\)
\(150\) 0 0
\(151\) −2.26256 1.30629i −0.184125 0.106304i 0.405105 0.914270i \(-0.367235\pi\)
−0.589229 + 0.807966i \(0.700568\pi\)
\(152\) 0 0
\(153\) 0.478791 + 13.9157i 0.0387079 + 1.12502i
\(154\) 0 0
\(155\) −9.43790 + 5.44897i −0.758070 + 0.437672i
\(156\) 0 0
\(157\) 18.7922i 1.49978i −0.661560 0.749892i \(-0.730105\pi\)
0.661560 0.749892i \(-0.269895\pi\)
\(158\) 0 0
\(159\) −2.59472 + 4.67816i −0.205775 + 0.371002i
\(160\) 0 0
\(161\) 0.424723 2.97660i 0.0334729 0.234589i
\(162\) 0 0
\(163\) 2.90466 + 1.67700i 0.227510 + 0.131353i 0.609423 0.792845i \(-0.291401\pi\)
−0.381913 + 0.924198i \(0.624734\pi\)
\(164\) 0 0
\(165\) −0.927523 1.54456i −0.0722076 0.120244i
\(166\) 0 0
\(167\) 4.58344 7.93876i 0.354678 0.614320i −0.632385 0.774654i \(-0.717924\pi\)
0.987063 + 0.160335i \(0.0512573\pi\)
\(168\) 0 0
\(169\) −3.93635 6.81795i −0.302796 0.524458i
\(170\) 0 0
\(171\) 10.5117 + 16.8415i 0.803850 + 1.28790i
\(172\) 0 0
\(173\) 22.6519i 1.72219i 0.508441 + 0.861097i \(0.330222\pi\)
−0.508441 + 0.861097i \(0.669778\pi\)
\(174\) 0 0
\(175\) −0.507528 1.26383i −0.0383655 0.0955363i
\(176\) 0 0
\(177\) 1.22977 + 2.04786i 0.0924348 + 0.153927i
\(178\) 0 0
\(179\) −19.2752 + 11.1285i −1.44069 + 0.831785i −0.997896 0.0648357i \(-0.979348\pi\)
−0.442799 + 0.896621i \(0.646014\pi\)
\(180\) 0 0
\(181\) 4.33319i 0.322084i −0.986948 0.161042i \(-0.948515\pi\)
0.986948 0.161042i \(-0.0514854\pi\)
\(182\) 0 0
\(183\) −15.2361 + 9.14942i −1.12628 + 0.676344i
\(184\) 0 0
\(185\) 6.63721i 0.487978i
\(186\) 0 0
\(187\) 2.05584 0.150338
\(188\) 0 0
\(189\) 7.91771 11.2388i 0.575929 0.817500i
\(190\) 0 0
\(191\) 24.9010i 1.80177i 0.434058 + 0.900885i \(0.357081\pi\)
−0.434058 + 0.900885i \(0.642919\pi\)
\(192\) 0 0
\(193\) 21.3254 1.53503 0.767517 0.641029i \(-0.221492\pi\)
0.767517 + 0.641029i \(0.221492\pi\)
\(194\) 0 0
\(195\) −4.74157 7.89589i −0.339551 0.565437i
\(196\) 0 0
\(197\) 18.5315 1.32032 0.660158 0.751127i \(-0.270489\pi\)
0.660158 + 0.751127i \(0.270489\pi\)
\(198\) 0 0
\(199\) −0.918721 1.59127i −0.0651264 0.112802i 0.831624 0.555340i \(-0.187412\pi\)
−0.896750 + 0.442537i \(0.854078\pi\)
\(200\) 0 0
\(201\) 3.61403 2.17027i 0.254914 0.153079i
\(202\) 0 0
\(203\) 22.9293 + 3.27172i 1.60932 + 0.229630i
\(204\) 0 0
\(205\) −12.3457 −0.862258
\(206\) 0 0
\(207\) 0.117234 + 3.40732i 0.00814831 + 0.236825i
\(208\) 0 0
\(209\) 2.53850 1.46560i 0.175592 0.101378i
\(210\) 0 0
\(211\) 17.5295 + 10.1207i 1.20678 + 0.696735i 0.962054 0.272858i \(-0.0879689\pi\)
0.244725 + 0.969592i \(0.421302\pi\)
\(212\) 0 0
\(213\) −10.7007 + 6.42591i −0.733203 + 0.440296i
\(214\) 0 0
\(215\) −5.17246 + 8.95897i −0.352759 + 0.610997i
\(216\) 0 0
\(217\) −7.57948 + 9.65933i −0.514529 + 0.655718i
\(218\) 0 0
\(219\) −5.55870 3.08311i −0.375622 0.208337i
\(220\) 0 0
\(221\) 10.5096 0.706952
\(222\) 0 0
\(223\) −0.492098 0.852339i −0.0329533 0.0570768i 0.849078 0.528267i \(-0.177158\pi\)
−0.882032 + 0.471190i \(0.843825\pi\)
\(224\) 0 0
\(225\) 0.817670 + 1.31004i 0.0545113 + 0.0873362i
\(226\) 0 0
\(227\) −6.59642 + 11.4253i −0.437820 + 0.758326i −0.997521 0.0703684i \(-0.977583\pi\)
0.559701 + 0.828694i \(0.310916\pi\)
\(228\) 0 0
\(229\) −4.91871 + 2.83982i −0.325037 + 0.187660i −0.653636 0.756809i \(-0.726757\pi\)
0.328598 + 0.944470i \(0.393424\pi\)
\(230\) 0 0
\(231\) −1.61820 1.22540i −0.106469 0.0806253i
\(232\) 0 0
\(233\) 7.42995 12.8691i 0.486752 0.843080i −0.513132 0.858310i \(-0.671515\pi\)
0.999884 + 0.0152301i \(0.00484808\pi\)
\(234\) 0 0
\(235\) −10.8749 + 6.27863i −0.709401 + 0.409573i
\(236\) 0 0
\(237\) −12.4573 + 7.48073i −0.809187 + 0.485926i
\(238\) 0 0
\(239\) 15.6484 + 9.03459i 1.01221 + 0.584399i 0.911837 0.410551i \(-0.134664\pi\)
0.100371 + 0.994950i \(0.467997\pi\)
\(240\) 0 0
\(241\) 17.9703 + 10.3751i 1.15757 + 0.668322i 0.950720 0.310051i \(-0.100346\pi\)
0.206848 + 0.978373i \(0.433680\pi\)
\(242\) 0 0
\(243\) −6.60611 + 14.1195i −0.423782 + 0.905764i
\(244\) 0 0
\(245\) −11.3693 11.8728i −0.726355 0.758525i
\(246\) 0 0
\(247\) 12.9770 7.49228i 0.825708 0.476723i
\(248\) 0 0
\(249\) 13.2391 23.8694i 0.838991 1.51266i
\(250\) 0 0
\(251\) 9.53037 0.601552 0.300776 0.953695i \(-0.402754\pi\)
0.300776 + 0.953695i \(0.402754\pi\)
\(252\) 0 0
\(253\) 0.503380 0.0316472
\(254\) 0 0
\(255\) −18.8756 + 0.324625i −1.18204 + 0.0203288i
\(256\) 0 0
\(257\) −9.86829 + 5.69746i −0.615567 + 0.355398i −0.775141 0.631788i \(-0.782321\pi\)
0.159574 + 0.987186i \(0.448988\pi\)
\(258\) 0 0
\(259\) 2.78662 + 6.93914i 0.173152 + 0.431177i
\(260\) 0 0
\(261\) −26.2472 + 0.903073i −1.62466 + 0.0558988i
\(262\) 0 0
\(263\) −5.40199 3.11884i −0.333101 0.192316i 0.324116 0.946017i \(-0.394933\pi\)
−0.657217 + 0.753701i \(0.728266\pi\)
\(264\) 0 0
\(265\) −6.28132 3.62652i −0.385859 0.222776i
\(266\) 0 0
\(267\) −0.183146 10.6492i −0.0112083 0.651719i
\(268\) 0 0
\(269\) 22.5563 13.0229i 1.37528 0.794018i 0.383693 0.923461i \(-0.374652\pi\)
0.991587 + 0.129443i \(0.0413188\pi\)
\(270\) 0 0
\(271\) 10.3180 17.8713i 0.626775 1.08561i −0.361420 0.932403i \(-0.617708\pi\)
0.988195 0.153203i \(-0.0489589\pi\)
\(272\) 0 0
\(273\) −8.27234 6.26433i −0.500665 0.379135i
\(274\) 0 0
\(275\) 0.197461 0.114004i 0.0119074 0.00687472i
\(276\) 0 0
\(277\) 6.03611 10.4549i 0.362675 0.628171i −0.625725 0.780044i \(-0.715197\pi\)
0.988400 + 0.151872i \(0.0485302\pi\)
\(278\) 0 0
\(279\) 6.54231 12.2891i 0.391678 0.735727i
\(280\) 0 0
\(281\) −3.67299 6.36180i −0.219112 0.379513i 0.735425 0.677606i \(-0.236983\pi\)
−0.954537 + 0.298093i \(0.903649\pi\)
\(282\) 0 0
\(283\) 17.3063 1.02875 0.514376 0.857565i \(-0.328023\pi\)
0.514376 + 0.857565i \(0.328023\pi\)
\(284\) 0 0
\(285\) −23.0758 + 13.8572i −1.36689 + 0.820833i
\(286\) 0 0
\(287\) −12.9072 + 5.18330i −0.761891 + 0.305961i
\(288\) 0 0
\(289\) 2.27092 3.93336i 0.133584 0.231374i
\(290\) 0 0
\(291\) 26.1454 + 14.5014i 1.53267 + 0.850089i
\(292\) 0 0
\(293\) −0.965862 0.557641i −0.0564263 0.0325777i 0.471521 0.881855i \(-0.343705\pi\)
−0.527948 + 0.849277i \(0.677038\pi\)
\(294\) 0 0
\(295\) −2.80480 + 1.61935i −0.163302 + 0.0942823i
\(296\) 0 0
\(297\) 2.04993 + 1.04648i 0.118949 + 0.0607231i
\(298\) 0 0
\(299\) 2.57332 0.148819
\(300\) 0 0
\(301\) −1.64635 + 11.5382i −0.0948940 + 0.665048i
\(302\) 0 0
\(303\) −0.517245 30.0756i −0.0297149 1.72780i
\(304\) 0 0
\(305\) −12.0479 20.8676i −0.689863 1.19488i
\(306\) 0 0
\(307\) −30.5465 −1.74338 −0.871690 0.490058i \(-0.836975\pi\)
−0.871690 + 0.490058i \(0.836975\pi\)
\(308\) 0 0
\(309\) −7.76162 + 13.9939i −0.441543 + 0.796083i
\(310\) 0 0
\(311\) 6.89599 0.391036 0.195518 0.980700i \(-0.437361\pi\)
0.195518 + 0.980700i \(0.437361\pi\)
\(312\) 0 0
\(313\) 14.0173i 0.792305i 0.918185 + 0.396153i \(0.129655\pi\)
−0.918185 + 0.396153i \(0.870345\pi\)
\(314\) 0 0
\(315\) 15.0509 + 10.9954i 0.848023 + 0.619523i
\(316\) 0 0
\(317\) −20.1774 −1.13328 −0.566638 0.823967i \(-0.691756\pi\)
−0.566638 + 0.823967i \(0.691756\pi\)
\(318\) 0 0
\(319\) 3.87763i 0.217105i
\(320\) 0 0
\(321\) 0.266978 + 15.5236i 0.0149012 + 0.866445i
\(322\) 0 0
\(323\) 30.7143i 1.70899i
\(324\) 0 0
\(325\) 1.00944 0.582800i 0.0559936 0.0323279i
\(326\) 0 0
\(327\) −10.8576 + 19.5758i −0.600427 + 1.08254i
\(328\) 0 0
\(329\) −8.73353 + 11.1301i −0.481495 + 0.613620i
\(330\) 0 0
\(331\) 32.2973i 1.77522i 0.460597 + 0.887609i \(0.347635\pi\)
−0.460597 + 0.887609i \(0.652365\pi\)
\(332\) 0 0
\(333\) −4.48948 7.19289i −0.246022 0.394168i
\(334\) 0 0
\(335\) 2.85780 + 4.94986i 0.156138 + 0.270440i
\(336\) 0 0
\(337\) −10.1378 + 17.5591i −0.552239 + 0.956506i 0.445873 + 0.895096i \(0.352893\pi\)
−0.998113 + 0.0614102i \(0.980440\pi\)
\(338\) 0 0
\(339\) 7.36020 0.126582i 0.399751 0.00687497i
\(340\) 0 0
\(341\) −1.78016 1.02778i −0.0964011 0.0556572i
\(342\) 0 0
\(343\) −16.8712 7.63953i −0.910960 0.412496i
\(344\) 0 0
\(345\) −4.62177 + 0.0794858i −0.248828 + 0.00427937i
\(346\) 0 0
\(347\) 4.19316i 0.225101i −0.993646 0.112550i \(-0.964098\pi\)
0.993646 0.112550i \(-0.0359020\pi\)
\(348\) 0 0
\(349\) 6.54079 3.77632i 0.350120 0.202142i −0.314618 0.949218i \(-0.601876\pi\)
0.664738 + 0.747076i \(0.268543\pi\)
\(350\) 0 0
\(351\) 10.4794 + 5.34970i 0.559350 + 0.285546i
\(352\) 0 0
\(353\) 15.1910 + 8.77050i 0.808533 + 0.466807i 0.846446 0.532474i \(-0.178738\pi\)
−0.0379134 + 0.999281i \(0.512071\pi\)
\(354\) 0 0
\(355\) −8.46163 14.6560i −0.449097 0.777858i
\(356\) 0 0
\(357\) −19.5980 + 8.26429i −1.03723 + 0.437392i
\(358\) 0 0
\(359\) −18.3430 10.5904i −0.968108 0.558937i −0.0694490 0.997586i \(-0.522124\pi\)
−0.898659 + 0.438648i \(0.855457\pi\)
\(360\) 0 0
\(361\) −12.3962 21.4709i −0.652432 1.13005i
\(362\) 0 0
\(363\) −9.07632 + 16.3642i −0.476383 + 0.858898i
\(364\) 0 0
\(365\) 4.30912 7.46362i 0.225550 0.390664i
\(366\) 0 0
\(367\) −1.11068 + 1.92375i −0.0579768 + 0.100419i −0.893557 0.448950i \(-0.851798\pi\)
0.835580 + 0.549368i \(0.185132\pi\)
\(368\) 0 0
\(369\) 13.3793 8.35073i 0.696496 0.434722i
\(370\) 0 0
\(371\) −8.08965 1.15429i −0.419994 0.0599278i
\(372\) 0 0
\(373\) 3.80709 + 6.59408i 0.197124 + 0.341428i 0.947595 0.319475i \(-0.103507\pi\)
−0.750471 + 0.660904i \(0.770173\pi\)
\(374\) 0 0
\(375\) 15.6402 9.39211i 0.807656 0.485007i
\(376\) 0 0
\(377\) 19.8227i 1.02092i
\(378\) 0 0
\(379\) 4.06894i 0.209007i 0.994525 + 0.104504i \(0.0333254\pi\)
−0.994525 + 0.104504i \(0.966675\pi\)
\(380\) 0 0
\(381\) 29.2017 17.5360i 1.49605 0.898395i
\(382\) 0 0
\(383\) 1.02127 + 1.76888i 0.0521842 + 0.0903858i 0.890938 0.454126i \(-0.150048\pi\)
−0.838753 + 0.544512i \(0.816715\pi\)
\(384\) 0 0
\(385\) 1.69890 2.16509i 0.0865841 0.110343i
\(386\) 0 0
\(387\) −0.454431 13.2077i −0.0231000 0.671387i
\(388\) 0 0
\(389\) 12.1793 21.0952i 0.617517 1.06957i −0.372421 0.928064i \(-0.621472\pi\)
0.989937 0.141506i \(-0.0451945\pi\)
\(390\) 0 0
\(391\) 2.63730 4.56794i 0.133374 0.231011i
\(392\) 0 0
\(393\) 14.3437 25.8610i 0.723542 1.30451i
\(394\) 0 0
\(395\) −9.85061 17.0618i −0.495638 0.858470i
\(396\) 0 0
\(397\) −12.6996 7.33213i −0.637375 0.367989i 0.146227 0.989251i \(-0.453287\pi\)
−0.783603 + 0.621262i \(0.786620\pi\)
\(398\) 0 0
\(399\) −18.3075 + 24.1759i −0.916523 + 1.21031i
\(400\) 0 0
\(401\) −6.78892 11.7588i −0.339022 0.587204i 0.645227 0.763991i \(-0.276763\pi\)
−0.984249 + 0.176787i \(0.943430\pi\)
\(402\) 0 0
\(403\) −9.10032 5.25407i −0.453319 0.261724i
\(404\) 0 0
\(405\) −18.9866 9.28456i −0.943454 0.461354i
\(406\) 0 0
\(407\) −1.08418 + 0.625950i −0.0537407 + 0.0310272i
\(408\) 0 0
\(409\) 6.58600i 0.325657i 0.986654 + 0.162828i \(0.0520617\pi\)
−0.986654 + 0.162828i \(0.947938\pi\)
\(410\) 0 0
\(411\) −6.08486 + 0.104648i −0.300144 + 0.00516192i
\(412\) 0 0
\(413\) −2.25251 + 2.87061i −0.110839 + 0.141253i
\(414\) 0 0
\(415\) 32.0493 + 18.5036i 1.57324 + 0.908308i
\(416\) 0 0
\(417\) 29.9977 0.515904i 1.46899 0.0252639i
\(418\) 0 0
\(419\) 11.4919 19.9046i 0.561416 0.972401i −0.435957 0.899967i \(-0.643590\pi\)
0.997373 0.0724336i \(-0.0230765\pi\)
\(420\) 0 0
\(421\) −1.00338 1.73790i −0.0489017 0.0847003i 0.840538 0.541752i \(-0.182239\pi\)
−0.889440 + 0.457052i \(0.848905\pi\)
\(422\) 0 0
\(423\) 7.53844 14.1602i 0.366532 0.688492i
\(424\) 0 0
\(425\) 2.38916i 0.115891i
\(426\) 0 0
\(427\) −21.3572 16.7586i −1.03355 0.811005i
\(428\) 0 0
\(429\) 0.842607 1.51918i 0.0406814 0.0733468i
\(430\) 0 0
\(431\) 28.7684 16.6095i 1.38573 0.800049i 0.392896 0.919583i \(-0.371473\pi\)
0.992830 + 0.119534i \(0.0381399\pi\)
\(432\) 0 0
\(433\) 35.6573i 1.71358i 0.515663 + 0.856791i \(0.327546\pi\)
−0.515663 + 0.856791i \(0.672454\pi\)
\(434\) 0 0
\(435\) −0.612294 35.6023i −0.0293572 1.70700i
\(436\) 0 0
\(437\) 7.52052i 0.359755i
\(438\) 0 0
\(439\) 8.59226 0.410086 0.205043 0.978753i \(-0.434267\pi\)
0.205043 + 0.978753i \(0.434267\pi\)
\(440\) 0 0
\(441\) 20.3520 + 5.17652i 0.969142 + 0.246501i
\(442\) 0 0
\(443\) 36.4264i 1.73067i 0.501194 + 0.865335i \(0.332894\pi\)
−0.501194 + 0.865335i \(0.667106\pi\)
\(444\) 0 0
\(445\) 14.4405 0.684546
\(446\) 0 0
\(447\) 5.11231 9.21726i 0.241804 0.435962i
\(448\) 0 0
\(449\) −12.2858 −0.579801 −0.289900 0.957057i \(-0.593622\pi\)
−0.289900 + 0.957057i \(0.593622\pi\)
\(450\) 0 0
\(451\) −1.16431 2.01664i −0.0548251 0.0949599i
\(452\) 0 0
\(453\) 0.0778121 + 4.52445i 0.00365593 + 0.212577i
\(454\) 0 0
\(455\) 8.68493 11.0681i 0.407156 0.518881i
\(456\) 0 0
\(457\) −7.29349 −0.341175 −0.170587 0.985343i \(-0.554567\pi\)
−0.170587 + 0.985343i \(0.554567\pi\)
\(458\) 0 0
\(459\) 20.2363 13.1195i 0.944551 0.612365i
\(460\) 0 0
\(461\) −7.33329 + 4.23388i −0.341545 + 0.197191i −0.660955 0.750425i \(-0.729849\pi\)
0.319410 + 0.947617i \(0.396515\pi\)
\(462\) 0 0
\(463\) −4.53400 2.61771i −0.210713 0.121655i 0.390930 0.920421i \(-0.372154\pi\)
−0.601643 + 0.798765i \(0.705487\pi\)
\(464\) 0 0
\(465\) 16.5068 + 9.15541i 0.765484 + 0.424572i
\(466\) 0 0
\(467\) 9.96542 17.2606i 0.461145 0.798726i −0.537874 0.843025i \(-0.680772\pi\)
0.999018 + 0.0442995i \(0.0141056\pi\)
\(468\) 0 0
\(469\) 5.06599 + 3.97518i 0.233926 + 0.183557i
\(470\) 0 0
\(471\) −27.9043 + 16.7569i −1.28576 + 0.772116i
\(472\) 0 0
\(473\) −1.95124 −0.0897182
\(474\) 0 0
\(475\) −1.70323 2.95008i −0.0781497 0.135359i
\(476\) 0 0
\(477\) 9.26023 0.318611i 0.423997 0.0145882i
\(478\) 0 0
\(479\) −14.5123 + 25.1360i −0.663083 + 1.14849i 0.316718 + 0.948520i \(0.397419\pi\)
−0.979801 + 0.199974i \(0.935914\pi\)
\(480\) 0 0
\(481\) −5.54240 + 3.19991i −0.252712 + 0.145903i
\(482\) 0 0
\(483\) −4.79864 + 2.02354i −0.218346 + 0.0920744i
\(484\) 0 0
\(485\) −20.2680 + 35.1052i −0.920323 + 1.59405i
\(486\) 0 0
\(487\) −11.9472 + 6.89770i −0.541378 + 0.312565i −0.745637 0.666352i \(-0.767855\pi\)
0.204259 + 0.978917i \(0.434521\pi\)
\(488\) 0 0
\(489\) −0.0998946 5.80845i −0.00451739 0.262667i
\(490\) 0 0
\(491\) −14.6069 8.43329i −0.659200 0.380589i 0.132772 0.991147i \(-0.457612\pi\)
−0.791972 + 0.610557i \(0.790945\pi\)
\(492\) 0 0
\(493\) 35.1877 + 20.3156i 1.58477 + 0.914970i
\(494\) 0 0
\(495\) −1.46643 + 2.75453i −0.0659110 + 0.123807i
\(496\) 0 0
\(497\) −14.9998 11.7701i −0.672834 0.527959i
\(498\) 0 0
\(499\) 14.5193 8.38271i 0.649972 0.375262i −0.138473 0.990366i \(-0.544220\pi\)
0.788446 + 0.615104i \(0.210886\pi\)
\(500\) 0 0
\(501\) −15.8752 + 0.273023i −0.709250 + 0.0121978i
\(502\) 0 0
\(503\) −36.2366 −1.61571 −0.807856 0.589380i \(-0.799372\pi\)
−0.807856 + 0.589380i \(0.799372\pi\)
\(504\) 0 0
\(505\) 40.7832 1.81483
\(506\) 0 0
\(507\) −6.61388 + 11.9245i −0.293733 + 0.529587i
\(508\) 0 0
\(509\) 25.1838 14.5399i 1.11625 0.644468i 0.175811 0.984424i \(-0.443745\pi\)
0.940441 + 0.339956i \(0.110412\pi\)
\(510\) 0 0
\(511\) 1.37155 9.61231i 0.0606740 0.425224i
\(512\) 0 0
\(513\) 15.6345 30.6261i 0.690280 1.35217i
\(514\) 0 0
\(515\) −18.7894 10.8481i −0.827961 0.478023i
\(516\) 0 0
\(517\) −2.05121 1.18427i −0.0902120 0.0520839i
\(518\) 0 0
\(519\) 33.6355 20.1985i 1.47644 0.886616i
\(520\) 0 0
\(521\) −31.1742 + 17.9984i −1.36576 + 0.788524i −0.990384 0.138346i \(-0.955821\pi\)
−0.375381 + 0.926871i \(0.622488\pi\)
\(522\) 0 0
\(523\) 17.0333 29.5026i 0.744816 1.29006i −0.205465 0.978664i \(-0.565871\pi\)
0.950281 0.311394i \(-0.100796\pi\)
\(524\) 0 0
\(525\) −1.42408 + 1.88056i −0.0621520 + 0.0820745i
\(526\) 0 0
\(527\) −18.6532 + 10.7694i −0.812546 + 0.469124i
\(528\) 0 0
\(529\) −10.8542 + 18.8001i −0.471924 + 0.817396i
\(530\) 0 0
\(531\) 1.94428 3.65212i 0.0843744 0.158489i
\(532\) 0 0
\(533\) −5.95203 10.3092i −0.257811 0.446542i
\(534\) 0 0
\(535\) −21.0504 −0.910088
\(536\) 0 0
\(537\) 33.7121 + 18.6982i 1.45478 + 0.806889i
\(538\) 0 0
\(539\) 0.867176 2.97686i 0.0373519 0.128223i
\(540\) 0 0
\(541\) −4.04194 + 7.00084i −0.173777 + 0.300990i −0.939737 0.341898i \(-0.888930\pi\)
0.765961 + 0.642887i \(0.222264\pi\)
\(542\) 0 0
\(543\) −6.43430 + 3.86387i −0.276122 + 0.165814i
\(544\) 0 0
\(545\) −26.2842 15.1752i −1.12589 0.650034i
\(546\) 0 0
\(547\) 22.5917 13.0433i 0.965950 0.557691i 0.0679508 0.997689i \(-0.478354\pi\)
0.897999 + 0.439997i \(0.145021\pi\)
\(548\) 0 0
\(549\) 27.1717 + 14.4654i 1.15966 + 0.617366i
\(550\) 0 0
\(551\) 57.9320 2.46798
\(552\) 0 0
\(553\) −17.4621 13.7021i −0.742562 0.582674i
\(554\) 0 0
\(555\) 9.85551 5.91834i 0.418343 0.251220i
\(556\) 0 0
\(557\) 6.12408 + 10.6072i 0.259486 + 0.449442i 0.966104 0.258152i \(-0.0831137\pi\)
−0.706619 + 0.707595i \(0.749780\pi\)
\(558\) 0 0
\(559\) −9.97491 −0.421894
\(560\) 0 0
\(561\) −1.83317 3.05268i −0.0773965 0.128884i
\(562\) 0 0
\(563\) 22.8504 0.963029 0.481515 0.876438i \(-0.340087\pi\)
0.481515 + 0.876438i \(0.340087\pi\)
\(564\) 0 0
\(565\) 9.98059i 0.419887i
\(566\) 0 0
\(567\) −23.7484 1.73541i −0.997341 0.0728802i
\(568\) 0 0
\(569\) −5.73797 −0.240548 −0.120274 0.992741i \(-0.538377\pi\)
−0.120274 + 0.992741i \(0.538377\pi\)
\(570\) 0 0
\(571\) 24.9596i 1.04453i 0.852784 + 0.522264i \(0.174912\pi\)
−0.852784 + 0.522264i \(0.825088\pi\)
\(572\) 0 0
\(573\) 36.9751 22.2039i 1.54466 0.927583i
\(574\) 0 0
\(575\) 0.584996i 0.0243960i
\(576\) 0 0
\(577\) −18.7652 + 10.8341i −0.781206 + 0.451030i −0.836858 0.547421i \(-0.815610\pi\)
0.0556514 + 0.998450i \(0.482276\pi\)
\(578\) 0 0
\(579\) −19.0156 31.6658i −0.790263 1.31598i
\(580\) 0 0
\(581\) 41.2759 + 5.88954i 1.71241 + 0.244339i
\(582\) 0 0
\(583\) 1.36806i 0.0566592i
\(584\) 0 0
\(585\) −7.49649 + 14.0814i −0.309942 + 0.582194i
\(586\) 0 0
\(587\) −14.7121 25.4821i −0.607233 1.05176i −0.991694 0.128617i \(-0.958946\pi\)
0.384461 0.923141i \(-0.374387\pi\)
\(588\) 0 0
\(589\) −15.3550 + 26.5957i −0.632693 + 1.09586i
\(590\) 0 0
\(591\) −16.5244 27.5172i −0.679722 1.13191i
\(592\) 0 0
\(593\) −25.5917 14.7754i −1.05092 0.606752i −0.128017 0.991772i \(-0.540861\pi\)
−0.922908 + 0.385020i \(0.874194\pi\)
\(594\) 0 0
\(595\) −10.7463 26.7601i −0.440557 1.09706i
\(596\) 0 0
\(597\) −1.54364 + 2.78312i −0.0631771 + 0.113905i
\(598\) 0 0
\(599\) 39.7332i 1.62345i −0.584038 0.811727i \(-0.698528\pi\)
0.584038 0.811727i \(-0.301472\pi\)
\(600\) 0 0
\(601\) −9.64604 + 5.56915i −0.393470 + 0.227170i −0.683663 0.729798i \(-0.739614\pi\)
0.290192 + 0.956968i \(0.406281\pi\)
\(602\) 0 0
\(603\) −6.44520 3.43122i −0.262469 0.139730i
\(604\) 0 0
\(605\) −21.9720 12.6856i −0.893291 0.515742i
\(606\) 0 0
\(607\) −17.3314 30.0189i −0.703461 1.21843i −0.967244 0.253848i \(-0.918304\pi\)
0.263783 0.964582i \(-0.415030\pi\)
\(608\) 0 0
\(609\) −15.5877 36.9648i −0.631646 1.49789i
\(610\) 0 0
\(611\) −10.4859 6.05406i −0.424215 0.244921i
\(612\) 0 0
\(613\) −16.1482 27.9695i −0.652219 1.12968i −0.982583 0.185823i \(-0.940505\pi\)
0.330365 0.943853i \(-0.392828\pi\)
\(614\) 0 0
\(615\) 11.0085 + 18.3319i 0.443906 + 0.739213i
\(616\) 0 0
\(617\) −22.0343 + 38.1645i −0.887067 + 1.53644i −0.0437400 + 0.999043i \(0.513927\pi\)
−0.843327 + 0.537401i \(0.819406\pi\)
\(618\) 0 0
\(619\) −4.65157 + 8.05675i −0.186962 + 0.323828i −0.944236 0.329270i \(-0.893198\pi\)
0.757274 + 0.653098i \(0.226531\pi\)
\(620\) 0 0
\(621\) 4.95495 3.21235i 0.198835 0.128907i
\(622\) 0 0
\(623\) 15.0974 6.06283i 0.604865 0.242902i
\(624\) 0 0
\(625\) 13.6544 + 23.6501i 0.546176 + 0.946005i
\(626\) 0 0
\(627\) −4.43981 2.46252i −0.177309 0.0983436i
\(628\) 0 0
\(629\) 13.1179i 0.523044i
\(630\) 0 0
\(631\) 28.6463i 1.14039i −0.821509 0.570196i \(-0.806867\pi\)
0.821509 0.570196i \(-0.193133\pi\)
\(632\) 0 0
\(633\) −0.602860 35.0538i −0.0239615 1.39326i
\(634\) 0 0
\(635\) 23.0913 + 39.9953i 0.916351 + 1.58717i
\(636\) 0 0
\(637\) 4.43307 15.2180i 0.175645 0.602957i
\(638\) 0 0
\(639\) 19.0835 + 10.1595i 0.754932 + 0.401902i
\(640\) 0 0
\(641\) −1.01626 + 1.76021i −0.0401397 + 0.0695241i −0.885397 0.464835i \(-0.846114\pi\)
0.845258 + 0.534359i \(0.179447\pi\)
\(642\) 0 0
\(643\) 14.7575 25.5608i 0.581980 1.00802i −0.413265 0.910611i \(-0.635612\pi\)
0.995245 0.0974077i \(-0.0310551\pi\)
\(644\) 0 0
\(645\) 17.9153 0.308110i 0.705414 0.0121318i
\(646\) 0 0
\(647\) −8.18434 14.1757i −0.321759 0.557304i 0.659092 0.752063i \(-0.270941\pi\)
−0.980851 + 0.194759i \(0.937608\pi\)
\(648\) 0 0
\(649\) −0.529037 0.305440i −0.0207665 0.0119896i
\(650\) 0 0
\(651\) 21.1016 + 2.64154i 0.827035 + 0.103530i
\(652\) 0 0
\(653\) −0.0892626 0.154607i −0.00349312 0.00605026i 0.864274 0.503022i \(-0.167779\pi\)
−0.867767 + 0.496972i \(0.834445\pi\)
\(654\) 0 0
\(655\) 34.7233 + 20.0475i 1.35675 + 0.783321i
\(656\) 0 0
\(657\) 0.378582 + 11.0032i 0.0147699 + 0.429276i
\(658\) 0 0
\(659\) −17.4428 + 10.0706i −0.679474 + 0.392294i −0.799657 0.600457i \(-0.794985\pi\)
0.120183 + 0.992752i \(0.461652\pi\)
\(660\) 0 0
\(661\) 8.76781i 0.341028i 0.985355 + 0.170514i \(0.0545429\pi\)
−0.985355 + 0.170514i \(0.945457\pi\)
\(662\) 0 0
\(663\) −9.37131 15.6056i −0.363952 0.606070i
\(664\) 0 0
\(665\) −32.3466 25.3817i −1.25435 0.984261i
\(666\) 0 0
\(667\) 8.61584 + 4.97436i 0.333607 + 0.192608i
\(668\) 0 0
\(669\) −0.826827 + 1.49073i −0.0319670 + 0.0576350i
\(670\) 0 0
\(671\) 2.27246 3.93602i 0.0877274 0.151948i
\(672\) 0 0
\(673\) −1.04120 1.80341i −0.0401353 0.0695164i 0.845260 0.534355i \(-0.179446\pi\)
−0.885395 + 0.464839i \(0.846112\pi\)
\(674\) 0 0
\(675\) 1.21616 2.38230i 0.0468099 0.0916948i
\(676\) 0 0
\(677\) 13.9421i 0.535839i −0.963441 0.267919i \(-0.913664\pi\)
0.963441 0.267919i \(-0.0863361\pi\)
\(678\) 0 0
\(679\) −6.45113 + 45.2117i −0.247572 + 1.73506i
\(680\) 0 0
\(681\) 22.8473 0.392931i 0.875510 0.0150571i
\(682\) 0 0
\(683\) 13.5049 7.79708i 0.516752 0.298347i −0.218853 0.975758i \(-0.570231\pi\)
0.735605 + 0.677411i \(0.236898\pi\)
\(684\) 0 0
\(685\) 8.25120i 0.315262i
\(686\) 0 0
\(687\) 8.60278 + 4.77149i 0.328216 + 0.182044i
\(688\) 0 0
\(689\) 6.99362i 0.266436i
\(690\) 0 0
\(691\) 1.97347 0.0750743 0.0375371 0.999295i \(-0.488049\pi\)
0.0375371 + 0.999295i \(0.488049\pi\)
\(692\) 0 0
\(693\) −0.376648 + 3.49551i −0.0143077 + 0.132784i
\(694\) 0 0
\(695\) 40.6775i 1.54299i
\(696\) 0 0
\(697\) −24.4001 −0.924221
\(698\) 0 0
\(699\) −25.7343 + 0.442582i −0.973361 + 0.0167400i
\(700\) 0 0
\(701\) −3.57171 −0.134902 −0.0674508 0.997723i \(-0.521487\pi\)
−0.0674508 + 0.997723i \(0.521487\pi\)
\(702\) 0 0
\(703\) 9.35173 + 16.1977i 0.352707 + 0.610907i
\(704\) 0 0
\(705\) 19.0201 + 10.5494i 0.716339 + 0.397314i
\(706\) 0 0
\(707\) 42.6384 17.1228i 1.60358 0.643968i
\(708\) 0 0
\(709\) 25.2557 0.948499 0.474250 0.880390i \(-0.342719\pi\)
0.474250 + 0.880390i \(0.342719\pi\)
\(710\) 0 0
\(711\) 22.2161 + 11.8271i 0.833168 + 0.443552i
\(712\) 0 0
\(713\) −4.56731 + 2.63694i −0.171047 + 0.0987541i
\(714\) 0 0
\(715\) 2.03979 + 1.17767i 0.0762839 + 0.0440425i
\(716\) 0 0
\(717\) −0.538166 31.2921i −0.0200982 1.16862i
\(718\) 0 0
\(719\) −19.0045 + 32.9168i −0.708749 + 1.22759i 0.256572 + 0.966525i \(0.417407\pi\)
−0.965321 + 0.261065i \(0.915926\pi\)
\(720\) 0 0
\(721\) −24.1987 3.45285i −0.901206 0.128591i
\(722\) 0 0
\(723\) −0.618019 35.9353i −0.0229844 1.33645i
\(724\) 0 0
\(725\) 4.50633 0.167361
\(726\) 0 0
\(727\) −8.14853 14.1137i −0.302212 0.523447i 0.674424 0.738344i \(-0.264392\pi\)
−0.976637 + 0.214897i \(0.931059\pi\)
\(728\) 0 0
\(729\) 26.8564 2.78088i 0.994682 0.102996i
\(730\) 0 0
\(731\) −10.2229 + 17.7066i −0.378109 + 0.654904i
\(732\) 0 0
\(733\) −11.0088 + 6.35596i −0.406621 + 0.234763i −0.689337 0.724441i \(-0.742098\pi\)
0.282716 + 0.959204i \(0.408765\pi\)
\(734\) 0 0
\(735\) −7.49190 + 27.4689i −0.276343 + 1.01321i
\(736\) 0 0
\(737\) −0.539034 + 0.933634i −0.0198556 + 0.0343909i
\(738\) 0 0
\(739\) −21.2467 + 12.2668i −0.781574 + 0.451242i −0.836988 0.547222i \(-0.815685\pi\)
0.0554141 + 0.998463i \(0.482352\pi\)
\(740\) 0 0
\(741\) −22.6967 12.5886i −0.833783 0.462454i
\(742\) 0 0
\(743\) −25.5305 14.7400i −0.936624 0.540760i −0.0477233 0.998861i \(-0.515197\pi\)
−0.888900 + 0.458101i \(0.848530\pi\)
\(744\) 0 0
\(745\) 12.3759 + 7.14525i 0.453419 + 0.261782i
\(746\) 0 0
\(747\) −47.2485 + 1.62565i −1.72873 + 0.0594796i
\(748\) 0 0
\(749\) −22.0080 + 8.83797i −0.804154 + 0.322932i
\(750\) 0 0
\(751\) 34.4188 19.8717i 1.25596 0.725129i 0.283673 0.958921i \(-0.408447\pi\)
0.972287 + 0.233792i \(0.0751135\pi\)
\(752\) 0 0
\(753\) −8.49815 14.1515i −0.309690 0.515710i
\(754\) 0 0
\(755\) −6.13526 −0.223285
\(756\) 0 0
\(757\) −3.23130 −0.117444 −0.0587218 0.998274i \(-0.518702\pi\)
−0.0587218 + 0.998274i \(0.518702\pi\)
\(758\) 0 0
\(759\) −0.448859 0.747462i −0.0162926 0.0271311i
\(760\) 0 0
\(761\) 31.9261 18.4325i 1.15732 0.668178i 0.206659 0.978413i \(-0.433741\pi\)
0.950660 + 0.310235i \(0.100408\pi\)
\(762\) 0 0
\(763\) −33.8511 4.83013i −1.22549 0.174862i
\(764\) 0 0
\(765\) 17.3132 + 27.7387i 0.625962 + 1.00289i
\(766\) 0 0
\(767\) −2.70448 1.56143i −0.0976530 0.0563800i
\(768\) 0 0
\(769\) 21.3838 + 12.3460i 0.771120 + 0.445206i 0.833274 0.552860i \(-0.186464\pi\)
−0.0621539 + 0.998067i \(0.519797\pi\)
\(770\) 0 0
\(771\) 17.2595 + 9.57292i 0.621587 + 0.344760i
\(772\) 0 0
\(773\) −18.1598 + 10.4846i −0.653164 + 0.377104i −0.789667 0.613535i \(-0.789747\pi\)
0.136503 + 0.990640i \(0.456414\pi\)
\(774\) 0 0
\(775\) −1.19442 + 2.06879i −0.0429047 + 0.0743131i
\(776\) 0 0
\(777\) 7.81902 10.3254i 0.280506 0.370421i
\(778\) 0 0
\(779\) −30.1287 + 17.3948i −1.07947 + 0.623234i
\(780\) 0 0
\(781\) 1.59602 2.76438i 0.0571100 0.0989175i
\(782\) 0 0
\(783\) 24.7454 + 38.1689i 0.884327 + 1.36404i
\(784\) 0 0
\(785\) −22.0654 38.2184i −0.787548 1.36407i
\(786\) 0 0
\(787\) 14.8884 0.530713 0.265356 0.964150i \(-0.414510\pi\)
0.265356 + 0.964150i \(0.414510\pi\)
\(788\) 0 0
\(789\) 0.185781 + 10.8024i 0.00661397 + 0.384575i
\(790\) 0 0
\(791\) 4.19033 + 10.4346i 0.148991 + 0.371012i
\(792\) 0 0
\(793\) 11.6170 20.1212i 0.412532 0.714526i
\(794\) 0 0
\(795\) 0.216022 + 12.5608i 0.00766151 + 0.445485i
\(796\) 0 0
\(797\) −17.5335 10.1230i −0.621068 0.358574i 0.156216 0.987723i \(-0.450070\pi\)
−0.777285 + 0.629149i \(0.783404\pi\)
\(798\) 0 0
\(799\) −21.4933 + 12.4092i −0.760380 + 0.439005i
\(800\) 0 0
\(801\) −15.6495 + 9.76772i −0.552948 + 0.345125i
\(802\) 0 0
\(803\) 1.62556 0.0573647
\(804\) 0 0
\(805\) −2.63128 6.55231i −0.0927405 0.230939i
\(806\) 0 0
\(807\) −39.4507 21.8811i −1.38873 0.770252i
\(808\) 0 0
\(809\) −17.2300 29.8433i −0.605775 1.04923i −0.991928 0.126799i \(-0.959530\pi\)
0.386153 0.922435i \(-0.373804\pi\)
\(810\) 0 0
\(811\) 49.5905 1.74136 0.870679 0.491852i \(-0.163680\pi\)
0.870679 + 0.491852i \(0.163680\pi\)
\(812\) 0 0
\(813\) −35.7374 + 0.614616i −1.25336 + 0.0215555i
\(814\) 0 0
\(815\) 7.87639 0.275898
\(816\) 0 0
\(817\) 29.1517i 1.01989i
\(818\) 0 0
\(819\) −1.92545 + 17.8693i −0.0672808 + 0.624405i
\(820\) 0 0
\(821\) 39.1601 1.36670 0.683349 0.730092i \(-0.260523\pi\)
0.683349 + 0.730092i \(0.260523\pi\)
\(822\) 0 0
\(823\) 38.8786i 1.35522i 0.735420 + 0.677612i \(0.236985\pi\)
−0.735420 + 0.677612i \(0.763015\pi\)
\(824\) 0 0
\(825\) −0.345358 0.191551i −0.0120238 0.00666895i
\(826\) 0 0
\(827\) 41.0227i 1.42650i 0.700909 + 0.713250i \(0.252778\pi\)
−0.700909 + 0.713250i \(0.747222\pi\)
\(828\) 0 0
\(829\) −11.4951 + 6.63672i −0.399242 + 0.230503i −0.686157 0.727453i \(-0.740704\pi\)
0.286915 + 0.957956i \(0.407370\pi\)
\(830\) 0 0
\(831\) −20.9066 + 0.359555i −0.725243 + 0.0124728i
\(832\) 0 0
\(833\) −22.4704 23.4656i −0.778552 0.813034i
\(834\) 0 0
\(835\) 21.5271i 0.744975i
\(836\) 0 0
\(837\) −24.0816 + 1.24346i −0.832381 + 0.0429801i
\(838\) 0 0
\(839\) −15.9028 27.5445i −0.549025 0.950940i −0.998342 0.0575672i \(-0.981666\pi\)
0.449316 0.893373i \(-0.351668\pi\)
\(840\) 0 0
\(841\) −23.8184 + 41.2547i −0.821325 + 1.42258i
\(842\) 0 0
\(843\) −6.17138 + 11.1267i −0.212554 + 0.383225i
\(844\) 0 0
\(845\) −16.0110 9.24393i −0.550793 0.318001i
\(846\) 0 0
\(847\) −28.2976 4.03770i −0.972316 0.138737i
\(848\) 0 0
\(849\) −15.4319 25.6979i −0.529620 0.881949i
\(850\) 0 0
\(851\) 3.21197i 0.110105i
\(852\) 0 0
\(853\) 0.551551 0.318438i 0.0188847 0.0109031i −0.490528 0.871425i \(-0.663196\pi\)
0.509413 + 0.860522i \(0.329863\pi\)
\(854\) 0 0
\(855\) 41.1529 + 21.9085i 1.40740 + 0.749255i
\(856\) 0 0
\(857\) −3.94028 2.27492i −0.134597 0.0777098i 0.431189 0.902261i \(-0.358094\pi\)
−0.565787 + 0.824552i \(0.691427\pi\)
\(858\) 0 0
\(859\) 6.78168 + 11.7462i 0.231388 + 0.400775i 0.958217 0.286043i \(-0.0923401\pi\)
−0.726829 + 0.686819i \(0.759007\pi\)
\(860\) 0 0
\(861\) 19.2059 + 14.5439i 0.654535 + 0.495655i
\(862\) 0 0
\(863\) 14.1996 + 8.19817i 0.483361 + 0.279069i 0.721816 0.692085i \(-0.243308\pi\)
−0.238455 + 0.971154i \(0.576641\pi\)
\(864\) 0 0
\(865\) 26.5973 + 46.0680i 0.904337 + 1.56636i
\(866\) 0 0
\(867\) −7.86555 + 0.135273i −0.267128 + 0.00459410i
\(868\) 0 0
\(869\) 1.85801 3.21816i 0.0630285 0.109169i
\(870\) 0 0
\(871\) −2.75558 + 4.77281i −0.0933694 + 0.161721i
\(872\) 0 0
\(873\) −1.78066 51.7538i −0.0602664 1.75160i
\(874\) 0 0
\(875\) 21.9237 + 17.2031i 0.741158 + 0.581572i
\(876\) 0 0
\(877\) 24.7595 + 42.8847i 0.836068 + 1.44811i 0.893158 + 0.449743i \(0.148484\pi\)
−0.0570903 + 0.998369i \(0.518182\pi\)
\(878\) 0 0
\(879\) 0.0332171 + 1.93144i 0.00112039 + 0.0651458i
\(880\) 0 0
\(881\) 16.2659i 0.548012i 0.961728 + 0.274006i \(0.0883488\pi\)
−0.961728 + 0.274006i \(0.911651\pi\)
\(882\) 0 0
\(883\) 26.6667i 0.897404i 0.893681 + 0.448702i \(0.148114\pi\)
−0.893681 + 0.448702i \(0.851886\pi\)
\(884\) 0 0
\(885\) 4.90557 + 2.72085i 0.164899 + 0.0914603i
\(886\) 0 0
\(887\) 26.9978 + 46.7616i 0.906499 + 1.57010i 0.818892 + 0.573947i \(0.194589\pi\)
0.0876066 + 0.996155i \(0.472078\pi\)
\(888\) 0 0
\(889\) 40.9337 + 32.1199i 1.37287 + 1.07727i
\(890\) 0 0
\(891\) −0.273997 3.97705i −0.00917924 0.133236i
\(892\) 0 0
\(893\) −17.6930 + 30.6452i −0.592073 + 1.02550i
\(894\) 0 0
\(895\) −26.1337 + 45.2649i −0.873554 + 1.51304i
\(896\) 0 0
\(897\) −2.29460 3.82108i −0.0766146 0.127582i
\(898\) 0 0
\(899\) −20.3128 35.1828i −0.677470 1.17341i
\(900\) 0 0
\(901\) −12.4145 7.16752i −0.413587 0.238785i
\(902\) 0 0
\(903\) 18.6009 7.84383i 0.618999 0.261026i
\(904\) 0 0
\(905\) −5.08793 8.81255i −0.169129 0.292939i
\(906\) 0 0
\(907\) −39.4433 22.7726i −1.30969 0.756151i −0.327648 0.944800i \(-0.606256\pi\)
−0.982045 + 0.188649i \(0.939589\pi\)
\(908\) 0 0
\(909\) −44.1977 + 27.5862i −1.46594 + 0.914977i
\(910\) 0 0
\(911\) −10.7265 + 6.19296i −0.355385 + 0.205182i −0.667055 0.745009i \(-0.732445\pi\)
0.311669 + 0.950191i \(0.399112\pi\)
\(912\) 0 0
\(913\) 6.98025i 0.231013i
\(914\) 0 0
\(915\) −20.2430 + 36.4973i −0.669214 + 1.20656i
\(916\) 0 0
\(917\) 44.7198 + 6.38094i 1.47678 + 0.210717i
\(918\) 0 0
\(919\) 38.9097 + 22.4645i 1.28351 + 0.741037i 0.977489 0.210987i \(-0.0676678\pi\)
0.306024 + 0.952024i \(0.401001\pi\)
\(920\) 0 0
\(921\) 27.2380 + 45.3580i 0.897523 + 1.49460i
\(922\) 0 0
\(923\) 8.15897 14.1318i 0.268556 0.465152i
\(924\) 0 0
\(925\) 0.727439 + 1.25996i 0.0239181 + 0.0414273i
\(926\) 0 0
\(927\) 27.7003 0.953067i 0.909796 0.0313028i
\(928\) 0 0
\(929\) 25.5365i 0.837825i 0.908027 + 0.418912i \(0.137589\pi\)
−0.908027 + 0.418912i \(0.862411\pi\)
\(930\) 0 0
\(931\) −44.4745 12.9557i −1.45759 0.424605i
\(932\) 0 0
\(933\) −6.14909 10.2398i −0.201312 0.335235i
\(934\) 0 0
\(935\) 4.18102 2.41392i 0.136734 0.0789435i
\(936\) 0 0
\(937\) 29.7933i 0.973304i −0.873596 0.486652i \(-0.838218\pi\)
0.873596 0.486652i \(-0.161782\pi\)
\(938\) 0 0
\(939\) 20.8141 12.4991i 0.679243 0.407893i
\(940\) 0 0
\(941\) 38.0234i 1.23953i −0.784789 0.619763i \(-0.787229\pi\)
0.784789 0.619763i \(-0.212771\pi\)
\(942\) 0 0
\(943\) −5.97447 −0.194555
\(944\) 0 0
\(945\) 2.90623 32.1534i 0.0945396 1.04595i
\(946\) 0 0
\(947\) 27.6471i 0.898409i −0.893429 0.449205i \(-0.851707\pi\)
0.893429 0.449205i \(-0.148293\pi\)
\(948\) 0 0
\(949\) 8.30998 0.269754
\(950\) 0 0
\(951\) 17.9920 + 29.9612i 0.583431 + 0.971557i
\(952\) 0 0
\(953\) 38.4588 1.24580 0.622901 0.782301i \(-0.285954\pi\)
0.622901 + 0.782301i \(0.285954\pi\)
\(954\) 0 0
\(955\) 29.2381 + 50.6419i 0.946123 + 1.63873i
\(956\) 0 0
\(957\) 5.75784 3.45764i 0.186124 0.111770i
\(958\) 0 0
\(959\) −3.46425 8.62655i −0.111867 0.278566i
\(960\) 0 0
\(961\) −9.46412 −0.305294
\(962\) 0 0
\(963\) 22.8128 14.2387i 0.735131 0.458836i
\(964\) 0 0
\(965\) 43.3701 25.0397i 1.39613 0.806058i
\(966\) 0 0
\(967\) 1.40644 + 0.812009i 0.0452281 + 0.0261125i 0.522444 0.852674i \(-0.325021\pi\)
−0.477215 + 0.878786i \(0.658354\pi\)
\(968\) 0 0
\(969\) −45.6073 + 27.3877i −1.46512 + 0.879819i
\(970\) 0 0
\(971\) 19.2966 33.4227i 0.619257 1.07258i −0.370365 0.928886i \(-0.620767\pi\)
0.989622 0.143698i \(-0.0458994\pi\)
\(972\) 0 0
\(973\) 17.0784 + 42.5279i 0.547508 + 1.36338i
\(974\) 0 0
\(975\) −1.76550 0.979224i −0.0565412 0.0313603i
\(976\) 0 0
\(977\) 12.4008 0.396735 0.198368 0.980128i \(-0.436436\pi\)
0.198368 + 0.980128i \(0.436436\pi\)
\(978\) 0 0
\(979\) 1.36187 + 2.35883i 0.0435257 + 0.0753886i
\(980\) 0 0
\(981\) 38.7494 1.33323i 1.23717 0.0425668i
\(982\) 0 0
\(983\) 8.49837 14.7196i 0.271056 0.469483i −0.698077 0.716023i \(-0.745960\pi\)
0.969133 + 0.246540i \(0.0792938\pi\)
\(984\) 0 0
\(985\) 37.6881 21.7593i 1.20084 0.693308i
\(986\) 0 0
\(987\) 24.3145 + 3.04373i 0.773938 + 0.0968831i
\(988\) 0 0
\(989\) −2.50313 + 4.33554i −0.0795947 + 0.137862i
\(990\) 0 0
\(991\) −39.0008 + 22.5171i −1.23890 + 0.715280i −0.968870 0.247571i \(-0.920368\pi\)
−0.270032 + 0.962851i \(0.587034\pi\)
\(992\) 0 0
\(993\) 47.9578 28.7992i 1.52189 0.913914i
\(994\) 0 0
\(995\) −3.73687 2.15748i −0.118467 0.0683967i
\(996\) 0 0
\(997\) −6.92908 4.00051i −0.219446 0.126697i 0.386248 0.922395i \(-0.373771\pi\)
−0.605694 + 0.795698i \(0.707104\pi\)
\(998\) 0 0
\(999\) −6.67740 + 13.0802i −0.211264 + 0.413839i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.cz.i.607.6 yes 32
3.2 odd 2 3024.2.cz.i.1279.4 32
4.3 odd 2 inner 1008.2.cz.i.607.11 yes 32
7.3 odd 6 1008.2.bf.i.31.11 yes 32
9.2 odd 6 3024.2.bf.i.2287.4 32
9.7 even 3 1008.2.bf.i.943.6 yes 32
12.11 even 2 3024.2.cz.i.1279.3 32
21.17 even 6 3024.2.bf.i.1711.14 32
28.3 even 6 1008.2.bf.i.31.6 32
36.7 odd 6 1008.2.bf.i.943.11 yes 32
36.11 even 6 3024.2.bf.i.2287.3 32
63.38 even 6 3024.2.cz.i.2719.3 32
63.52 odd 6 inner 1008.2.cz.i.367.11 yes 32
84.59 odd 6 3024.2.bf.i.1711.13 32
252.115 even 6 inner 1008.2.cz.i.367.6 yes 32
252.227 odd 6 3024.2.cz.i.2719.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.i.31.6 32 28.3 even 6
1008.2.bf.i.31.11 yes 32 7.3 odd 6
1008.2.bf.i.943.6 yes 32 9.7 even 3
1008.2.bf.i.943.11 yes 32 36.7 odd 6
1008.2.cz.i.367.6 yes 32 252.115 even 6 inner
1008.2.cz.i.367.11 yes 32 63.52 odd 6 inner
1008.2.cz.i.607.6 yes 32 1.1 even 1 trivial
1008.2.cz.i.607.11 yes 32 4.3 odd 2 inner
3024.2.bf.i.1711.13 32 84.59 odd 6
3024.2.bf.i.1711.14 32 21.17 even 6
3024.2.bf.i.2287.3 32 36.11 even 6
3024.2.bf.i.2287.4 32 9.2 odd 6
3024.2.cz.i.1279.3 32 12.11 even 2
3024.2.cz.i.1279.4 32 3.2 odd 2
3024.2.cz.i.2719.3 32 63.38 even 6
3024.2.cz.i.2719.4 32 252.227 odd 6