Properties

Label 1008.2.cz.g.367.7
Level $1008$
Weight $2$
Character 1008.367
Analytic conductor $8.049$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(367,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 4, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.367"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.cz (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-3,0,-3,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 367.7
Character \(\chi\) \(=\) 1008.367
Dual form 1008.2.cz.g.607.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.597950 - 1.62556i) q^{3} +(2.47441 + 1.42860i) q^{5} +(-2.59845 - 0.498066i) q^{7} +(-2.28491 + 1.94401i) q^{9} +(1.95865 - 1.13083i) q^{11} +(-5.59072 + 3.22780i) q^{13} +(0.842707 - 4.87654i) q^{15} +(-4.74820 - 2.74137i) q^{17} +(-1.59123 - 2.75609i) q^{19} +(0.744104 + 4.52176i) q^{21} +(-5.17495 - 2.98776i) q^{23} +(1.58180 + 2.73976i) q^{25} +(4.52638 + 2.55184i) q^{27} +(1.06838 - 1.85049i) q^{29} -4.03351 q^{31} +(-3.00940 - 2.50773i) q^{33} +(-5.71808 - 4.94456i) q^{35} +(-5.06680 - 8.77595i) q^{37} +(8.58997 + 7.15800i) q^{39} +(9.02256 - 5.20918i) q^{41} +(0.0397018 + 0.0229218i) q^{43} +(-8.43102 + 1.54606i) q^{45} -5.74706 q^{47} +(6.50386 + 2.58840i) q^{49} +(-1.61709 + 9.35770i) q^{51} +(-2.43844 + 4.22350i) q^{53} +6.46199 q^{55} +(-3.52873 + 4.23466i) q^{57} -6.20774 q^{59} +6.98818i q^{61} +(6.90547 - 3.91338i) q^{63} -18.4450 q^{65} -7.88250i q^{67} +(-1.76243 + 10.1987i) q^{69} +15.5442i q^{71} +(11.0585 + 6.38460i) q^{73} +(3.50781 - 4.20956i) q^{75} +(-5.65267 + 1.96285i) q^{77} -12.0116i q^{79} +(1.44163 - 8.88379i) q^{81} +(-1.88456 + 3.26415i) q^{83} +(-7.83265 - 13.5666i) q^{85} +(-3.64693 - 0.630220i) q^{87} +(-3.95155 + 2.28143i) q^{89} +(16.1349 - 5.60273i) q^{91} +(2.41184 + 6.55672i) q^{93} -9.09294i q^{95} +(4.62721 + 2.67152i) q^{97} +(-2.27700 + 6.39147i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 3 q^{3} - 3 q^{5} + 4 q^{7} + 17 q^{9} - 9 q^{11} - 3 q^{13} - 6 q^{15} - 3 q^{17} - 4 q^{19} + 13 q^{21} - 6 q^{23} + 15 q^{25} + 9 q^{27} + 18 q^{29} + 34 q^{31} - 21 q^{33} - 42 q^{35} - 3 q^{37}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.597950 1.62556i −0.345227 0.938519i
\(4\) 0 0
\(5\) 2.47441 + 1.42860i 1.10659 + 0.638890i 0.937944 0.346787i \(-0.112727\pi\)
0.168646 + 0.985677i \(0.446061\pi\)
\(6\) 0 0
\(7\) −2.59845 0.498066i −0.982121 0.188251i
\(8\) 0 0
\(9\) −2.28491 + 1.94401i −0.761637 + 0.648004i
\(10\) 0 0
\(11\) 1.95865 1.13083i 0.590554 0.340957i −0.174762 0.984611i \(-0.555916\pi\)
0.765317 + 0.643654i \(0.222582\pi\)
\(12\) 0 0
\(13\) −5.59072 + 3.22780i −1.55059 + 0.895232i −0.552493 + 0.833517i \(0.686323\pi\)
−0.998094 + 0.0617145i \(0.980343\pi\)
\(14\) 0 0
\(15\) 0.842707 4.87654i 0.217586 1.25912i
\(16\) 0 0
\(17\) −4.74820 2.74137i −1.15161 0.664880i −0.202328 0.979318i \(-0.564851\pi\)
−0.949278 + 0.314437i \(0.898184\pi\)
\(18\) 0 0
\(19\) −1.59123 2.75609i −0.365054 0.632292i 0.623731 0.781639i \(-0.285616\pi\)
−0.988785 + 0.149347i \(0.952283\pi\)
\(20\) 0 0
\(21\) 0.744104 + 4.52176i 0.162377 + 0.986729i
\(22\) 0 0
\(23\) −5.17495 2.98776i −1.07905 0.622990i −0.148411 0.988926i \(-0.547416\pi\)
−0.930640 + 0.365936i \(0.880749\pi\)
\(24\) 0 0
\(25\) 1.58180 + 2.73976i 0.316360 + 0.547952i
\(26\) 0 0
\(27\) 4.52638 + 2.55184i 0.871102 + 0.491103i
\(28\) 0 0
\(29\) 1.06838 1.85049i 0.198394 0.343628i −0.749614 0.661875i \(-0.769761\pi\)
0.948008 + 0.318247i \(0.103094\pi\)
\(30\) 0 0
\(31\) −4.03351 −0.724440 −0.362220 0.932093i \(-0.617981\pi\)
−0.362220 + 0.932093i \(0.617981\pi\)
\(32\) 0 0
\(33\) −3.00940 2.50773i −0.523870 0.436539i
\(34\) 0 0
\(35\) −5.71808 4.94456i −0.966533 0.835784i
\(36\) 0 0
\(37\) −5.06680 8.77595i −0.832977 1.44276i −0.895667 0.444725i \(-0.853301\pi\)
0.0626906 0.998033i \(-0.480032\pi\)
\(38\) 0 0
\(39\) 8.58997 + 7.15800i 1.37550 + 1.14620i
\(40\) 0 0
\(41\) 9.02256 5.20918i 1.40909 0.813537i 0.413788 0.910373i \(-0.364206\pi\)
0.995300 + 0.0968362i \(0.0308723\pi\)
\(42\) 0 0
\(43\) 0.0397018 + 0.0229218i 0.00605446 + 0.00349555i 0.503024 0.864272i \(-0.332221\pi\)
−0.496970 + 0.867768i \(0.665554\pi\)
\(44\) 0 0
\(45\) −8.43102 + 1.54606i −1.25682 + 0.230472i
\(46\) 0 0
\(47\) −5.74706 −0.838295 −0.419147 0.907918i \(-0.637671\pi\)
−0.419147 + 0.907918i \(0.637671\pi\)
\(48\) 0 0
\(49\) 6.50386 + 2.58840i 0.929123 + 0.369771i
\(50\) 0 0
\(51\) −1.61709 + 9.35770i −0.226438 + 1.31034i
\(52\) 0 0
\(53\) −2.43844 + 4.22350i −0.334945 + 0.580142i −0.983474 0.181048i \(-0.942051\pi\)
0.648529 + 0.761190i \(0.275384\pi\)
\(54\) 0 0
\(55\) 6.46199 0.871335
\(56\) 0 0
\(57\) −3.52873 + 4.23466i −0.467391 + 0.560894i
\(58\) 0 0
\(59\) −6.20774 −0.808179 −0.404090 0.914719i \(-0.632412\pi\)
−0.404090 + 0.914719i \(0.632412\pi\)
\(60\) 0 0
\(61\) 6.98818i 0.894744i 0.894348 + 0.447372i \(0.147640\pi\)
−0.894348 + 0.447372i \(0.852360\pi\)
\(62\) 0 0
\(63\) 6.90547 3.91338i 0.870007 0.493039i
\(64\) 0 0
\(65\) −18.4450 −2.28782
\(66\) 0 0
\(67\) 7.88250i 0.963001i −0.876446 0.481500i \(-0.840092\pi\)
0.876446 0.481500i \(-0.159908\pi\)
\(68\) 0 0
\(69\) −1.76243 + 10.1987i −0.212171 + 1.22778i
\(70\) 0 0
\(71\) 15.5442i 1.84475i 0.386291 + 0.922377i \(0.373756\pi\)
−0.386291 + 0.922377i \(0.626244\pi\)
\(72\) 0 0
\(73\) 11.0585 + 6.38460i 1.29429 + 0.747261i 0.979412 0.201870i \(-0.0647018\pi\)
0.314882 + 0.949131i \(0.398035\pi\)
\(74\) 0 0
\(75\) 3.50781 4.20956i 0.405047 0.486078i
\(76\) 0 0
\(77\) −5.65267 + 1.96285i −0.644181 + 0.223688i
\(78\) 0 0
\(79\) 12.0116i 1.35141i −0.737172 0.675706i \(-0.763839\pi\)
0.737172 0.675706i \(-0.236161\pi\)
\(80\) 0 0
\(81\) 1.44163 8.88379i 0.160182 0.987088i
\(82\) 0 0
\(83\) −1.88456 + 3.26415i −0.206857 + 0.358287i −0.950723 0.310042i \(-0.899657\pi\)
0.743866 + 0.668329i \(0.232990\pi\)
\(84\) 0 0
\(85\) −7.83265 13.5666i −0.849571 1.47150i
\(86\) 0 0
\(87\) −3.64693 0.630220i −0.390992 0.0675667i
\(88\) 0 0
\(89\) −3.95155 + 2.28143i −0.418864 + 0.241831i −0.694591 0.719405i \(-0.744415\pi\)
0.275727 + 0.961236i \(0.411081\pi\)
\(90\) 0 0
\(91\) 16.1349 5.60273i 1.69139 0.587326i
\(92\) 0 0
\(93\) 2.41184 + 6.55672i 0.250096 + 0.679901i
\(94\) 0 0
\(95\) 9.09294i 0.932916i
\(96\) 0 0
\(97\) 4.62721 + 2.67152i 0.469822 + 0.271252i 0.716165 0.697931i \(-0.245896\pi\)
−0.246343 + 0.969183i \(0.579229\pi\)
\(98\) 0 0
\(99\) −2.27700 + 6.39147i −0.228847 + 0.642367i
\(100\) 0 0
\(101\) −5.16618 + 2.98270i −0.514055 + 0.296790i −0.734499 0.678610i \(-0.762583\pi\)
0.220444 + 0.975400i \(0.429249\pi\)
\(102\) 0 0
\(103\) −4.43678 + 7.68473i −0.437169 + 0.757199i −0.997470 0.0710903i \(-0.977352\pi\)
0.560301 + 0.828289i \(0.310685\pi\)
\(104\) 0 0
\(105\) −4.61857 + 12.2517i −0.450726 + 1.19564i
\(106\) 0 0
\(107\) −5.10984 + 2.95016i −0.493986 + 0.285203i −0.726227 0.687455i \(-0.758728\pi\)
0.232240 + 0.972658i \(0.425394\pi\)
\(108\) 0 0
\(109\) −0.416247 + 0.720960i −0.0398692 + 0.0690555i −0.885271 0.465075i \(-0.846027\pi\)
0.845402 + 0.534130i \(0.179361\pi\)
\(110\) 0 0
\(111\) −11.2362 + 13.4840i −1.06649 + 1.27984i
\(112\) 0 0
\(113\) −0.0601629 0.104205i −0.00565965 0.00980279i 0.863182 0.504893i \(-0.168468\pi\)
−0.868841 + 0.495091i \(0.835135\pi\)
\(114\) 0 0
\(115\) −8.53662 14.7859i −0.796044 1.37879i
\(116\) 0 0
\(117\) 6.49941 18.2437i 0.600870 1.68663i
\(118\) 0 0
\(119\) 10.9726 + 9.48823i 1.00585 + 0.869784i
\(120\) 0 0
\(121\) −2.94247 + 5.09650i −0.267497 + 0.463319i
\(122\) 0 0
\(123\) −13.8629 11.5519i −1.24998 1.04160i
\(124\) 0 0
\(125\) 5.24696i 0.469302i
\(126\) 0 0
\(127\) 5.57295i 0.494520i 0.968949 + 0.247260i \(0.0795301\pi\)
−0.968949 + 0.247260i \(0.920470\pi\)
\(128\) 0 0
\(129\) 0.0135212 0.0782438i 0.00119047 0.00688899i
\(130\) 0 0
\(131\) −0.0314616 + 0.0544931i −0.00274882 + 0.00476109i −0.867397 0.497618i \(-0.834208\pi\)
0.864648 + 0.502379i \(0.167542\pi\)
\(132\) 0 0
\(133\) 2.76202 + 7.95411i 0.239497 + 0.689709i
\(134\) 0 0
\(135\) 7.55454 + 12.7807i 0.650192 + 1.09999i
\(136\) 0 0
\(137\) −0.0178475 0.0309127i −0.00152481 0.00264105i 0.865262 0.501320i \(-0.167152\pi\)
−0.866787 + 0.498679i \(0.833819\pi\)
\(138\) 0 0
\(139\) −4.34888 7.53249i −0.368868 0.638897i 0.620521 0.784190i \(-0.286921\pi\)
−0.989389 + 0.145292i \(0.953588\pi\)
\(140\) 0 0
\(141\) 3.43646 + 9.34221i 0.289402 + 0.786756i
\(142\) 0 0
\(143\) −7.30017 + 12.6443i −0.610471 + 1.05737i
\(144\) 0 0
\(145\) 5.28723 3.05258i 0.439080 0.253503i
\(146\) 0 0
\(147\) 0.318620 12.1202i 0.0262793 0.999655i
\(148\) 0 0
\(149\) 4.44314 7.69574i 0.363996 0.630459i −0.624619 0.780930i \(-0.714746\pi\)
0.988614 + 0.150471i \(0.0480789\pi\)
\(150\) 0 0
\(151\) 13.9709 8.06613i 1.13694 0.656412i 0.191268 0.981538i \(-0.438740\pi\)
0.945671 + 0.325126i \(0.105407\pi\)
\(152\) 0 0
\(153\) 16.1785 2.96676i 1.30795 0.239848i
\(154\) 0 0
\(155\) −9.98055 5.76227i −0.801657 0.462837i
\(156\) 0 0
\(157\) 11.0788i 0.884187i −0.896969 0.442093i \(-0.854236\pi\)
0.896969 0.442093i \(-0.145764\pi\)
\(158\) 0 0
\(159\) 8.32363 + 1.43839i 0.660107 + 0.114072i
\(160\) 0 0
\(161\) 11.9587 + 10.3410i 0.942479 + 0.814984i
\(162\) 0 0
\(163\) 6.35131 3.66693i 0.497473 0.287216i −0.230196 0.973144i \(-0.573937\pi\)
0.727670 + 0.685928i \(0.240603\pi\)
\(164\) 0 0
\(165\) −3.86395 10.5044i −0.300808 0.817765i
\(166\) 0 0
\(167\) 12.6879 + 21.9760i 0.981816 + 1.70056i 0.655308 + 0.755362i \(0.272539\pi\)
0.326508 + 0.945194i \(0.394128\pi\)
\(168\) 0 0
\(169\) 14.3374 24.8332i 1.10288 1.91024i
\(170\) 0 0
\(171\) 8.99371 + 3.20406i 0.687766 + 0.245020i
\(172\) 0 0
\(173\) 16.2227i 1.23339i −0.787202 0.616695i \(-0.788471\pi\)
0.787202 0.616695i \(-0.211529\pi\)
\(174\) 0 0
\(175\) −2.74565 7.90696i −0.207551 0.597710i
\(176\) 0 0
\(177\) 3.71192 + 10.0911i 0.279005 + 0.758492i
\(178\) 0 0
\(179\) −17.9324 10.3533i −1.34033 0.773839i −0.353474 0.935445i \(-0.615000\pi\)
−0.986855 + 0.161605i \(0.948333\pi\)
\(180\) 0 0
\(181\) 16.3983i 1.21888i 0.792833 + 0.609439i \(0.208605\pi\)
−0.792833 + 0.609439i \(0.791395\pi\)
\(182\) 0 0
\(183\) 11.3597 4.17858i 0.839735 0.308890i
\(184\) 0 0
\(185\) 28.9537i 2.12872i
\(186\) 0 0
\(187\) −12.4001 −0.906782
\(188\) 0 0
\(189\) −10.4906 8.88527i −0.763077 0.646308i
\(190\) 0 0
\(191\) 5.42747i 0.392718i −0.980532 0.196359i \(-0.937088\pi\)
0.980532 0.196359i \(-0.0629117\pi\)
\(192\) 0 0
\(193\) 5.60988 0.403808 0.201904 0.979405i \(-0.435287\pi\)
0.201904 + 0.979405i \(0.435287\pi\)
\(194\) 0 0
\(195\) 11.0292 + 29.9835i 0.789816 + 2.14716i
\(196\) 0 0
\(197\) 9.09436 0.647946 0.323973 0.946066i \(-0.394981\pi\)
0.323973 + 0.946066i \(0.394981\pi\)
\(198\) 0 0
\(199\) 0.330072 0.571701i 0.0233982 0.0405268i −0.854089 0.520127i \(-0.825885\pi\)
0.877487 + 0.479600i \(0.159218\pi\)
\(200\) 0 0
\(201\) −12.8135 + 4.71335i −0.903795 + 0.332454i
\(202\) 0 0
\(203\) −3.69780 + 4.27628i −0.259535 + 0.300136i
\(204\) 0 0
\(205\) 29.7674 2.07904
\(206\) 0 0
\(207\) 17.6325 3.23340i 1.22554 0.224737i
\(208\) 0 0
\(209\) −6.23332 3.59881i −0.431168 0.248935i
\(210\) 0 0
\(211\) 18.2479 10.5354i 1.25624 0.725290i 0.283898 0.958854i \(-0.408372\pi\)
0.972341 + 0.233564i \(0.0750389\pi\)
\(212\) 0 0
\(213\) 25.2680 9.29465i 1.73134 0.636859i
\(214\) 0 0
\(215\) 0.0654923 + 0.113436i 0.00446654 + 0.00773627i
\(216\) 0 0
\(217\) 10.4809 + 2.00896i 0.711487 + 0.136377i
\(218\) 0 0
\(219\) 3.76617 21.7939i 0.254494 1.47269i
\(220\) 0 0
\(221\) 35.3945 2.38089
\(222\) 0 0
\(223\) 3.66945 6.35568i 0.245725 0.425608i −0.716610 0.697474i \(-0.754307\pi\)
0.962335 + 0.271866i \(0.0876407\pi\)
\(224\) 0 0
\(225\) −8.94040 3.18507i −0.596027 0.212338i
\(226\) 0 0
\(227\) 1.70310 + 2.94986i 0.113039 + 0.195789i 0.916994 0.398901i \(-0.130608\pi\)
−0.803955 + 0.594690i \(0.797275\pi\)
\(228\) 0 0
\(229\) 16.5722 + 9.56799i 1.09512 + 0.632271i 0.934936 0.354816i \(-0.115456\pi\)
0.160189 + 0.987086i \(0.448790\pi\)
\(230\) 0 0
\(231\) 6.57076 + 8.01508i 0.432324 + 0.527353i
\(232\) 0 0
\(233\) −0.734443 1.27209i −0.0481150 0.0833376i 0.840965 0.541090i \(-0.181988\pi\)
−0.889080 + 0.457752i \(0.848655\pi\)
\(234\) 0 0
\(235\) −14.2206 8.21025i −0.927648 0.535578i
\(236\) 0 0
\(237\) −19.5256 + 7.18234i −1.26833 + 0.466543i
\(238\) 0 0
\(239\) 9.40142 5.42791i 0.608127 0.351103i −0.164105 0.986443i \(-0.552474\pi\)
0.772232 + 0.635340i \(0.219140\pi\)
\(240\) 0 0
\(241\) −5.39678 + 3.11583i −0.347637 + 0.200708i −0.663644 0.748048i \(-0.730991\pi\)
0.316007 + 0.948757i \(0.397658\pi\)
\(242\) 0 0
\(243\) −15.3032 + 2.96860i −0.981700 + 0.190436i
\(244\) 0 0
\(245\) 12.3954 + 15.6962i 0.791915 + 1.00279i
\(246\) 0 0
\(247\) 17.7923 + 10.2724i 1.13210 + 0.653615i
\(248\) 0 0
\(249\) 6.43296 + 1.11167i 0.407672 + 0.0704491i
\(250\) 0 0
\(251\) −20.2337 −1.27714 −0.638569 0.769565i \(-0.720473\pi\)
−0.638569 + 0.769565i \(0.720473\pi\)
\(252\) 0 0
\(253\) −13.5145 −0.849651
\(254\) 0 0
\(255\) −17.3697 + 20.8446i −1.08774 + 1.30534i
\(256\) 0 0
\(257\) −24.1732 13.9564i −1.50788 0.870577i −0.999958 0.00917598i \(-0.997079\pi\)
−0.507926 0.861401i \(-0.669588\pi\)
\(258\) 0 0
\(259\) 8.79481 + 25.3275i 0.546483 + 1.57377i
\(260\) 0 0
\(261\) 1.15622 + 6.30516i 0.0715683 + 0.390279i
\(262\) 0 0
\(263\) 4.17765 2.41197i 0.257605 0.148728i −0.365637 0.930758i \(-0.619149\pi\)
0.623242 + 0.782029i \(0.285815\pi\)
\(264\) 0 0
\(265\) −12.0674 + 6.96711i −0.741294 + 0.427986i
\(266\) 0 0
\(267\) 6.07144 + 5.05932i 0.371566 + 0.309625i
\(268\) 0 0
\(269\) −4.82686 2.78679i −0.294299 0.169913i 0.345580 0.938389i \(-0.387682\pi\)
−0.639879 + 0.768476i \(0.721015\pi\)
\(270\) 0 0
\(271\) 10.8266 + 18.7521i 0.657666 + 1.13911i 0.981218 + 0.192901i \(0.0617896\pi\)
−0.323552 + 0.946210i \(0.604877\pi\)
\(272\) 0 0
\(273\) −18.7554 22.8781i −1.13513 1.38464i
\(274\) 0 0
\(275\) 6.19638 + 3.57748i 0.373656 + 0.215730i
\(276\) 0 0
\(277\) −7.22330 12.5111i −0.434006 0.751720i 0.563208 0.826315i \(-0.309567\pi\)
−0.997214 + 0.0745949i \(0.976234\pi\)
\(278\) 0 0
\(279\) 9.21621 7.84119i 0.551760 0.469440i
\(280\) 0 0
\(281\) 9.82235 17.0128i 0.585952 1.01490i −0.408804 0.912622i \(-0.634054\pi\)
0.994756 0.102277i \(-0.0326127\pi\)
\(282\) 0 0
\(283\) −30.9384 −1.83910 −0.919549 0.392976i \(-0.871446\pi\)
−0.919549 + 0.392976i \(0.871446\pi\)
\(284\) 0 0
\(285\) −14.7812 + 5.43713i −0.875560 + 0.322068i
\(286\) 0 0
\(287\) −26.0392 + 9.04195i −1.53704 + 0.533729i
\(288\) 0 0
\(289\) 6.53024 + 11.3107i 0.384132 + 0.665336i
\(290\) 0 0
\(291\) 1.57588 9.11927i 0.0923800 0.534581i
\(292\) 0 0
\(293\) −0.154987 + 0.0894817i −0.00905443 + 0.00522758i −0.504520 0.863400i \(-0.668331\pi\)
0.495466 + 0.868627i \(0.334997\pi\)
\(294\) 0 0
\(295\) −15.3605 8.86839i −0.894323 0.516337i
\(296\) 0 0
\(297\) 11.7513 0.120382i 0.681878 0.00698526i
\(298\) 0 0
\(299\) 38.5756 2.23088
\(300\) 0 0
\(301\) −0.0917464 0.0793353i −0.00528817 0.00457281i
\(302\) 0 0
\(303\) 7.93769 + 6.61445i 0.456008 + 0.379990i
\(304\) 0 0
\(305\) −9.98331 + 17.2916i −0.571643 + 0.990115i
\(306\) 0 0
\(307\) −9.20787 −0.525521 −0.262760 0.964861i \(-0.584633\pi\)
−0.262760 + 0.964861i \(0.584633\pi\)
\(308\) 0 0
\(309\) 15.1450 + 2.61718i 0.861568 + 0.148886i
\(310\) 0 0
\(311\) −31.4074 −1.78095 −0.890476 0.455030i \(-0.849629\pi\)
−0.890476 + 0.455030i \(0.849629\pi\)
\(312\) 0 0
\(313\) 5.18230i 0.292921i 0.989217 + 0.146460i \(0.0467881\pi\)
−0.989217 + 0.146460i \(0.953212\pi\)
\(314\) 0 0
\(315\) 22.6776 + 0.181862i 1.27774 + 0.0102467i
\(316\) 0 0
\(317\) −19.3977 −1.08949 −0.544743 0.838603i \(-0.683373\pi\)
−0.544743 + 0.838603i \(0.683373\pi\)
\(318\) 0 0
\(319\) 4.83261i 0.270574i
\(320\) 0 0
\(321\) 7.85111 + 6.54231i 0.438206 + 0.365156i
\(322\) 0 0
\(323\) 17.4486i 0.970868i
\(324\) 0 0
\(325\) −17.6868 10.2115i −0.981088 0.566431i
\(326\) 0 0
\(327\) 1.42086 + 0.245537i 0.0785738 + 0.0135782i
\(328\) 0 0
\(329\) 14.9334 + 2.86242i 0.823307 + 0.157810i
\(330\) 0 0
\(331\) 15.7609i 0.866300i 0.901322 + 0.433150i \(0.142598\pi\)
−0.901322 + 0.433150i \(0.857402\pi\)
\(332\) 0 0
\(333\) 28.6377 + 10.2024i 1.56934 + 0.559085i
\(334\) 0 0
\(335\) 11.2610 19.5045i 0.615251 1.06565i
\(336\) 0 0
\(337\) −0.00326615 0.00565714i −0.000177918 0.000308164i 0.865936 0.500154i \(-0.166723\pi\)
−0.866114 + 0.499846i \(0.833390\pi\)
\(338\) 0 0
\(339\) −0.133418 + 0.160108i −0.00724625 + 0.00869587i
\(340\) 0 0
\(341\) −7.90022 + 4.56119i −0.427821 + 0.247003i
\(342\) 0 0
\(343\) −15.6107 9.96517i −0.842901 0.538069i
\(344\) 0 0
\(345\) −18.9309 + 22.7180i −1.01920 + 1.22310i
\(346\) 0 0
\(347\) 3.21508i 0.172594i −0.996269 0.0862972i \(-0.972497\pi\)
0.996269 0.0862972i \(-0.0275035\pi\)
\(348\) 0 0
\(349\) −29.6288 17.1062i −1.58599 0.915674i −0.993958 0.109762i \(-0.964991\pi\)
−0.592035 0.805912i \(-0.701675\pi\)
\(350\) 0 0
\(351\) −33.5426 + 0.343615i −1.79037 + 0.0183408i
\(352\) 0 0
\(353\) −5.89661 + 3.40441i −0.313845 + 0.181198i −0.648646 0.761091i \(-0.724664\pi\)
0.334801 + 0.942289i \(0.391331\pi\)
\(354\) 0 0
\(355\) −22.2064 + 38.4627i −1.17859 + 2.04139i
\(356\) 0 0
\(357\) 8.86267 23.5101i 0.469062 1.24428i
\(358\) 0 0
\(359\) 19.5302 11.2758i 1.03077 0.595114i 0.113563 0.993531i \(-0.463774\pi\)
0.917204 + 0.398417i \(0.130440\pi\)
\(360\) 0 0
\(361\) 4.43596 7.68331i 0.233472 0.404385i
\(362\) 0 0
\(363\) 10.0441 + 1.73571i 0.527181 + 0.0911012i
\(364\) 0 0
\(365\) 18.2421 + 31.5962i 0.954835 + 1.65382i
\(366\) 0 0
\(367\) 11.5456 + 19.9975i 0.602674 + 1.04386i 0.992414 + 0.122937i \(0.0392313\pi\)
−0.389741 + 0.920925i \(0.627435\pi\)
\(368\) 0 0
\(369\) −10.4890 + 29.4425i −0.546038 + 1.53271i
\(370\) 0 0
\(371\) 8.43974 9.76004i 0.438169 0.506716i
\(372\) 0 0
\(373\) 6.23406 10.7977i 0.322787 0.559084i −0.658275 0.752778i \(-0.728713\pi\)
0.981062 + 0.193694i \(0.0620468\pi\)
\(374\) 0 0
\(375\) −8.52926 + 3.13742i −0.440449 + 0.162016i
\(376\) 0 0
\(377\) 13.7941i 0.710433i
\(378\) 0 0
\(379\) 0.865461i 0.0444557i −0.999753 0.0222279i \(-0.992924\pi\)
0.999753 0.0222279i \(-0.00707593\pi\)
\(380\) 0 0
\(381\) 9.05919 3.33235i 0.464116 0.170721i
\(382\) 0 0
\(383\) −5.77345 + 9.99991i −0.295010 + 0.510971i −0.974987 0.222261i \(-0.928656\pi\)
0.679978 + 0.733233i \(0.261989\pi\)
\(384\) 0 0
\(385\) −16.7911 3.21850i −0.855756 0.164030i
\(386\) 0 0
\(387\) −0.135275 + 0.0248064i −0.00687643 + 0.00126098i
\(388\) 0 0
\(389\) 2.26417 + 3.92165i 0.114798 + 0.198836i 0.917699 0.397277i \(-0.130045\pi\)
−0.802901 + 0.596112i \(0.796711\pi\)
\(390\) 0 0
\(391\) 16.3811 + 28.3729i 0.828428 + 1.43488i
\(392\) 0 0
\(393\) 0.107395 + 0.0185587i 0.00541734 + 0.000936161i
\(394\) 0 0
\(395\) 17.1598 29.7216i 0.863403 1.49546i
\(396\) 0 0
\(397\) −1.62853 + 0.940235i −0.0817338 + 0.0471890i −0.540310 0.841466i \(-0.681693\pi\)
0.458576 + 0.888655i \(0.348360\pi\)
\(398\) 0 0
\(399\) 11.2784 9.24599i 0.564624 0.462879i
\(400\) 0 0
\(401\) 9.44812 16.3646i 0.471817 0.817210i −0.527664 0.849453i \(-0.676932\pi\)
0.999480 + 0.0322433i \(0.0102651\pi\)
\(402\) 0 0
\(403\) 22.5502 13.0194i 1.12331 0.648541i
\(404\) 0 0
\(405\) 16.2586 19.9226i 0.807895 0.989962i
\(406\) 0 0
\(407\) −19.8481 11.4593i −0.983836 0.568018i
\(408\) 0 0
\(409\) 30.2959i 1.49803i −0.662551 0.749017i \(-0.730526\pi\)
0.662551 0.749017i \(-0.269474\pi\)
\(410\) 0 0
\(411\) −0.0395787 + 0.0474964i −0.00195227 + 0.00234283i
\(412\) 0 0
\(413\) 16.1305 + 3.09187i 0.793730 + 0.152141i
\(414\) 0 0
\(415\) −9.32634 + 5.38456i −0.457812 + 0.264318i
\(416\) 0 0
\(417\) −9.64412 + 11.5734i −0.472275 + 0.566754i
\(418\) 0 0
\(419\) 2.90705 + 5.03516i 0.142019 + 0.245984i 0.928257 0.371940i \(-0.121307\pi\)
−0.786238 + 0.617924i \(0.787974\pi\)
\(420\) 0 0
\(421\) −7.49878 + 12.9883i −0.365468 + 0.633009i −0.988851 0.148907i \(-0.952424\pi\)
0.623383 + 0.781917i \(0.285758\pi\)
\(422\) 0 0
\(423\) 13.1315 11.1724i 0.638476 0.543218i
\(424\) 0 0
\(425\) 17.3452i 0.841367i
\(426\) 0 0
\(427\) 3.48058 18.1584i 0.168437 0.878747i
\(428\) 0 0
\(429\) 24.9192 + 4.30624i 1.20311 + 0.207907i
\(430\) 0 0
\(431\) −20.0076 11.5514i −0.963732 0.556411i −0.0664126 0.997792i \(-0.521155\pi\)
−0.897320 + 0.441381i \(0.854489\pi\)
\(432\) 0 0
\(433\) 11.1544i 0.536045i −0.963413 0.268022i \(-0.913630\pi\)
0.963413 0.268022i \(-0.0863701\pi\)
\(434\) 0 0
\(435\) −8.12367 6.76943i −0.389500 0.324569i
\(436\) 0 0
\(437\) 19.0169i 0.909699i
\(438\) 0 0
\(439\) 7.38929 0.352672 0.176336 0.984330i \(-0.443576\pi\)
0.176336 + 0.984330i \(0.443576\pi\)
\(440\) 0 0
\(441\) −19.8926 + 6.72932i −0.947267 + 0.320444i
\(442\) 0 0
\(443\) 1.72740i 0.0820712i 0.999158 + 0.0410356i \(0.0130657\pi\)
−0.999158 + 0.0410356i \(0.986934\pi\)
\(444\) 0 0
\(445\) −13.0370 −0.618014
\(446\) 0 0
\(447\) −15.1667 2.62093i −0.717359 0.123966i
\(448\) 0 0
\(449\) −37.3078 −1.76067 −0.880333 0.474357i \(-0.842681\pi\)
−0.880333 + 0.474357i \(0.842681\pi\)
\(450\) 0 0
\(451\) 11.7813 20.4059i 0.554762 0.960876i
\(452\) 0 0
\(453\) −21.4659 17.8875i −1.00856 0.840428i
\(454\) 0 0
\(455\) 47.9283 + 9.18682i 2.24691 + 0.430685i
\(456\) 0 0
\(457\) −11.2540 −0.526441 −0.263220 0.964736i \(-0.584785\pi\)
−0.263220 + 0.964736i \(0.584785\pi\)
\(458\) 0 0
\(459\) −14.4966 24.5251i −0.676642 1.14474i
\(460\) 0 0
\(461\) −31.6005 18.2446i −1.47178 0.849734i −0.472285 0.881446i \(-0.656571\pi\)
−0.999497 + 0.0317125i \(0.989904\pi\)
\(462\) 0 0
\(463\) 20.7706 11.9919i 0.965294 0.557313i 0.0674955 0.997720i \(-0.478499\pi\)
0.897798 + 0.440407i \(0.145166\pi\)
\(464\) 0 0
\(465\) −3.39907 + 19.6696i −0.157628 + 0.912155i
\(466\) 0 0
\(467\) 0.322176 + 0.558026i 0.0149085 + 0.0258224i 0.873383 0.487033i \(-0.161921\pi\)
−0.858475 + 0.512856i \(0.828588\pi\)
\(468\) 0 0
\(469\) −3.92601 + 20.4823i −0.181286 + 0.945783i
\(470\) 0 0
\(471\) −18.0093 + 6.62459i −0.829826 + 0.305245i
\(472\) 0 0
\(473\) 0.103682 0.00476732
\(474\) 0 0
\(475\) 5.03403 8.71919i 0.230977 0.400064i
\(476\) 0 0
\(477\) −2.63892 14.3907i −0.120828 0.658904i
\(478\) 0 0
\(479\) −17.9804 31.1430i −0.821547 1.42296i −0.904530 0.426411i \(-0.859778\pi\)
0.0829823 0.996551i \(-0.473556\pi\)
\(480\) 0 0
\(481\) 56.6541 + 32.7093i 2.58321 + 1.49141i
\(482\) 0 0
\(483\) 9.65921 25.6231i 0.439509 1.16589i
\(484\) 0 0
\(485\) 7.63308 + 13.2209i 0.346600 + 0.600329i
\(486\) 0 0
\(487\) −24.4569 14.1202i −1.10825 0.639848i −0.169874 0.985466i \(-0.554336\pi\)
−0.938376 + 0.345617i \(0.887670\pi\)
\(488\) 0 0
\(489\) −9.75860 8.13182i −0.441299 0.367734i
\(490\) 0 0
\(491\) −11.6928 + 6.75082i −0.527687 + 0.304660i −0.740074 0.672526i \(-0.765210\pi\)
0.212387 + 0.977186i \(0.431876\pi\)
\(492\) 0 0
\(493\) −10.1458 + 5.85767i −0.456943 + 0.263816i
\(494\) 0 0
\(495\) −14.7651 + 12.5622i −0.663641 + 0.564629i
\(496\) 0 0
\(497\) 7.74203 40.3907i 0.347278 1.81177i
\(498\) 0 0
\(499\) 11.9450 + 6.89643i 0.534730 + 0.308727i 0.742941 0.669357i \(-0.233430\pi\)
−0.208210 + 0.978084i \(0.566764\pi\)
\(500\) 0 0
\(501\) 28.1367 33.7655i 1.25706 1.50853i
\(502\) 0 0
\(503\) 22.6371 1.00934 0.504669 0.863313i \(-0.331615\pi\)
0.504669 + 0.863313i \(0.331615\pi\)
\(504\) 0 0
\(505\) −17.0443 −0.758463
\(506\) 0 0
\(507\) −48.9410 8.45741i −2.17355 0.375607i
\(508\) 0 0
\(509\) −5.36782 3.09911i −0.237925 0.137366i 0.376298 0.926499i \(-0.377197\pi\)
−0.614222 + 0.789133i \(0.710530\pi\)
\(510\) 0 0
\(511\) −25.5549 22.0979i −1.13048 0.977553i
\(512\) 0 0
\(513\) −0.169394 16.5357i −0.00747894 0.730069i
\(514\) 0 0
\(515\) −21.9568 + 12.6768i −0.967533 + 0.558605i
\(516\) 0 0
\(517\) −11.2565 + 6.49892i −0.495059 + 0.285822i
\(518\) 0 0
\(519\) −26.3710 + 9.70038i −1.15756 + 0.425799i
\(520\) 0 0
\(521\) 33.7303 + 19.4742i 1.47775 + 0.853181i 0.999684 0.0251422i \(-0.00800385\pi\)
0.478068 + 0.878323i \(0.341337\pi\)
\(522\) 0 0
\(523\) −4.02860 6.97774i −0.176158 0.305115i 0.764403 0.644739i \(-0.223034\pi\)
−0.940562 + 0.339623i \(0.889700\pi\)
\(524\) 0 0
\(525\) −11.2115 + 9.19119i −0.489310 + 0.401136i
\(526\) 0 0
\(527\) 19.1519 + 11.0573i 0.834269 + 0.481666i
\(528\) 0 0
\(529\) 6.35337 + 11.0044i 0.276234 + 0.478451i
\(530\) 0 0
\(531\) 14.1841 12.0679i 0.615539 0.523703i
\(532\) 0 0
\(533\) −33.6284 + 58.2461i −1.45661 + 2.52292i
\(534\) 0 0
\(535\) −16.8584 −0.728854
\(536\) 0 0
\(537\) −6.10721 + 35.3410i −0.263546 + 1.52507i
\(538\) 0 0
\(539\) 15.6658 2.28497i 0.674773 0.0984207i
\(540\) 0 0
\(541\) −7.96878 13.8023i −0.342605 0.593409i 0.642311 0.766444i \(-0.277976\pi\)
−0.984916 + 0.173035i \(0.944643\pi\)
\(542\) 0 0
\(543\) 26.6565 9.80538i 1.14394 0.420789i
\(544\) 0 0
\(545\) −2.05993 + 1.18930i −0.0882377 + 0.0509440i
\(546\) 0 0
\(547\) −4.79363 2.76760i −0.204961 0.118334i 0.394006 0.919108i \(-0.371089\pi\)
−0.598967 + 0.800773i \(0.704422\pi\)
\(548\) 0 0
\(549\) −13.5851 15.9674i −0.579798 0.681470i
\(550\) 0 0
\(551\) −6.80018 −0.289697
\(552\) 0 0
\(553\) −5.98258 + 31.2115i −0.254405 + 1.32725i
\(554\) 0 0
\(555\) −47.0661 + 17.3129i −1.99785 + 0.734892i
\(556\) 0 0
\(557\) −11.2941 + 19.5619i −0.478546 + 0.828866i −0.999697 0.0245983i \(-0.992169\pi\)
0.521151 + 0.853464i \(0.325503\pi\)
\(558\) 0 0
\(559\) −0.295949 −0.0125173
\(560\) 0 0
\(561\) 7.41462 + 20.1571i 0.313045 + 0.851032i
\(562\) 0 0
\(563\) 19.9543 0.840975 0.420488 0.907298i \(-0.361859\pi\)
0.420488 + 0.907298i \(0.361859\pi\)
\(564\) 0 0
\(565\) 0.343795i 0.0144636i
\(566\) 0 0
\(567\) −8.17073 + 22.3660i −0.343138 + 0.939285i
\(568\) 0 0
\(569\) −31.5615 −1.32313 −0.661563 0.749889i \(-0.730107\pi\)
−0.661563 + 0.749889i \(0.730107\pi\)
\(570\) 0 0
\(571\) 9.88433i 0.413646i −0.978378 0.206823i \(-0.933688\pi\)
0.978378 0.206823i \(-0.0663125\pi\)
\(572\) 0 0
\(573\) −8.82269 + 3.24536i −0.368573 + 0.135577i
\(574\) 0 0
\(575\) 18.9041i 0.788357i
\(576\) 0 0
\(577\) 17.9384 + 10.3568i 0.746787 + 0.431157i 0.824532 0.565816i \(-0.191439\pi\)
−0.0777451 + 0.996973i \(0.524772\pi\)
\(578\) 0 0
\(579\) −3.35443 9.11922i −0.139405 0.378982i
\(580\) 0 0
\(581\) 6.52269 7.54309i 0.270607 0.312940i
\(582\) 0 0
\(583\) 11.0298i 0.456807i
\(584\) 0 0
\(585\) 42.1451 35.8573i 1.74249 1.48252i
\(586\) 0 0
\(587\) −11.4423 + 19.8186i −0.472272 + 0.818000i −0.999497 0.0317264i \(-0.989899\pi\)
0.527224 + 0.849726i \(0.323233\pi\)
\(588\) 0 0
\(589\) 6.41825 + 11.1167i 0.264459 + 0.458057i
\(590\) 0 0
\(591\) −5.43797 14.7835i −0.223688 0.608110i
\(592\) 0 0
\(593\) 36.8909 21.2990i 1.51493 0.874644i 0.515081 0.857141i \(-0.327762\pi\)
0.999847 0.0175029i \(-0.00557163\pi\)
\(594\) 0 0
\(595\) 13.5957 + 39.1532i 0.557369 + 1.60512i
\(596\) 0 0
\(597\) −1.12670 0.194704i −0.0461129 0.00796869i
\(598\) 0 0
\(599\) 2.44324i 0.0998283i 0.998754 + 0.0499141i \(0.0158948\pi\)
−0.998754 + 0.0499141i \(0.984105\pi\)
\(600\) 0 0
\(601\) −11.6323 6.71589i −0.474490 0.273947i 0.243627 0.969869i \(-0.421663\pi\)
−0.718117 + 0.695922i \(0.754996\pi\)
\(602\) 0 0
\(603\) 15.3237 + 18.0108i 0.624029 + 0.733457i
\(604\) 0 0
\(605\) −14.5617 + 8.40722i −0.592019 + 0.341802i
\(606\) 0 0
\(607\) 11.5370 19.9826i 0.468271 0.811068i −0.531072 0.847327i \(-0.678211\pi\)
0.999342 + 0.0362583i \(0.0115439\pi\)
\(608\) 0 0
\(609\) 9.16247 + 3.45401i 0.371282 + 0.139963i
\(610\) 0 0
\(611\) 32.1302 18.5504i 1.29985 0.750468i
\(612\) 0 0
\(613\) −6.57373 + 11.3860i −0.265511 + 0.459878i −0.967697 0.252115i \(-0.918874\pi\)
0.702187 + 0.711993i \(0.252207\pi\)
\(614\) 0 0
\(615\) −17.7994 48.3887i −0.717741 1.95122i
\(616\) 0 0
\(617\) −3.44699 5.97036i −0.138771 0.240358i 0.788261 0.615341i \(-0.210982\pi\)
−0.927032 + 0.374983i \(0.877648\pi\)
\(618\) 0 0
\(619\) 17.7739 + 30.7853i 0.714394 + 1.23737i 0.963193 + 0.268811i \(0.0866308\pi\)
−0.248799 + 0.968555i \(0.580036\pi\)
\(620\) 0 0
\(621\) −15.7995 26.7294i −0.634011 1.07261i
\(622\) 0 0
\(623\) 11.4042 3.96004i 0.456900 0.158656i
\(624\) 0 0
\(625\) 15.4048 26.6819i 0.616193 1.06728i
\(626\) 0 0
\(627\) −2.12288 + 12.2846i −0.0847795 + 0.490599i
\(628\) 0 0
\(629\) 55.5599i 2.21532i
\(630\) 0 0
\(631\) 24.2459i 0.965213i 0.875837 + 0.482607i \(0.160310\pi\)
−0.875837 + 0.482607i \(0.839690\pi\)
\(632\) 0 0
\(633\) −28.0374 23.3635i −1.11439 0.928615i
\(634\) 0 0
\(635\) −7.96153 + 13.7898i −0.315944 + 0.547230i
\(636\) 0 0
\(637\) −44.7161 + 6.52217i −1.77172 + 0.258418i
\(638\) 0 0
\(639\) −30.2181 35.5171i −1.19541 1.40503i
\(640\) 0 0
\(641\) 16.1194 + 27.9196i 0.636677 + 1.10276i 0.986157 + 0.165814i \(0.0530250\pi\)
−0.349480 + 0.936944i \(0.613642\pi\)
\(642\) 0 0
\(643\) 7.26173 + 12.5777i 0.286375 + 0.496016i 0.972942 0.231051i \(-0.0742164\pi\)
−0.686567 + 0.727067i \(0.740883\pi\)
\(644\) 0 0
\(645\) 0.145236 0.174291i 0.00571867 0.00686270i
\(646\) 0 0
\(647\) −11.5332 + 19.9760i −0.453416 + 0.785339i −0.998596 0.0529801i \(-0.983128\pi\)
0.545180 + 0.838319i \(0.316461\pi\)
\(648\) 0 0
\(649\) −12.1588 + 7.01987i −0.477274 + 0.275554i
\(650\) 0 0
\(651\) −3.00135 18.2386i −0.117632 0.714825i
\(652\) 0 0
\(653\) −14.0767 + 24.3816i −0.550865 + 0.954126i 0.447348 + 0.894360i \(0.352369\pi\)
−0.998212 + 0.0597655i \(0.980965\pi\)
\(654\) 0 0
\(655\) −0.155698 + 0.0898922i −0.00608362 + 0.00351238i
\(656\) 0 0
\(657\) −37.6793 + 6.90953i −1.47001 + 0.269566i
\(658\) 0 0
\(659\) −5.32112 3.07215i −0.207281 0.119674i 0.392766 0.919638i \(-0.371518\pi\)
−0.600047 + 0.799965i \(0.704852\pi\)
\(660\) 0 0
\(661\) 1.66168i 0.0646317i 0.999478 + 0.0323159i \(0.0102882\pi\)
−0.999478 + 0.0323159i \(0.989712\pi\)
\(662\) 0 0
\(663\) −21.1641 57.5359i −0.821947 2.23451i
\(664\) 0 0
\(665\) −4.52889 + 23.6275i −0.175623 + 0.916237i
\(666\) 0 0
\(667\) −11.0576 + 6.38413i −0.428153 + 0.247194i
\(668\) 0 0
\(669\) −12.5257 2.16455i −0.484272 0.0836862i
\(670\) 0 0
\(671\) 7.90241 + 13.6874i 0.305069 + 0.528395i
\(672\) 0 0
\(673\) −5.12788 + 8.88175i −0.197665 + 0.342366i −0.947771 0.318952i \(-0.896669\pi\)
0.750106 + 0.661318i \(0.230003\pi\)
\(674\) 0 0
\(675\) 0.168390 + 16.4377i 0.00648134 + 0.632687i
\(676\) 0 0
\(677\) 22.3830i 0.860247i −0.902770 0.430123i \(-0.858470\pi\)
0.902770 0.430123i \(-0.141530\pi\)
\(678\) 0 0
\(679\) −10.6930 9.24647i −0.410359 0.354847i
\(680\) 0 0
\(681\) 3.77681 4.53237i 0.144728 0.173681i
\(682\) 0 0
\(683\) 27.3196 + 15.7730i 1.04535 + 0.603536i 0.921345 0.388745i \(-0.127091\pi\)
0.124009 + 0.992281i \(0.460425\pi\)
\(684\) 0 0
\(685\) 0.101988i 0.00389675i
\(686\) 0 0
\(687\) 5.64399 32.6604i 0.215332 1.24607i
\(688\) 0 0
\(689\) 31.4832i 1.19941i
\(690\) 0 0
\(691\) −26.3023 −1.00059 −0.500294 0.865856i \(-0.666775\pi\)
−0.500294 + 0.865856i \(0.666775\pi\)
\(692\) 0 0
\(693\) 9.10003 15.4738i 0.345681 0.587801i
\(694\) 0 0
\(695\) 24.8513i 0.942663i
\(696\) 0 0
\(697\) −57.1212 −2.16362
\(698\) 0 0
\(699\) −1.62871 + 1.95453i −0.0616033 + 0.0739272i
\(700\) 0 0
\(701\) −5.62320 −0.212385 −0.106193 0.994346i \(-0.533866\pi\)
−0.106193 + 0.994346i \(0.533866\pi\)
\(702\) 0 0
\(703\) −16.1249 + 27.9292i −0.608162 + 1.05337i
\(704\) 0 0
\(705\) −4.84309 + 28.0258i −0.182401 + 1.05551i
\(706\) 0 0
\(707\) 14.9096 5.17728i 0.560735 0.194712i
\(708\) 0 0
\(709\) 25.1226 0.943500 0.471750 0.881732i \(-0.343622\pi\)
0.471750 + 0.881732i \(0.343622\pi\)
\(710\) 0 0
\(711\) 23.3507 + 27.4454i 0.875720 + 1.02928i
\(712\) 0 0
\(713\) 20.8732 + 12.0511i 0.781707 + 0.451319i
\(714\) 0 0
\(715\) −36.1272 + 20.8580i −1.35108 + 0.780047i
\(716\) 0 0
\(717\) −14.4450 12.0370i −0.539458 0.449529i
\(718\) 0 0
\(719\) −0.846263 1.46577i −0.0315603 0.0546640i 0.849814 0.527083i \(-0.176714\pi\)
−0.881374 + 0.472419i \(0.843381\pi\)
\(720\) 0 0
\(721\) 15.3562 17.7586i 0.571896 0.661363i
\(722\) 0 0
\(723\) 8.29199 + 6.90969i 0.308382 + 0.256974i
\(724\) 0 0
\(725\) 6.75987 0.251055
\(726\) 0 0
\(727\) −16.1636 + 27.9962i −0.599476 + 1.03832i 0.393423 + 0.919358i \(0.371291\pi\)
−0.992898 + 0.118965i \(0.962042\pi\)
\(728\) 0 0
\(729\) 13.9762 + 23.1012i 0.517637 + 0.855601i
\(730\) 0 0
\(731\) −0.125674 0.217675i −0.00464824 0.00805099i
\(732\) 0 0
\(733\) −39.4670 22.7863i −1.45775 0.841631i −0.458847 0.888516i \(-0.651737\pi\)
−0.998900 + 0.0468850i \(0.985071\pi\)
\(734\) 0 0
\(735\) 18.1033 29.5351i 0.667749 1.08942i
\(736\) 0 0
\(737\) −8.91373 15.4390i −0.328342 0.568704i
\(738\) 0 0
\(739\) 1.86030 + 1.07404i 0.0684321 + 0.0395093i 0.533826 0.845595i \(-0.320754\pi\)
−0.465394 + 0.885104i \(0.654087\pi\)
\(740\) 0 0
\(741\) 6.05949 35.0648i 0.222601 1.28814i
\(742\) 0 0
\(743\) 38.9145 22.4673i 1.42763 0.824244i 0.430700 0.902495i \(-0.358267\pi\)
0.996934 + 0.0782508i \(0.0249335\pi\)
\(744\) 0 0
\(745\) 21.9883 12.6949i 0.805588 0.465107i
\(746\) 0 0
\(747\) −2.03950 11.1219i −0.0746215 0.406929i
\(748\) 0 0
\(749\) 14.7470 5.12081i 0.538844 0.187110i
\(750\) 0 0
\(751\) 23.9954 + 13.8537i 0.875604 + 0.505530i 0.869207 0.494449i \(-0.164630\pi\)
0.00639780 + 0.999980i \(0.497964\pi\)
\(752\) 0 0
\(753\) 12.0987 + 32.8911i 0.440902 + 1.19862i
\(754\) 0 0
\(755\) 46.0931 1.67750
\(756\) 0 0
\(757\) −8.18716 −0.297568 −0.148784 0.988870i \(-0.547536\pi\)
−0.148784 + 0.988870i \(0.547536\pi\)
\(758\) 0 0
\(759\) 8.08101 + 21.9687i 0.293322 + 0.797414i
\(760\) 0 0
\(761\) 26.8605 + 15.5079i 0.973693 + 0.562162i 0.900360 0.435146i \(-0.143303\pi\)
0.0733328 + 0.997308i \(0.476636\pi\)
\(762\) 0 0
\(763\) 1.44068 1.66606i 0.0521562 0.0603154i
\(764\) 0 0
\(765\) 44.2705 + 15.7716i 1.60060 + 0.570223i
\(766\) 0 0
\(767\) 34.7058 20.0374i 1.25315 0.723508i
\(768\) 0 0
\(769\) −4.32392 + 2.49641i −0.155924 + 0.0900230i −0.575932 0.817498i \(-0.695361\pi\)
0.420008 + 0.907521i \(0.362027\pi\)
\(770\) 0 0
\(771\) −8.23264 + 47.6403i −0.296491 + 1.71572i
\(772\) 0 0
\(773\) −11.5944 6.69400i −0.417020 0.240767i 0.276782 0.960933i \(-0.410732\pi\)
−0.693802 + 0.720166i \(0.744065\pi\)
\(774\) 0 0
\(775\) −6.38021 11.0508i −0.229184 0.396958i
\(776\) 0 0
\(777\) 35.9125 29.4411i 1.28835 1.05619i
\(778\) 0 0
\(779\) −28.7140 16.5780i −1.02879 0.593970i
\(780\) 0 0
\(781\) 17.5777 + 30.4456i 0.628981 + 1.08943i
\(782\) 0 0
\(783\) 9.55807 5.64968i 0.341577 0.201903i
\(784\) 0 0
\(785\) 15.8272 27.4136i 0.564898 0.978432i
\(786\) 0 0
\(787\) 24.2635 0.864900 0.432450 0.901658i \(-0.357649\pi\)
0.432450 + 0.901658i \(0.357649\pi\)
\(788\) 0 0
\(789\) −6.41883 5.34880i −0.228516 0.190422i
\(790\) 0 0
\(791\) 0.104429 + 0.300737i 0.00371307 + 0.0106930i
\(792\) 0 0
\(793\) −22.5565 39.0689i −0.801004 1.38738i
\(794\) 0 0
\(795\) 18.5412 + 15.4503i 0.657588 + 0.547966i
\(796\) 0 0
\(797\) 36.4623 21.0515i 1.29156 0.745682i 0.312629 0.949875i \(-0.398790\pi\)
0.978931 + 0.204193i \(0.0654569\pi\)
\(798\) 0 0
\(799\) 27.2882 + 15.7548i 0.965386 + 0.557366i
\(800\) 0 0
\(801\) 4.59382 12.8947i 0.162315 0.455613i
\(802\) 0 0
\(803\) 28.8795 1.01913
\(804\) 0 0
\(805\) 14.8176 + 42.6721i 0.522253 + 1.50399i
\(806\) 0 0
\(807\) −1.64388 + 9.51272i −0.0578672 + 0.334864i
\(808\) 0 0
\(809\) 1.07111 1.85521i 0.0376582 0.0652258i −0.846582 0.532258i \(-0.821344\pi\)
0.884240 + 0.467032i \(0.154677\pi\)
\(810\) 0 0
\(811\) −11.5213 −0.404566 −0.202283 0.979327i \(-0.564836\pi\)
−0.202283 + 0.979327i \(0.564836\pi\)
\(812\) 0 0
\(813\) 24.0090 28.8121i 0.842034 1.01048i
\(814\) 0 0
\(815\) 20.9543 0.733998
\(816\) 0 0
\(817\) 0.145896i 0.00510425i
\(818\) 0 0
\(819\) −25.9749 + 44.1681i −0.907638 + 1.54336i
\(820\) 0 0
\(821\) −18.8542 −0.658018 −0.329009 0.944327i \(-0.606715\pi\)
−0.329009 + 0.944327i \(0.606715\pi\)
\(822\) 0 0
\(823\) 29.3902i 1.02448i 0.858843 + 0.512240i \(0.171184\pi\)
−0.858843 + 0.512240i \(0.828816\pi\)
\(824\) 0 0
\(825\) 2.11029 12.2118i 0.0734710 0.425159i
\(826\) 0 0
\(827\) 22.6869i 0.788900i −0.918917 0.394450i \(-0.870935\pi\)
0.918917 0.394450i \(-0.129065\pi\)
\(828\) 0 0
\(829\) −19.3396 11.1657i −0.671691 0.387801i 0.125026 0.992153i \(-0.460098\pi\)
−0.796717 + 0.604353i \(0.793432\pi\)
\(830\) 0 0
\(831\) −16.0184 + 19.2230i −0.555673 + 0.666837i
\(832\) 0 0
\(833\) −23.7858 30.1197i −0.824130 1.04359i
\(834\) 0 0
\(835\) 72.5036i 2.50909i
\(836\) 0 0
\(837\) −18.2572 10.2929i −0.631061 0.355774i
\(838\) 0 0
\(839\) −24.6526 + 42.6995i −0.851101 + 1.47415i 0.0291142 + 0.999576i \(0.490731\pi\)
−0.880215 + 0.474574i \(0.842602\pi\)
\(840\) 0 0
\(841\) 12.2171 + 21.1607i 0.421280 + 0.729678i
\(842\) 0 0
\(843\) −33.5287 5.79403i −1.15479 0.199557i
\(844\) 0 0
\(845\) 70.9534 40.9650i 2.44087 1.40924i
\(846\) 0 0
\(847\) 10.1842 11.7775i 0.349935 0.404678i
\(848\) 0 0
\(849\) 18.4996 + 50.2923i 0.634906 + 1.72603i
\(850\) 0 0
\(851\) 60.5534i 2.07575i
\(852\) 0 0
\(853\) −2.37362 1.37041i −0.0812712 0.0469220i 0.458814 0.888533i \(-0.348275\pi\)
−0.540085 + 0.841611i \(0.681608\pi\)
\(854\) 0 0
\(855\) 17.6768 + 20.7766i 0.604533 + 0.710543i
\(856\) 0 0
\(857\) 2.29909 1.32738i 0.0785355 0.0453425i −0.460218 0.887806i \(-0.652229\pi\)
0.538753 + 0.842463i \(0.318895\pi\)
\(858\) 0 0
\(859\) 20.4410 35.4049i 0.697440 1.20800i −0.271912 0.962322i \(-0.587656\pi\)
0.969351 0.245679i \(-0.0790108\pi\)
\(860\) 0 0
\(861\) 30.2684 + 36.9217i 1.03154 + 1.25829i
\(862\) 0 0
\(863\) −36.5486 + 21.1013i −1.24413 + 0.718298i −0.969932 0.243376i \(-0.921745\pi\)
−0.274196 + 0.961674i \(0.588412\pi\)
\(864\) 0 0
\(865\) 23.1758 40.1416i 0.788000 1.36486i
\(866\) 0 0
\(867\) 14.4815 17.3786i 0.491818 0.590207i
\(868\) 0 0
\(869\) −13.5830 23.5265i −0.460773 0.798082i
\(870\) 0 0
\(871\) 25.4432 + 44.0689i 0.862109 + 1.49322i
\(872\) 0 0
\(873\) −15.7662 + 2.89117i −0.533606 + 0.0978512i
\(874\) 0 0
\(875\) −2.61333 + 13.6339i −0.0883468 + 0.460912i
\(876\) 0 0
\(877\) 27.9149 48.3501i 0.942620 1.63267i 0.182171 0.983267i \(-0.441687\pi\)
0.760448 0.649399i \(-0.224979\pi\)
\(878\) 0 0
\(879\) 0.238133 + 0.198435i 0.00803201 + 0.00669305i
\(880\) 0 0
\(881\) 49.2533i 1.65939i 0.558219 + 0.829693i \(0.311485\pi\)
−0.558219 + 0.829693i \(0.688515\pi\)
\(882\) 0 0
\(883\) 3.87310i 0.130340i 0.997874 + 0.0651701i \(0.0207590\pi\)
−0.997874 + 0.0651701i \(0.979241\pi\)
\(884\) 0 0
\(885\) −5.23131 + 30.2723i −0.175848 + 1.01759i
\(886\) 0 0
\(887\) 0.897157 1.55392i 0.0301236 0.0521756i −0.850571 0.525861i \(-0.823743\pi\)
0.880694 + 0.473685i \(0.157077\pi\)
\(888\) 0 0
\(889\) 2.77570 14.4810i 0.0930940 0.485678i
\(890\) 0 0
\(891\) −7.22236 19.0304i −0.241958 0.637544i
\(892\) 0 0
\(893\) 9.14491 + 15.8394i 0.306023 + 0.530047i
\(894\) 0 0
\(895\) −29.5814 51.2364i −0.988796 1.71265i
\(896\) 0 0
\(897\) −23.0663 62.7070i −0.770161 2.09373i
\(898\) 0 0
\(899\) −4.30933 + 7.46398i −0.143724 + 0.248938i
\(900\) 0 0
\(901\) 23.1564 13.3693i 0.771450 0.445397i
\(902\) 0 0
\(903\) −0.0741047 + 0.196578i −0.00246605 + 0.00654171i
\(904\) 0 0
\(905\) −23.4267 + 40.5761i −0.778728 + 1.34880i
\(906\) 0 0
\(907\) 13.4331 7.75561i 0.446039 0.257521i −0.260117 0.965577i \(-0.583761\pi\)
0.706156 + 0.708056i \(0.250428\pi\)
\(908\) 0 0
\(909\) 6.00587 16.8583i 0.199202 0.559155i
\(910\) 0 0
\(911\) −38.1263 22.0122i −1.26318 0.729297i −0.289491 0.957181i \(-0.593486\pi\)
−0.973688 + 0.227883i \(0.926819\pi\)
\(912\) 0 0
\(913\) 8.52443i 0.282117i
\(914\) 0 0
\(915\) 34.0781 + 5.88898i 1.12659 + 0.194684i
\(916\) 0 0
\(917\) 0.108893 0.125928i 0.00359595 0.00415850i
\(918\) 0 0
\(919\) 30.4488 17.5796i 1.00441 0.579899i 0.0948631 0.995490i \(-0.469759\pi\)
0.909551 + 0.415591i \(0.136425\pi\)
\(920\) 0 0
\(921\) 5.50585 + 14.9680i 0.181424 + 0.493211i
\(922\) 0 0
\(923\) −50.1736 86.9032i −1.65148 2.86045i
\(924\) 0 0
\(925\) 16.0293 27.7636i 0.527041 0.912862i
\(926\) 0 0
\(927\) −4.80156 26.1841i −0.157704 0.859998i
\(928\) 0 0
\(929\) 28.6223i 0.939069i −0.882914 0.469534i \(-0.844422\pi\)
0.882914 0.469534i \(-0.155578\pi\)
\(930\) 0 0
\(931\) −3.21528 22.0440i −0.105377 0.722463i
\(932\) 0 0
\(933\) 18.7801 + 51.0548i 0.614832 + 1.67146i
\(934\) 0 0
\(935\) −30.6828 17.7147i −1.00344 0.579334i
\(936\) 0 0
\(937\) 2.42605i 0.0792555i −0.999215 0.0396277i \(-0.987383\pi\)
0.999215 0.0396277i \(-0.0126172\pi\)
\(938\) 0 0
\(939\) 8.42415 3.09876i 0.274912 0.101124i
\(940\) 0 0
\(941\) 33.6961i 1.09846i 0.835671 + 0.549231i \(0.185079\pi\)
−0.835671 + 0.549231i \(0.814921\pi\)
\(942\) 0 0
\(943\) −62.2550 −2.02730
\(944\) 0 0
\(945\) −13.2645 36.9726i −0.431493 1.20272i
\(946\) 0 0
\(947\) 54.7789i 1.78007i −0.455888 0.890037i \(-0.650678\pi\)
0.455888 0.890037i \(-0.349322\pi\)
\(948\) 0 0
\(949\) −82.4330 −2.67589
\(950\) 0 0
\(951\) 11.5989 + 31.5322i 0.376119 + 1.02250i
\(952\) 0 0
\(953\) −34.7473 −1.12558 −0.562789 0.826601i \(-0.690271\pi\)
−0.562789 + 0.826601i \(0.690271\pi\)
\(954\) 0 0
\(955\) 7.75368 13.4298i 0.250903 0.434577i
\(956\) 0 0
\(957\) −7.85572 + 2.88966i −0.253939 + 0.0934096i
\(958\) 0 0
\(959\) 0.0309791 + 0.0892143i 0.00100037 + 0.00288088i
\(960\) 0 0
\(961\) −14.7308 −0.475187
\(962\) 0 0
\(963\) 5.94036 16.6744i 0.191425 0.537326i
\(964\) 0 0
\(965\) 13.8811 + 8.01428i 0.446850 + 0.257989i
\(966\) 0 0
\(967\) 9.75555 5.63237i 0.313717 0.181125i −0.334871 0.942264i \(-0.608693\pi\)
0.648589 + 0.761139i \(0.275360\pi\)
\(968\) 0 0
\(969\) 28.3639 10.4334i 0.911178 0.335170i
\(970\) 0 0
\(971\) −9.41975 16.3155i −0.302294 0.523589i 0.674361 0.738402i \(-0.264419\pi\)
−0.976655 + 0.214813i \(0.931086\pi\)
\(972\) 0 0
\(973\) 7.54867 + 21.7388i 0.241999 + 0.696914i
\(974\) 0 0
\(975\) −6.02358 + 34.8570i −0.192909 + 1.11632i
\(976\) 0 0
\(977\) −6.17446 −0.197538 −0.0987692 0.995110i \(-0.531491\pi\)
−0.0987692 + 0.995110i \(0.531491\pi\)
\(978\) 0 0
\(979\) −5.15980 + 8.93704i −0.164908 + 0.285629i
\(980\) 0 0
\(981\) −0.450469 2.45652i −0.0143824 0.0784306i
\(982\) 0 0
\(983\) 13.3296 + 23.0876i 0.425150 + 0.736381i 0.996434 0.0843710i \(-0.0268881\pi\)
−0.571285 + 0.820752i \(0.693555\pi\)
\(984\) 0 0
\(985\) 22.5032 + 12.9922i 0.717010 + 0.413966i
\(986\) 0 0
\(987\) −4.27641 25.9868i −0.136120 0.827170i
\(988\) 0 0
\(989\) −0.136970 0.237238i −0.00435538 0.00754374i
\(990\) 0 0
\(991\) −42.6887 24.6463i −1.35605 0.782917i −0.366962 0.930236i \(-0.619602\pi\)
−0.989089 + 0.147319i \(0.952936\pi\)
\(992\) 0 0
\(993\) 25.6204 9.42426i 0.813039 0.299070i
\(994\) 0 0
\(995\) 1.63347 0.943082i 0.0517844 0.0298977i
\(996\) 0 0
\(997\) −6.78110 + 3.91507i −0.214760 + 0.123992i −0.603521 0.797347i \(-0.706236\pi\)
0.388762 + 0.921338i \(0.372903\pi\)
\(998\) 0 0
\(999\) −0.539385 52.6530i −0.0170654 1.66587i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.cz.g.367.7 yes 24
3.2 odd 2 3024.2.cz.h.2719.2 24
4.3 odd 2 1008.2.cz.h.367.6 yes 24
7.5 odd 6 1008.2.bf.g.943.2 yes 24
9.4 even 3 1008.2.bf.h.31.11 yes 24
9.5 odd 6 3024.2.bf.g.1711.11 24
12.11 even 2 3024.2.cz.g.2719.2 24
21.5 even 6 3024.2.bf.h.2287.2 24
28.19 even 6 1008.2.bf.h.943.11 yes 24
36.23 even 6 3024.2.bf.h.1711.11 24
36.31 odd 6 1008.2.bf.g.31.2 24
63.5 even 6 3024.2.cz.g.1279.2 24
63.40 odd 6 1008.2.cz.h.607.6 yes 24
84.47 odd 6 3024.2.bf.g.2287.2 24
252.103 even 6 inner 1008.2.cz.g.607.7 yes 24
252.131 odd 6 3024.2.cz.h.1279.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.g.31.2 24 36.31 odd 6
1008.2.bf.g.943.2 yes 24 7.5 odd 6
1008.2.bf.h.31.11 yes 24 9.4 even 3
1008.2.bf.h.943.11 yes 24 28.19 even 6
1008.2.cz.g.367.7 yes 24 1.1 even 1 trivial
1008.2.cz.g.607.7 yes 24 252.103 even 6 inner
1008.2.cz.h.367.6 yes 24 4.3 odd 2
1008.2.cz.h.607.6 yes 24 63.40 odd 6
3024.2.bf.g.1711.11 24 9.5 odd 6
3024.2.bf.g.2287.2 24 84.47 odd 6
3024.2.bf.h.1711.11 24 36.23 even 6
3024.2.bf.h.2287.2 24 21.5 even 6
3024.2.cz.g.1279.2 24 63.5 even 6
3024.2.cz.g.2719.2 24 12.11 even 2
3024.2.cz.h.1279.2 24 252.131 odd 6
3024.2.cz.h.2719.2 24 3.2 odd 2