Properties

Label 1008.2.cz.g.367.11
Level $1008$
Weight $2$
Character 1008.367
Analytic conductor $8.049$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(367,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 4, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.367"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.cz (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-3,0,-3,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 367.11
Character \(\chi\) \(=\) 1008.367
Dual form 1008.2.cz.g.607.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.64174 - 0.551995i) q^{3} +(2.87107 + 1.65762i) q^{5} +(-2.01336 + 1.71651i) q^{7} +(2.39060 - 1.81246i) q^{9} +(-4.94470 + 2.85482i) q^{11} +(-0.000820272 + 0.000473584i) q^{13} +(5.62854 + 1.13655i) q^{15} +(0.287517 + 0.165998i) q^{17} +(3.59975 + 6.23494i) q^{19} +(-2.35790 + 3.92941i) q^{21} +(5.37780 + 3.10487i) q^{23} +(2.99538 + 5.18815i) q^{25} +(2.92427 - 4.29519i) q^{27} +(5.06516 - 8.77311i) q^{29} +3.88013 q^{31} +(-6.54205 + 7.41631i) q^{33} +(-8.62580 + 1.59084i) q^{35} +(0.341973 + 0.592315i) q^{37} +(-0.00108526 + 0.00123029i) q^{39} +(-5.71168 + 3.29764i) q^{41} +(-6.16324 - 3.55835i) q^{43} +(9.86796 - 1.24101i) q^{45} -2.93515 q^{47} +(1.10722 - 6.91188i) q^{49} +(0.563657 + 0.113817i) q^{51} +(-0.211667 + 0.366617i) q^{53} -18.9288 q^{55} +(9.35150 + 8.24910i) q^{57} +0.323059 q^{59} -0.966271i q^{61} +(-1.70204 + 7.75262i) q^{63} -0.00314008 q^{65} -8.48735i q^{67} +(10.5428 + 2.12887i) q^{69} -3.04412i q^{71} +(-0.293235 - 0.169300i) q^{73} +(7.78145 + 6.86414i) q^{75} +(5.05512 - 14.2354i) q^{77} -11.5034i q^{79} +(2.42997 - 8.66575i) q^{81} +(-2.46263 + 4.26540i) q^{83} +(0.550322 + 0.953185i) q^{85} +(3.47295 - 17.1991i) q^{87} +(-8.40915 + 4.85502i) q^{89} +(0.000838591 - 0.00236150i) q^{91} +(6.37016 - 2.14181i) q^{93} +23.8680i q^{95} +(15.1955 + 8.77311i) q^{97} +(-6.64656 + 15.7868i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 3 q^{3} - 3 q^{5} + 4 q^{7} + 17 q^{9} - 9 q^{11} - 3 q^{13} - 6 q^{15} - 3 q^{17} - 4 q^{19} + 13 q^{21} - 6 q^{23} + 15 q^{25} + 9 q^{27} + 18 q^{29} + 34 q^{31} - 21 q^{33} - 42 q^{35} - 3 q^{37}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.64174 0.551995i 0.947858 0.318694i
\(4\) 0 0
\(5\) 2.87107 + 1.65762i 1.28398 + 0.741308i 0.977574 0.210592i \(-0.0675391\pi\)
0.306409 + 0.951900i \(0.400872\pi\)
\(6\) 0 0
\(7\) −2.01336 + 1.71651i −0.760978 + 0.648778i
\(8\) 0 0
\(9\) 2.39060 1.81246i 0.796868 0.604154i
\(10\) 0 0
\(11\) −4.94470 + 2.85482i −1.49088 + 0.860761i −0.999946 0.0104342i \(-0.996679\pi\)
−0.490936 + 0.871195i \(0.663345\pi\)
\(12\) 0 0
\(13\) −0.000820272 0 0.000473584i −0.000227503 0 0.000131349i −0.500114 0.865960i \(-0.666708\pi\)
0.499886 + 0.866091i \(0.333375\pi\)
\(14\) 0 0
\(15\) 5.62854 + 1.13655i 1.45328 + 0.293456i
\(16\) 0 0
\(17\) 0.287517 + 0.165998i 0.0697331 + 0.0402604i 0.534461 0.845193i \(-0.320515\pi\)
−0.464728 + 0.885453i \(0.653848\pi\)
\(18\) 0 0
\(19\) 3.59975 + 6.23494i 0.825839 + 1.43039i 0.901277 + 0.433244i \(0.142631\pi\)
−0.0754382 + 0.997150i \(0.524036\pi\)
\(20\) 0 0
\(21\) −2.35790 + 3.92941i −0.514536 + 0.857469i
\(22\) 0 0
\(23\) 5.37780 + 3.10487i 1.12135 + 0.647411i 0.941745 0.336328i \(-0.109185\pi\)
0.179604 + 0.983739i \(0.442518\pi\)
\(24\) 0 0
\(25\) 2.99538 + 5.18815i 0.599076 + 1.03763i
\(26\) 0 0
\(27\) 2.92427 4.29519i 0.562777 0.826609i
\(28\) 0 0
\(29\) 5.06516 8.77311i 0.940576 1.62913i 0.176201 0.984354i \(-0.443619\pi\)
0.764375 0.644772i \(-0.223047\pi\)
\(30\) 0 0
\(31\) 3.88013 0.696892 0.348446 0.937329i \(-0.386709\pi\)
0.348446 + 0.937329i \(0.386709\pi\)
\(32\) 0 0
\(33\) −6.54205 + 7.41631i −1.13882 + 1.29101i
\(34\) 0 0
\(35\) −8.62580 + 1.59084i −1.45803 + 0.268901i
\(36\) 0 0
\(37\) 0.341973 + 0.592315i 0.0562200 + 0.0973759i 0.892766 0.450521i \(-0.148762\pi\)
−0.836546 + 0.547897i \(0.815429\pi\)
\(38\) 0 0
\(39\) −0.00108526 + 0.00123029i −0.000173780 + 0.000197004i
\(40\) 0 0
\(41\) −5.71168 + 3.29764i −0.892015 + 0.515005i −0.874601 0.484843i \(-0.838877\pi\)
−0.0174141 + 0.999848i \(0.505543\pi\)
\(42\) 0 0
\(43\) −6.16324 3.55835i −0.939885 0.542643i −0.0499605 0.998751i \(-0.515910\pi\)
−0.889924 + 0.456109i \(0.849243\pi\)
\(44\) 0 0
\(45\) 9.86796 1.24101i 1.47103 0.184999i
\(46\) 0 0
\(47\) −2.93515 −0.428135 −0.214067 0.976819i \(-0.568671\pi\)
−0.214067 + 0.976819i \(0.568671\pi\)
\(48\) 0 0
\(49\) 1.10722 6.91188i 0.158174 0.987411i
\(50\) 0 0
\(51\) 0.563657 + 0.113817i 0.0789278 + 0.0159376i
\(52\) 0 0
\(53\) −0.211667 + 0.366617i −0.0290746 + 0.0503587i −0.880197 0.474609i \(-0.842589\pi\)
0.851122 + 0.524968i \(0.175923\pi\)
\(54\) 0 0
\(55\) −18.9288 −2.55236
\(56\) 0 0
\(57\) 9.35150 + 8.24910i 1.23864 + 1.09262i
\(58\) 0 0
\(59\) 0.323059 0.0420587 0.0210294 0.999779i \(-0.493306\pi\)
0.0210294 + 0.999779i \(0.493306\pi\)
\(60\) 0 0
\(61\) 0.966271i 0.123718i −0.998085 0.0618592i \(-0.980297\pi\)
0.998085 0.0618592i \(-0.0197030\pi\)
\(62\) 0 0
\(63\) −1.70204 + 7.75262i −0.214437 + 0.976738i
\(64\) 0 0
\(65\) −0.00314008 −0.000389479
\(66\) 0 0
\(67\) 8.48735i 1.03689i −0.855110 0.518447i \(-0.826510\pi\)
0.855110 0.518447i \(-0.173490\pi\)
\(68\) 0 0
\(69\) 10.5428 + 2.12887i 1.26920 + 0.256286i
\(70\) 0 0
\(71\) 3.04412i 0.361271i −0.983550 0.180635i \(-0.942185\pi\)
0.983550 0.180635i \(-0.0578154\pi\)
\(72\) 0 0
\(73\) −0.293235 0.169300i −0.0343206 0.0198150i 0.482742 0.875763i \(-0.339641\pi\)
−0.517062 + 0.855948i \(0.672974\pi\)
\(74\) 0 0
\(75\) 7.78145 + 6.86414i 0.898525 + 0.792603i
\(76\) 0 0
\(77\) 5.05512 14.2354i 0.576085 1.62227i
\(78\) 0 0
\(79\) 11.5034i 1.29423i −0.762392 0.647116i \(-0.775975\pi\)
0.762392 0.647116i \(-0.224025\pi\)
\(80\) 0 0
\(81\) 2.42997 8.66575i 0.269997 0.962861i
\(82\) 0 0
\(83\) −2.46263 + 4.26540i −0.270309 + 0.468188i −0.968941 0.247293i \(-0.920459\pi\)
0.698632 + 0.715481i \(0.253792\pi\)
\(84\) 0 0
\(85\) 0.550322 + 0.953185i 0.0596908 + 0.103387i
\(86\) 0 0
\(87\) 3.47295 17.1991i 0.372339 1.84394i
\(88\) 0 0
\(89\) −8.40915 + 4.85502i −0.891368 + 0.514631i −0.874390 0.485224i \(-0.838738\pi\)
−0.0169782 + 0.999856i \(0.505405\pi\)
\(90\) 0 0
\(91\) 0.000838591 0.00236150i 8.79082e−5 0.000247552i
\(92\) 0 0
\(93\) 6.37016 2.14181i 0.660554 0.222096i
\(94\) 0 0
\(95\) 23.8680i 2.44880i
\(96\) 0 0
\(97\) 15.1955 + 8.77311i 1.54287 + 0.890774i 0.998656 + 0.0518254i \(0.0165039\pi\)
0.544210 + 0.838949i \(0.316829\pi\)
\(98\) 0 0
\(99\) −6.64656 + 15.7868i −0.668004 + 1.58663i
\(100\) 0 0
\(101\) −9.07215 + 5.23781i −0.902712 + 0.521181i −0.878079 0.478515i \(-0.841175\pi\)
−0.0246332 + 0.999697i \(0.507842\pi\)
\(102\) 0 0
\(103\) 7.69735 13.3322i 0.758442 1.31366i −0.185202 0.982700i \(-0.559294\pi\)
0.943645 0.330960i \(-0.107373\pi\)
\(104\) 0 0
\(105\) −13.2832 + 7.37314i −1.29630 + 0.719545i
\(106\) 0 0
\(107\) 0.530413 0.306234i 0.0512769 0.0296047i −0.474142 0.880448i \(-0.657242\pi\)
0.525419 + 0.850843i \(0.323908\pi\)
\(108\) 0 0
\(109\) 7.50285 12.9953i 0.718643 1.24473i −0.242894 0.970053i \(-0.578097\pi\)
0.961537 0.274674i \(-0.0885698\pi\)
\(110\) 0 0
\(111\) 0.888384 + 0.783658i 0.0843217 + 0.0743815i
\(112\) 0 0
\(113\) 5.28753 + 9.15828i 0.497409 + 0.861538i 0.999996 0.00298888i \(-0.000951391\pi\)
−0.502586 + 0.864527i \(0.667618\pi\)
\(114\) 0 0
\(115\) 10.2934 + 17.8286i 0.959862 + 1.66253i
\(116\) 0 0
\(117\) −0.00110259 + 0.00261886i −0.000101935 + 0.000242114i
\(118\) 0 0
\(119\) −0.863811 + 0.159311i −0.0791854 + 0.0146040i
\(120\) 0 0
\(121\) 10.8000 18.7062i 0.981819 1.70056i
\(122\) 0 0
\(123\) −7.55680 + 8.56668i −0.681374 + 0.772432i
\(124\) 0 0
\(125\) 3.28458i 0.293782i
\(126\) 0 0
\(127\) 13.0147i 1.15486i −0.816439 0.577432i \(-0.804055\pi\)
0.816439 0.577432i \(-0.195945\pi\)
\(128\) 0 0
\(129\) −12.0826 2.43980i −1.06381 0.214812i
\(130\) 0 0
\(131\) −2.06878 + 3.58324i −0.180750 + 0.313069i −0.942136 0.335230i \(-0.891186\pi\)
0.761386 + 0.648299i \(0.224519\pi\)
\(132\) 0 0
\(133\) −17.9499 6.37419i −1.55645 0.552712i
\(134\) 0 0
\(135\) 15.5156 7.48447i 1.33537 0.644161i
\(136\) 0 0
\(137\) −5.03745 8.72512i −0.430378 0.745437i 0.566527 0.824043i \(-0.308287\pi\)
−0.996906 + 0.0786057i \(0.974953\pi\)
\(138\) 0 0
\(139\) −9.47318 16.4080i −0.803505 1.39171i −0.917296 0.398207i \(-0.869633\pi\)
0.113791 0.993505i \(-0.463701\pi\)
\(140\) 0 0
\(141\) −4.81874 + 1.62018i −0.405811 + 0.136444i
\(142\) 0 0
\(143\) 0.00270400 0.00468346i 0.000226120 0.000391651i
\(144\) 0 0
\(145\) 29.0849 16.7922i 2.41537 1.39451i
\(146\) 0 0
\(147\) −1.99756 11.9587i −0.164756 0.986334i
\(148\) 0 0
\(149\) −9.92295 + 17.1870i −0.812920 + 1.40802i 0.0978927 + 0.995197i \(0.468790\pi\)
−0.910812 + 0.412821i \(0.864544\pi\)
\(150\) 0 0
\(151\) 1.45901 0.842359i 0.118732 0.0685502i −0.439458 0.898263i \(-0.644829\pi\)
0.558190 + 0.829713i \(0.311496\pi\)
\(152\) 0 0
\(153\) 0.988204 0.124278i 0.0798915 0.0100473i
\(154\) 0 0
\(155\) 11.1401 + 6.43176i 0.894798 + 0.516612i
\(156\) 0 0
\(157\) 15.8888i 1.26807i 0.773306 + 0.634033i \(0.218602\pi\)
−0.773306 + 0.634033i \(0.781398\pi\)
\(158\) 0 0
\(159\) −0.145130 + 0.718728i −0.0115096 + 0.0569988i
\(160\) 0 0
\(161\) −16.1570 + 2.97980i −1.27335 + 0.234841i
\(162\) 0 0
\(163\) −9.64782 + 5.57017i −0.755676 + 0.436290i −0.827741 0.561110i \(-0.810374\pi\)
0.0720652 + 0.997400i \(0.477041\pi\)
\(164\) 0 0
\(165\) −31.0761 + 10.4486i −2.41927 + 0.813422i
\(166\) 0 0
\(167\) −4.63866 8.03440i −0.358950 0.621720i 0.628835 0.777538i \(-0.283532\pi\)
−0.987786 + 0.155818i \(0.950199\pi\)
\(168\) 0 0
\(169\) −6.50000 + 11.2583i −0.500000 + 0.866025i
\(170\) 0 0
\(171\) 19.9062 + 8.38088i 1.52226 + 0.640902i
\(172\) 0 0
\(173\) 6.16863i 0.468992i −0.972117 0.234496i \(-0.924656\pi\)
0.972117 0.234496i \(-0.0753440\pi\)
\(174\) 0 0
\(175\) −14.9362 5.30401i −1.12907 0.400946i
\(176\) 0 0
\(177\) 0.530378 0.178327i 0.0398657 0.0134039i
\(178\) 0 0
\(179\) 14.2231 + 8.21169i 1.06308 + 0.613771i 0.926283 0.376828i \(-0.122985\pi\)
0.136799 + 0.990599i \(0.456319\pi\)
\(180\) 0 0
\(181\) 10.7788i 0.801185i 0.916256 + 0.400592i \(0.131196\pi\)
−0.916256 + 0.400592i \(0.868804\pi\)
\(182\) 0 0
\(183\) −0.533376 1.58636i −0.0394283 0.117267i
\(184\) 0 0
\(185\) 2.26744i 0.166705i
\(186\) 0 0
\(187\) −1.89558 −0.138618
\(188\) 0 0
\(189\) 1.48510 + 13.6673i 0.108025 + 0.994148i
\(190\) 0 0
\(191\) 2.14657i 0.155320i −0.996980 0.0776602i \(-0.975255\pi\)
0.996980 0.0776602i \(-0.0247449\pi\)
\(192\) 0 0
\(193\) −12.0308 −0.865996 −0.432998 0.901395i \(-0.642544\pi\)
−0.432998 + 0.901395i \(0.642544\pi\)
\(194\) 0 0
\(195\) −0.00515519 + 0.00173331i −0.000369171 + 0.000124125i
\(196\) 0 0
\(197\) 3.69745 0.263433 0.131716 0.991287i \(-0.457951\pi\)
0.131716 + 0.991287i \(0.457951\pi\)
\(198\) 0 0
\(199\) 10.2592 17.7695i 0.727256 1.25964i −0.230782 0.973005i \(-0.574128\pi\)
0.958039 0.286640i \(-0.0925382\pi\)
\(200\) 0 0
\(201\) −4.68497 13.9340i −0.330452 0.982829i
\(202\) 0 0
\(203\) 4.86112 + 26.3578i 0.341184 + 1.84995i
\(204\) 0 0
\(205\) −21.8649 −1.52711
\(206\) 0 0
\(207\) 18.4836 2.32453i 1.28470 0.161566i
\(208\) 0 0
\(209\) −35.5993 20.5533i −2.46246 1.42170i
\(210\) 0 0
\(211\) 4.03406 2.32907i 0.277716 0.160340i −0.354673 0.934990i \(-0.615408\pi\)
0.632389 + 0.774651i \(0.282074\pi\)
\(212\) 0 0
\(213\) −1.68034 4.99765i −0.115135 0.342433i
\(214\) 0 0
\(215\) −11.7967 20.4325i −0.804531 1.39349i
\(216\) 0 0
\(217\) −7.81209 + 6.66027i −0.530319 + 0.452128i
\(218\) 0 0
\(219\) −0.574868 0.116081i −0.0388460 0.00784403i
\(220\) 0 0
\(221\) −0.000314456 0 −2.11526e−5 0
\(222\) 0 0
\(223\) 5.32491 9.22302i 0.356582 0.617619i −0.630805 0.775941i \(-0.717275\pi\)
0.987387 + 0.158322i \(0.0506085\pi\)
\(224\) 0 0
\(225\) 16.5641 + 6.97380i 1.10427 + 0.464920i
\(226\) 0 0
\(227\) 3.96132 + 6.86121i 0.262922 + 0.455394i 0.967017 0.254711i \(-0.0819805\pi\)
−0.704095 + 0.710106i \(0.748647\pi\)
\(228\) 0 0
\(229\) 5.79610 + 3.34638i 0.383017 + 0.221135i 0.679130 0.734018i \(-0.262357\pi\)
−0.296113 + 0.955153i \(0.595690\pi\)
\(230\) 0 0
\(231\) 0.441333 26.1612i 0.0290376 1.72128i
\(232\) 0 0
\(233\) −2.43240 4.21304i −0.159352 0.276006i 0.775283 0.631614i \(-0.217607\pi\)
−0.934635 + 0.355608i \(0.884274\pi\)
\(234\) 0 0
\(235\) −8.42702 4.86534i −0.549718 0.317380i
\(236\) 0 0
\(237\) −6.34981 18.8855i −0.412464 1.22675i
\(238\) 0 0
\(239\) 4.72441 2.72764i 0.305597 0.176436i −0.339358 0.940657i \(-0.610210\pi\)
0.644954 + 0.764221i \(0.276876\pi\)
\(240\) 0 0
\(241\) 3.65789 2.11188i 0.235625 0.136038i −0.377539 0.925994i \(-0.623230\pi\)
0.613164 + 0.789955i \(0.289896\pi\)
\(242\) 0 0
\(243\) −0.794073 15.5682i −0.0509398 0.998702i
\(244\) 0 0
\(245\) 14.6361 18.0092i 0.935069 1.15056i
\(246\) 0 0
\(247\) −0.00590554 0.00340957i −0.000375761 0.000216946i
\(248\) 0 0
\(249\) −1.68851 + 8.36202i −0.107005 + 0.529922i
\(250\) 0 0
\(251\) −12.2954 −0.776081 −0.388041 0.921642i \(-0.626848\pi\)
−0.388041 + 0.921642i \(0.626848\pi\)
\(252\) 0 0
\(253\) −35.4554 −2.22906
\(254\) 0 0
\(255\) 1.42964 + 1.26110i 0.0895273 + 0.0789734i
\(256\) 0 0
\(257\) 7.16881 + 4.13891i 0.447178 + 0.258178i 0.706638 0.707576i \(-0.250211\pi\)
−0.259460 + 0.965754i \(0.583544\pi\)
\(258\) 0 0
\(259\) −1.70523 0.605542i −0.105958 0.0376266i
\(260\) 0 0
\(261\) −3.79213 30.1534i −0.234727 1.86645i
\(262\) 0 0
\(263\) −13.3297 + 7.69589i −0.821942 + 0.474549i −0.851086 0.525027i \(-0.824055\pi\)
0.0291434 + 0.999575i \(0.490722\pi\)
\(264\) 0 0
\(265\) −1.21542 + 0.701723i −0.0746627 + 0.0431065i
\(266\) 0 0
\(267\) −11.1257 + 12.6125i −0.680880 + 0.771871i
\(268\) 0 0
\(269\) 13.8152 + 7.97621i 0.842328 + 0.486318i 0.858055 0.513558i \(-0.171673\pi\)
−0.0157272 + 0.999876i \(0.505006\pi\)
\(270\) 0 0
\(271\) 0.703800 + 1.21902i 0.0427528 + 0.0740501i 0.886610 0.462518i \(-0.153054\pi\)
−0.843857 + 0.536568i \(0.819721\pi\)
\(272\) 0 0
\(273\) 7.32125e−5 0.00433985i 4.43102e−6 0.000262660i
\(274\) 0 0
\(275\) −29.6225 17.1025i −1.78630 1.03132i
\(276\) 0 0
\(277\) 3.18950 + 5.52437i 0.191638 + 0.331927i 0.945793 0.324769i \(-0.105287\pi\)
−0.754155 + 0.656696i \(0.771953\pi\)
\(278\) 0 0
\(279\) 9.27585 7.03258i 0.555331 0.421030i
\(280\) 0 0
\(281\) 12.8423 22.2436i 0.766110 1.32694i −0.173547 0.984826i \(-0.555523\pi\)
0.939658 0.342116i \(-0.111144\pi\)
\(282\) 0 0
\(283\) −21.1502 −1.25725 −0.628625 0.777709i \(-0.716382\pi\)
−0.628625 + 0.777709i \(0.716382\pi\)
\(284\) 0 0
\(285\) 13.1750 + 39.1850i 0.780420 + 2.32112i
\(286\) 0 0
\(287\) 5.83924 16.4435i 0.344679 0.970627i
\(288\) 0 0
\(289\) −8.44489 14.6270i −0.496758 0.860410i
\(290\) 0 0
\(291\) 29.7897 + 6.01532i 1.74630 + 0.352624i
\(292\) 0 0
\(293\) 20.0856 11.5964i 1.17341 0.677469i 0.218930 0.975741i \(-0.429743\pi\)
0.954481 + 0.298272i \(0.0964102\pi\)
\(294\) 0 0
\(295\) 0.927526 + 0.535508i 0.0540027 + 0.0311785i
\(296\) 0 0
\(297\) −2.19766 + 29.5867i −0.127521 + 1.71679i
\(298\) 0 0
\(299\) −0.00588168 −0.000340146
\(300\) 0 0
\(301\) 18.5167 3.41501i 1.06729 0.196838i
\(302\) 0 0
\(303\) −12.0028 + 13.6069i −0.689545 + 0.781695i
\(304\) 0 0
\(305\) 1.60171 2.77424i 0.0917134 0.158852i
\(306\) 0 0
\(307\) 4.55181 0.259786 0.129893 0.991528i \(-0.458537\pi\)
0.129893 + 0.991528i \(0.458537\pi\)
\(308\) 0 0
\(309\) 5.27772 26.1369i 0.300239 1.48687i
\(310\) 0 0
\(311\) 10.3728 0.588185 0.294093 0.955777i \(-0.404983\pi\)
0.294093 + 0.955777i \(0.404983\pi\)
\(312\) 0 0
\(313\) 31.6617i 1.78963i −0.446442 0.894813i \(-0.647309\pi\)
0.446442 0.894813i \(-0.352691\pi\)
\(314\) 0 0
\(315\) −17.7375 + 19.4370i −0.999397 + 1.09515i
\(316\) 0 0
\(317\) −17.5940 −0.988178 −0.494089 0.869411i \(-0.664498\pi\)
−0.494089 + 0.869411i \(0.664498\pi\)
\(318\) 0 0
\(319\) 57.8405i 3.23845i
\(320\) 0 0
\(321\) 0.701759 0.795541i 0.0391684 0.0444027i
\(322\) 0 0
\(323\) 2.39020i 0.132994i
\(324\) 0 0
\(325\) −0.00491405 0.00283713i −0.000272582 0.000157376i
\(326\) 0 0
\(327\) 5.14437 25.4764i 0.284484 1.40885i
\(328\) 0 0
\(329\) 5.90950 5.03819i 0.325801 0.277765i
\(330\) 0 0
\(331\) 15.1591i 0.833217i −0.909086 0.416609i \(-0.863219\pi\)
0.909086 0.416609i \(-0.136781\pi\)
\(332\) 0 0
\(333\) 1.89107 + 0.796177i 0.103630 + 0.0436302i
\(334\) 0 0
\(335\) 14.0688 24.3678i 0.768659 1.33136i
\(336\) 0 0
\(337\) 7.63938 + 13.2318i 0.416143 + 0.720781i 0.995548 0.0942588i \(-0.0300481\pi\)
−0.579404 + 0.815040i \(0.696715\pi\)
\(338\) 0 0
\(339\) 13.7361 + 12.1168i 0.746041 + 0.658094i
\(340\) 0 0
\(341\) −19.1861 + 11.0771i −1.03898 + 0.599858i
\(342\) 0 0
\(343\) 9.63506 + 15.8166i 0.520244 + 0.854018i
\(344\) 0 0
\(345\) 26.7403 + 23.5881i 1.43965 + 1.26994i
\(346\) 0 0
\(347\) 16.4299i 0.882005i 0.897506 + 0.441003i \(0.145377\pi\)
−0.897506 + 0.441003i \(0.854623\pi\)
\(348\) 0 0
\(349\) 6.04060 + 3.48754i 0.323346 + 0.186684i 0.652883 0.757459i \(-0.273559\pi\)
−0.329537 + 0.944143i \(0.606893\pi\)
\(350\) 0 0
\(351\) −0.000364569 0.00490811i −1.94592e−5 0.000261976i
\(352\) 0 0
\(353\) −16.9815 + 9.80426i −0.903833 + 0.521828i −0.878442 0.477849i \(-0.841416\pi\)
−0.0253912 + 0.999678i \(0.508083\pi\)
\(354\) 0 0
\(355\) 5.04598 8.73990i 0.267813 0.463866i
\(356\) 0 0
\(357\) −1.33021 + 0.738366i −0.0704023 + 0.0390785i
\(358\) 0 0
\(359\) −25.2983 + 14.6060i −1.33519 + 0.770873i −0.986090 0.166212i \(-0.946846\pi\)
−0.349101 + 0.937085i \(0.613513\pi\)
\(360\) 0 0
\(361\) −16.4164 + 28.4340i −0.864019 + 1.49652i
\(362\) 0 0
\(363\) 7.40508 36.6722i 0.388666 1.92479i
\(364\) 0 0
\(365\) −0.561267 0.972143i −0.0293781 0.0508843i
\(366\) 0 0
\(367\) 2.86934 + 4.96984i 0.149778 + 0.259423i 0.931145 0.364648i \(-0.118811\pi\)
−0.781367 + 0.624072i \(0.785477\pi\)
\(368\) 0 0
\(369\) −7.67753 + 18.2356i −0.399676 + 0.949305i
\(370\) 0 0
\(371\) −0.203140 1.10146i −0.0105465 0.0571849i
\(372\) 0 0
\(373\) −10.9310 + 18.9330i −0.565986 + 0.980316i 0.430972 + 0.902365i \(0.358171\pi\)
−0.996957 + 0.0779503i \(0.975162\pi\)
\(374\) 0 0
\(375\) 1.81307 + 5.39242i 0.0936267 + 0.278464i
\(376\) 0 0
\(377\) 0.00959512i 0.000494174i
\(378\) 0 0
\(379\) 24.1783i 1.24196i 0.783827 + 0.620979i \(0.213265\pi\)
−0.783827 + 0.620979i \(0.786735\pi\)
\(380\) 0 0
\(381\) −7.18402 21.3666i −0.368048 1.09465i
\(382\) 0 0
\(383\) −4.28089 + 7.41471i −0.218743 + 0.378874i −0.954424 0.298454i \(-0.903529\pi\)
0.735681 + 0.677328i \(0.236862\pi\)
\(384\) 0 0
\(385\) 38.1104 32.4914i 1.94229 1.65591i
\(386\) 0 0
\(387\) −21.1832 + 2.66403i −1.07680 + 0.135420i
\(388\) 0 0
\(389\) 6.18694 + 10.7161i 0.313690 + 0.543328i 0.979158 0.203099i \(-0.0651013\pi\)
−0.665468 + 0.746426i \(0.731768\pi\)
\(390\) 0 0
\(391\) 1.03081 + 1.78541i 0.0521301 + 0.0902919i
\(392\) 0 0
\(393\) −1.41847 + 7.02469i −0.0715523 + 0.354349i
\(394\) 0 0
\(395\) 19.0682 33.0271i 0.959425 1.66177i
\(396\) 0 0
\(397\) 13.0722 7.54724i 0.656075 0.378785i −0.134705 0.990886i \(-0.543009\pi\)
0.790780 + 0.612101i \(0.209675\pi\)
\(398\) 0 0
\(399\) −32.9875 0.556493i −1.65144 0.0278595i
\(400\) 0 0
\(401\) 9.35460 16.2026i 0.467147 0.809122i −0.532149 0.846651i \(-0.678615\pi\)
0.999296 + 0.0375291i \(0.0119487\pi\)
\(402\) 0 0
\(403\) −0.00318276 + 0.00183757i −0.000158545 + 9.15358e-5i
\(404\) 0 0
\(405\) 21.3411 20.8521i 1.06045 1.03615i
\(406\) 0 0
\(407\) −3.38191 1.95254i −0.167635 0.0967840i
\(408\) 0 0
\(409\) 9.51790i 0.470630i −0.971919 0.235315i \(-0.924388\pi\)
0.971919 0.235315i \(-0.0756122\pi\)
\(410\) 0 0
\(411\) −13.0864 11.5437i −0.645504 0.569409i
\(412\) 0 0
\(413\) −0.650433 + 0.554533i −0.0320057 + 0.0272868i
\(414\) 0 0
\(415\) −14.1408 + 8.16418i −0.694144 + 0.400764i
\(416\) 0 0
\(417\) −24.6096 21.7085i −1.20514 1.06307i
\(418\) 0 0
\(419\) −7.82197 13.5480i −0.382128 0.661865i 0.609238 0.792987i \(-0.291475\pi\)
−0.991366 + 0.131122i \(0.958142\pi\)
\(420\) 0 0
\(421\) 5.10584 8.84357i 0.248843 0.431009i −0.714362 0.699776i \(-0.753283\pi\)
0.963205 + 0.268767i \(0.0866163\pi\)
\(422\) 0 0
\(423\) −7.01677 + 5.31984i −0.341167 + 0.258659i
\(424\) 0 0
\(425\) 1.98891i 0.0964761i
\(426\) 0 0
\(427\) 1.65861 + 1.94545i 0.0802657 + 0.0941469i
\(428\) 0 0
\(429\) 0.00185401 0.00918161i 8.95124e−5 0.000443292i
\(430\) 0 0
\(431\) −21.0606 12.1594i −1.01445 0.585696i −0.101962 0.994788i \(-0.532512\pi\)
−0.912493 + 0.409093i \(0.865845\pi\)
\(432\) 0 0
\(433\) 0.993040i 0.0477225i −0.999715 0.0238612i \(-0.992404\pi\)
0.999715 0.0238612i \(-0.00759599\pi\)
\(434\) 0 0
\(435\) 38.4806 43.6230i 1.84500 2.09156i
\(436\) 0 0
\(437\) 44.7070i 2.13863i
\(438\) 0 0
\(439\) 25.3902 1.21181 0.605905 0.795537i \(-0.292811\pi\)
0.605905 + 0.795537i \(0.292811\pi\)
\(440\) 0 0
\(441\) −9.88059 18.5303i −0.470504 0.882398i
\(442\) 0 0
\(443\) 16.1602i 0.767794i 0.923376 + 0.383897i \(0.125418\pi\)
−0.923376 + 0.383897i \(0.874582\pi\)
\(444\) 0 0
\(445\) −32.1910 −1.52600
\(446\) 0 0
\(447\) −6.80371 + 33.6940i −0.321805 + 1.59367i
\(448\) 0 0
\(449\) −40.3839 −1.90583 −0.952917 0.303230i \(-0.901935\pi\)
−0.952917 + 0.303230i \(0.901935\pi\)
\(450\) 0 0
\(451\) 18.8284 32.6117i 0.886593 1.53562i
\(452\) 0 0
\(453\) 1.93033 2.18830i 0.0906948 0.102815i
\(454\) 0 0
\(455\) 0.00632211 0.00538997i 0.000296385 0.000252686i
\(456\) 0 0
\(457\) −4.82307 −0.225614 −0.112807 0.993617i \(-0.535984\pi\)
−0.112807 + 0.993617i \(0.535984\pi\)
\(458\) 0 0
\(459\) 1.55377 0.749515i 0.0725238 0.0349844i
\(460\) 0 0
\(461\) 27.6395 + 15.9576i 1.28730 + 0.743222i 0.978172 0.207799i \(-0.0666300\pi\)
0.309126 + 0.951021i \(0.399963\pi\)
\(462\) 0 0
\(463\) 35.4306 20.4559i 1.64660 0.950665i 0.668191 0.743990i \(-0.267069\pi\)
0.978410 0.206675i \(-0.0662643\pi\)
\(464\) 0 0
\(465\) 21.8395 + 4.40997i 1.01278 + 0.204507i
\(466\) 0 0
\(467\) −15.0280 26.0293i −0.695415 1.20449i −0.970041 0.242943i \(-0.921887\pi\)
0.274626 0.961551i \(-0.411446\pi\)
\(468\) 0 0
\(469\) 14.5686 + 17.0881i 0.672715 + 0.789054i
\(470\) 0 0
\(471\) 8.77054 + 26.0853i 0.404125 + 1.20195i
\(472\) 0 0
\(473\) 40.6338 1.86834
\(474\) 0 0
\(475\) −21.5652 + 37.3520i −0.989479 + 1.71383i
\(476\) 0 0
\(477\) 0.158469 + 1.26007i 0.00725577 + 0.0576948i
\(478\) 0 0
\(479\) 5.96224 + 10.3269i 0.272422 + 0.471848i 0.969481 0.245165i \(-0.0788421\pi\)
−0.697060 + 0.717013i \(0.745509\pi\)
\(480\) 0 0
\(481\) −0.000561022 0 0.000323906i −2.55804e−5 0 1.47688e-5i
\(482\) 0 0
\(483\) −24.8807 + 13.8106i −1.13211 + 0.628405i
\(484\) 0 0
\(485\) 29.0849 + 50.3765i 1.32068 + 2.28748i
\(486\) 0 0
\(487\) −16.7169 9.65151i −0.757515 0.437352i 0.0708876 0.997484i \(-0.477417\pi\)
−0.828403 + 0.560133i \(0.810750\pi\)
\(488\) 0 0
\(489\) −12.7645 + 14.4703i −0.577230 + 0.654370i
\(490\) 0 0
\(491\) −14.7903 + 8.53918i −0.667477 + 0.385368i −0.795120 0.606452i \(-0.792592\pi\)
0.127643 + 0.991820i \(0.459259\pi\)
\(492\) 0 0
\(493\) 2.91264 1.68161i 0.131179 0.0757360i
\(494\) 0 0
\(495\) −45.2512 + 34.3077i −2.03389 + 1.54202i
\(496\) 0 0
\(497\) 5.22525 + 6.12891i 0.234385 + 0.274919i
\(498\) 0 0
\(499\) 24.2856 + 14.0213i 1.08717 + 0.627680i 0.932822 0.360336i \(-0.117338\pi\)
0.154351 + 0.988016i \(0.450671\pi\)
\(500\) 0 0
\(501\) −12.0504 10.6299i −0.538372 0.474907i
\(502\) 0 0
\(503\) 29.0641 1.29590 0.647952 0.761681i \(-0.275626\pi\)
0.647952 + 0.761681i \(0.275626\pi\)
\(504\) 0 0
\(505\) −34.7291 −1.54542
\(506\) 0 0
\(507\) −4.45675 + 22.0712i −0.197931 + 0.980216i
\(508\) 0 0
\(509\) −20.1178 11.6150i −0.891707 0.514827i −0.0172064 0.999852i \(-0.505477\pi\)
−0.874500 + 0.485025i \(0.838811\pi\)
\(510\) 0 0
\(511\) 0.880992 0.162480i 0.0389728 0.00718768i
\(512\) 0 0
\(513\) 37.3069 + 2.77111i 1.64714 + 0.122348i
\(514\) 0 0
\(515\) 44.1993 25.5185i 1.94766 1.12448i
\(516\) 0 0
\(517\) 14.5134 8.37932i 0.638299 0.368522i
\(518\) 0 0
\(519\) −3.40505 10.1273i −0.149465 0.444538i
\(520\) 0 0
\(521\) −8.35723 4.82505i −0.366137 0.211389i 0.305633 0.952150i \(-0.401132\pi\)
−0.671769 + 0.740760i \(0.734465\pi\)
\(522\) 0 0
\(523\) 16.5493 + 28.6642i 0.723650 + 1.25340i 0.959527 + 0.281616i \(0.0908704\pi\)
−0.235877 + 0.971783i \(0.575796\pi\)
\(524\) 0 0
\(525\) −27.4492 0.463062i −1.19798 0.0202097i
\(526\) 0 0
\(527\) 1.11560 + 0.644094i 0.0485964 + 0.0280572i
\(528\) 0 0
\(529\) 7.78048 + 13.4762i 0.338282 + 0.585921i
\(530\) 0 0
\(531\) 0.772306 0.585532i 0.0335152 0.0254099i
\(532\) 0 0
\(533\) 0.00312342 0.00540993i 0.000135290 0.000234330i
\(534\) 0 0
\(535\) 2.03047 0.0877850
\(536\) 0 0
\(537\) 27.8834 + 5.63039i 1.20326 + 0.242969i
\(538\) 0 0
\(539\) 14.2573 + 37.3380i 0.614107 + 1.60826i
\(540\) 0 0
\(541\) −5.01990 8.69473i −0.215823 0.373816i 0.737704 0.675124i \(-0.235910\pi\)
−0.953527 + 0.301309i \(0.902577\pi\)
\(542\) 0 0
\(543\) 5.94986 + 17.6960i 0.255333 + 0.759409i
\(544\) 0 0
\(545\) 43.0825 24.8737i 1.84545 1.06547i
\(546\) 0 0
\(547\) −29.4450 17.0001i −1.25898 0.726871i −0.286101 0.958199i \(-0.592359\pi\)
−0.972876 + 0.231329i \(0.925693\pi\)
\(548\) 0 0
\(549\) −1.75133 2.30997i −0.0747449 0.0985872i
\(550\) 0 0
\(551\) 72.9331 3.10706
\(552\) 0 0
\(553\) 19.7456 + 23.1604i 0.839669 + 0.984881i
\(554\) 0 0
\(555\) 1.25161 + 3.72254i 0.0531281 + 0.158013i
\(556\) 0 0
\(557\) −8.11569 + 14.0568i −0.343873 + 0.595605i −0.985148 0.171705i \(-0.945072\pi\)
0.641275 + 0.767311i \(0.278406\pi\)
\(558\) 0 0
\(559\) 0.00674071 0.000285102
\(560\) 0 0
\(561\) −3.11204 + 1.04635i −0.131391 + 0.0441769i
\(562\) 0 0
\(563\) 21.0656 0.887808 0.443904 0.896074i \(-0.353593\pi\)
0.443904 + 0.896074i \(0.353593\pi\)
\(564\) 0 0
\(565\) 35.0588i 1.47493i
\(566\) 0 0
\(567\) 9.98241 + 21.6183i 0.419222 + 0.907884i
\(568\) 0 0
\(569\) 11.5642 0.484796 0.242398 0.970177i \(-0.422066\pi\)
0.242398 + 0.970177i \(0.422066\pi\)
\(570\) 0 0
\(571\) 28.1907i 1.17974i 0.807497 + 0.589871i \(0.200822\pi\)
−0.807497 + 0.589871i \(0.799178\pi\)
\(572\) 0 0
\(573\) −1.18490 3.52410i −0.0494997 0.147222i
\(574\) 0 0
\(575\) 37.2011i 1.55139i
\(576\) 0 0
\(577\) 18.5712 + 10.7221i 0.773129 + 0.446366i 0.833990 0.551780i \(-0.186051\pi\)
−0.0608607 + 0.998146i \(0.519385\pi\)
\(578\) 0 0
\(579\) −19.7514 + 6.64094i −0.820841 + 0.275988i
\(580\) 0 0
\(581\) −2.36343 12.8149i −0.0980515 0.531651i
\(582\) 0 0
\(583\) 2.41708i 0.100105i
\(584\) 0 0
\(585\) −0.00750669 + 0.00569128i −0.000310364 + 0.000235305i
\(586\) 0 0
\(587\) −9.04636 + 15.6688i −0.373383 + 0.646719i −0.990084 0.140479i \(-0.955136\pi\)
0.616700 + 0.787198i \(0.288469\pi\)
\(588\) 0 0
\(589\) 13.9675 + 24.1924i 0.575520 + 0.996830i
\(590\) 0 0
\(591\) 6.07025 2.04097i 0.249697 0.0839545i
\(592\) 0 0
\(593\) −15.3219 + 8.84608i −0.629193 + 0.363265i −0.780440 0.625231i \(-0.785005\pi\)
0.151246 + 0.988496i \(0.451671\pi\)
\(594\) 0 0
\(595\) −2.74414 0.974472i −0.112499 0.0399495i
\(596\) 0 0
\(597\) 7.03428 34.8359i 0.287894 1.42574i
\(598\) 0 0
\(599\) 9.35286i 0.382148i 0.981576 + 0.191074i \(0.0611970\pi\)
−0.981576 + 0.191074i \(0.938803\pi\)
\(600\) 0 0
\(601\) 2.53177 + 1.46172i 0.103273 + 0.0596246i 0.550747 0.834672i \(-0.314343\pi\)
−0.447474 + 0.894297i \(0.647676\pi\)
\(602\) 0 0
\(603\) −15.3830 20.2899i −0.626444 0.826268i
\(604\) 0 0
\(605\) 62.0153 35.8045i 2.52128 1.45566i
\(606\) 0 0
\(607\) −9.51622 + 16.4826i −0.386252 + 0.669007i −0.991942 0.126693i \(-0.959564\pi\)
0.605690 + 0.795700i \(0.292897\pi\)
\(608\) 0 0
\(609\) 22.5300 + 40.5892i 0.912963 + 1.64476i
\(610\) 0 0
\(611\) 0.00240762 0.00139004i 9.74018e−5 5.62350e-5i
\(612\) 0 0
\(613\) −17.9515 + 31.0928i −0.725052 + 1.25583i 0.233900 + 0.972261i \(0.424851\pi\)
−0.958952 + 0.283567i \(0.908482\pi\)
\(614\) 0 0
\(615\) −35.8964 + 12.0693i −1.44748 + 0.486681i
\(616\) 0 0
\(617\) 16.3406 + 28.3028i 0.657849 + 1.13943i 0.981171 + 0.193139i \(0.0618669\pi\)
−0.323322 + 0.946289i \(0.604800\pi\)
\(618\) 0 0
\(619\) 10.8879 + 18.8583i 0.437620 + 0.757981i 0.997505 0.0705896i \(-0.0224881\pi\)
−0.559885 + 0.828570i \(0.689155\pi\)
\(620\) 0 0
\(621\) 29.0622 14.0191i 1.16622 0.562569i
\(622\) 0 0
\(623\) 8.59694 24.2092i 0.344429 0.969923i
\(624\) 0 0
\(625\) 9.53231 16.5105i 0.381293 0.660418i
\(626\) 0 0
\(627\) −69.7900 14.0924i −2.78714 0.562798i
\(628\) 0 0
\(629\) 0.227067i 0.00905377i
\(630\) 0 0
\(631\) 15.5776i 0.620134i −0.950715 0.310067i \(-0.899648\pi\)
0.950715 0.310067i \(-0.100352\pi\)
\(632\) 0 0
\(633\) 5.33724 6.05050i 0.212136 0.240486i
\(634\) 0 0
\(635\) 21.5733 37.3660i 0.856110 1.48283i
\(636\) 0 0
\(637\) 0.00236514 + 0.00619398i 9.37102e−5 + 0.000245415i
\(638\) 0 0
\(639\) −5.51735 7.27729i −0.218263 0.287885i
\(640\) 0 0
\(641\) −12.9884 22.4966i −0.513012 0.888563i −0.999886 0.0150911i \(-0.995196\pi\)
0.486874 0.873472i \(-0.338137\pi\)
\(642\) 0 0
\(643\) −0.284908 0.493476i −0.0112357 0.0194608i 0.860353 0.509699i \(-0.170243\pi\)
−0.871589 + 0.490238i \(0.836910\pi\)
\(644\) 0 0
\(645\) −30.6458 27.0331i −1.20668 1.06443i
\(646\) 0 0
\(647\) −18.2339 + 31.5820i −0.716847 + 1.24162i 0.245395 + 0.969423i \(0.421082\pi\)
−0.962243 + 0.272193i \(0.912251\pi\)
\(648\) 0 0
\(649\) −1.59743 + 0.922276i −0.0627046 + 0.0362025i
\(650\) 0 0
\(651\) −9.14897 + 15.2466i −0.358576 + 0.597563i
\(652\) 0 0
\(653\) −13.9896 + 24.2307i −0.547456 + 0.948221i 0.450992 + 0.892528i \(0.351070\pi\)
−0.998448 + 0.0556930i \(0.982263\pi\)
\(654\) 0 0
\(655\) −11.8793 + 6.85849i −0.464161 + 0.267983i
\(656\) 0 0
\(657\) −1.00786 + 0.126750i −0.0393203 + 0.00494497i
\(658\) 0 0
\(659\) −31.2032 18.0152i −1.21551 0.701773i −0.251553 0.967844i \(-0.580941\pi\)
−0.963953 + 0.266071i \(0.914274\pi\)
\(660\) 0 0
\(661\) 13.3239i 0.518239i −0.965845 0.259120i \(-0.916568\pi\)
0.965845 0.259120i \(-0.0834324\pi\)
\(662\) 0 0
\(663\) −0.000516254 0 0.000173578i −2.00497e−5 0 6.74122e-6i
\(664\) 0 0
\(665\) −40.9695 48.0548i −1.58873 1.86348i
\(666\) 0 0
\(667\) 54.4788 31.4533i 2.10943 1.21788i
\(668\) 0 0
\(669\) 3.65105 18.0811i 0.141158 0.699056i
\(670\) 0 0
\(671\) 2.75853 + 4.77792i 0.106492 + 0.184449i
\(672\) 0 0
\(673\) 8.09477 14.0206i 0.312031 0.540453i −0.666771 0.745262i \(-0.732324\pi\)
0.978802 + 0.204810i \(0.0656575\pi\)
\(674\) 0 0
\(675\) 31.0434 + 2.30586i 1.19486 + 0.0887527i
\(676\) 0 0
\(677\) 10.3418i 0.397467i −0.980054 0.198733i \(-0.936317\pi\)
0.980054 0.198733i \(-0.0636828\pi\)
\(678\) 0 0
\(679\) −45.6530 + 8.41971i −1.75200 + 0.323119i
\(680\) 0 0
\(681\) 10.2908 + 9.07767i 0.394344 + 0.347857i
\(682\) 0 0
\(683\) 6.56278 + 3.78902i 0.251118 + 0.144983i 0.620276 0.784384i \(-0.287021\pi\)
−0.369158 + 0.929367i \(0.620354\pi\)
\(684\) 0 0
\(685\) 33.4006i 1.27617i
\(686\) 0 0
\(687\) 11.3629 + 2.29446i 0.433520 + 0.0875392i
\(688\) 0 0
\(689\) 0 0.000400968i 0 1.52757e-5i
\(690\) 0 0
\(691\) 4.79448 0.182391 0.0911954 0.995833i \(-0.470931\pi\)
0.0911954 + 0.995833i \(0.470931\pi\)
\(692\) 0 0
\(693\) −13.7163 43.1934i −0.521038 1.64078i
\(694\) 0 0
\(695\) 62.8116i 2.38258i
\(696\) 0 0
\(697\) −2.18961 −0.0829373
\(698\) 0 0
\(699\) −6.31894 5.57404i −0.239004 0.210829i
\(700\) 0 0
\(701\) 15.7368 0.594370 0.297185 0.954820i \(-0.403952\pi\)
0.297185 + 0.954820i \(0.403952\pi\)
\(702\) 0 0
\(703\) −2.46203 + 4.26437i −0.0928573 + 0.160834i
\(704\) 0 0
\(705\) −16.5206 3.33594i −0.622202 0.125639i
\(706\) 0 0
\(707\) 9.27475 26.1180i 0.348813 0.982267i
\(708\) 0 0
\(709\) −9.77428 −0.367081 −0.183540 0.983012i \(-0.558756\pi\)
−0.183540 + 0.983012i \(0.558756\pi\)
\(710\) 0 0
\(711\) −20.8494 27.5000i −0.781915 1.03133i
\(712\) 0 0
\(713\) 20.8666 + 12.0473i 0.781459 + 0.451175i
\(714\) 0 0
\(715\) 0.0155268 0.00896438i 0.000580668 0.000335249i
\(716\) 0 0
\(717\) 6.25060 7.08592i 0.233433 0.264628i
\(718\) 0 0
\(719\) −7.31528 12.6704i −0.272814 0.472528i 0.696767 0.717297i \(-0.254621\pi\)
−0.969581 + 0.244770i \(0.921288\pi\)
\(720\) 0 0
\(721\) 7.38728 + 40.0550i 0.275117 + 1.49173i
\(722\) 0 0
\(723\) 4.83954 5.48629i 0.179985 0.204037i
\(724\) 0 0
\(725\) 60.6882 2.25390
\(726\) 0 0
\(727\) 13.0584 22.6179i 0.484311 0.838851i −0.515527 0.856874i \(-0.672404\pi\)
0.999838 + 0.0180224i \(0.00573701\pi\)
\(728\) 0 0
\(729\) −9.89723 25.1206i −0.366564 0.930393i
\(730\) 0 0
\(731\) −1.18136 2.04617i −0.0436940 0.0756803i
\(732\) 0 0
\(733\) −18.9737 10.9545i −0.700810 0.404613i 0.106839 0.994276i \(-0.465927\pi\)
−0.807649 + 0.589664i \(0.799260\pi\)
\(734\) 0 0
\(735\) 14.0877 37.6454i 0.519634 1.38857i
\(736\) 0 0
\(737\) 24.2299 + 41.9674i 0.892519 + 1.54589i
\(738\) 0 0
\(739\) −27.5091 15.8824i −1.01194 0.584242i −0.100179 0.994969i \(-0.531942\pi\)
−0.911758 + 0.410727i \(0.865275\pi\)
\(740\) 0 0
\(741\) −0.0115774 0.00233779i −0.000425307 8.58807e-5i
\(742\) 0 0
\(743\) 17.6322 10.1799i 0.646862 0.373466i −0.140391 0.990096i \(-0.544836\pi\)
0.787253 + 0.616630i \(0.211503\pi\)
\(744\) 0 0
\(745\) −56.9790 + 32.8969i −2.08755 + 1.20525i
\(746\) 0 0
\(747\) 1.84370 + 14.6603i 0.0674574 + 0.536392i
\(748\) 0 0
\(749\) −0.542258 + 1.52701i −0.0198137 + 0.0557959i
\(750\) 0 0
\(751\) 2.79726 + 1.61500i 0.102073 + 0.0589320i 0.550168 0.835054i \(-0.314564\pi\)
−0.448094 + 0.893986i \(0.647897\pi\)
\(752\) 0 0
\(753\) −20.1859 + 6.78702i −0.735615 + 0.247333i
\(754\) 0 0
\(755\) 5.58523 0.203267
\(756\) 0 0
\(757\) 39.1407 1.42259 0.711297 0.702892i \(-0.248108\pi\)
0.711297 + 0.702892i \(0.248108\pi\)
\(758\) 0 0
\(759\) −58.2085 + 19.5712i −2.11284 + 0.710390i
\(760\) 0 0
\(761\) −42.6464 24.6219i −1.54593 0.892544i −0.998446 0.0557291i \(-0.982252\pi\)
−0.547486 0.836815i \(-0.684415\pi\)
\(762\) 0 0
\(763\) 7.20062 + 39.0429i 0.260680 + 1.41345i
\(764\) 0 0
\(765\) 3.04321 + 1.28125i 0.110028 + 0.0463237i
\(766\) 0 0
\(767\) −0.000264996 0 0.000152996i −9.56846e−6 0 5.52435e-6i
\(768\) 0 0
\(769\) −25.9493 + 14.9818i −0.935757 + 0.540259i −0.888628 0.458630i \(-0.848341\pi\)
−0.0471290 + 0.998889i \(0.515007\pi\)
\(770\) 0 0
\(771\) 14.0540 + 2.83786i 0.506141 + 0.102203i
\(772\) 0 0
\(773\) 9.98091 + 5.76248i 0.358988 + 0.207262i 0.668637 0.743589i \(-0.266878\pi\)
−0.309649 + 0.950851i \(0.600211\pi\)
\(774\) 0 0
\(775\) 11.6225 + 20.1307i 0.417491 + 0.723116i
\(776\) 0 0
\(777\) −3.13379 0.0528664i −0.112424 0.00189657i
\(778\) 0 0
\(779\) −41.1212 23.7414i −1.47332 0.850622i
\(780\) 0 0
\(781\) 8.69042 + 15.0523i 0.310968 + 0.538612i
\(782\) 0 0
\(783\) −22.8702 47.4108i −0.817315 1.69432i
\(784\) 0 0
\(785\) −26.3375 + 45.6180i −0.940027 + 1.62818i
\(786\) 0 0
\(787\) −7.61311 −0.271378 −0.135689 0.990751i \(-0.543325\pi\)
−0.135689 + 0.990751i \(0.543325\pi\)
\(788\) 0 0
\(789\) −17.6357 + 19.9925i −0.627848 + 0.711753i
\(790\) 0 0
\(791\) −26.3659 9.36280i −0.937465 0.332903i
\(792\) 0 0
\(793\) 0.000457611 0 0.000792605i 1.62502e−5 0 2.81462e-5i
\(794\) 0 0
\(795\) −1.60805 + 1.82295i −0.0570318 + 0.0646534i
\(796\) 0 0
\(797\) 11.9451 6.89649i 0.423116 0.244286i −0.273293 0.961931i \(-0.588113\pi\)
0.696410 + 0.717644i \(0.254780\pi\)
\(798\) 0 0
\(799\) −0.843904 0.487228i −0.0298552 0.0172369i
\(800\) 0 0
\(801\) −11.3034 + 26.8477i −0.399386 + 0.948616i
\(802\) 0 0
\(803\) 1.93328 0.0682240
\(804\) 0 0
\(805\) −51.3272 18.2268i −1.80905 0.642410i
\(806\) 0 0
\(807\) 27.0838 + 5.46892i 0.953393 + 0.192515i
\(808\) 0 0
\(809\) 8.55901 14.8246i 0.300919 0.521207i −0.675426 0.737428i \(-0.736040\pi\)
0.976344 + 0.216222i \(0.0693734\pi\)
\(810\) 0 0
\(811\) 38.2446 1.34295 0.671475 0.741027i \(-0.265661\pi\)
0.671475 + 0.741027i \(0.265661\pi\)
\(812\) 0 0
\(813\) 1.82835 + 1.61281i 0.0641229 + 0.0565638i
\(814\) 0 0
\(815\) −36.9328 −1.29370
\(816\) 0 0
\(817\) 51.2366i 1.79254i
\(818\) 0 0
\(819\) −0.00227538 0.00716532i −7.95083e−5 0.000250376i
\(820\) 0 0
\(821\) −10.6974 −0.373342 −0.186671 0.982422i \(-0.559770\pi\)
−0.186671 + 0.982422i \(0.559770\pi\)
\(822\) 0 0
\(823\) 5.80426i 0.202324i −0.994870 0.101162i \(-0.967744\pi\)
0.994870 0.101162i \(-0.0322560\pi\)
\(824\) 0 0
\(825\) −58.0728 11.7264i −2.02184 0.408262i
\(826\) 0 0
\(827\) 3.81051i 0.132504i −0.997803 0.0662522i \(-0.978896\pi\)
0.997803 0.0662522i \(-0.0211042\pi\)
\(828\) 0 0
\(829\) 8.85003 + 5.10957i 0.307374 + 0.177463i 0.645751 0.763548i \(-0.276544\pi\)
−0.338377 + 0.941011i \(0.609878\pi\)
\(830\) 0 0
\(831\) 8.28574 + 7.30898i 0.287429 + 0.253546i
\(832\) 0 0
\(833\) 1.46570 1.80349i 0.0507835 0.0624871i
\(834\) 0 0
\(835\) 30.7565i 1.06437i
\(836\) 0 0
\(837\) 11.3466 16.6659i 0.392195 0.576057i
\(838\) 0 0
\(839\) −4.61871 + 7.99984i −0.159456 + 0.276185i −0.934673 0.355510i \(-0.884307\pi\)
0.775217 + 0.631695i \(0.217641\pi\)
\(840\) 0 0
\(841\) −36.8116 63.7596i −1.26937 2.19861i
\(842\) 0 0
\(843\) 8.80541 43.6071i 0.303275 1.50191i
\(844\) 0 0
\(845\) −37.3240 + 21.5490i −1.28398 + 0.741308i
\(846\) 0 0
\(847\) 10.3650 + 56.2005i 0.356144 + 1.93107i
\(848\) 0 0
\(849\) −34.7231 + 11.6748i −1.19169 + 0.400678i
\(850\) 0 0
\(851\) 4.24713i 0.145590i
\(852\) 0 0
\(853\) −21.3274 12.3134i −0.730238 0.421603i 0.0882715 0.996096i \(-0.471866\pi\)
−0.818509 + 0.574494i \(0.805199\pi\)
\(854\) 0 0
\(855\) 43.2598 + 57.0589i 1.47945 + 1.95137i
\(856\) 0 0
\(857\) −33.4015 + 19.2843i −1.14097 + 0.658741i −0.946671 0.322201i \(-0.895577\pi\)
−0.194301 + 0.980942i \(0.562244\pi\)
\(858\) 0 0
\(859\) −18.5281 + 32.0915i −0.632169 + 1.09495i 0.354938 + 0.934890i \(0.384502\pi\)
−0.987107 + 0.160059i \(0.948832\pi\)
\(860\) 0 0
\(861\) 0.509790 30.2191i 0.0173736 1.02986i
\(862\) 0 0
\(863\) 4.66058 2.69079i 0.158648 0.0915955i −0.418574 0.908183i \(-0.637470\pi\)
0.577222 + 0.816587i \(0.304137\pi\)
\(864\) 0 0
\(865\) 10.2252 17.7106i 0.347668 0.602178i
\(866\) 0 0
\(867\) −21.9383 19.3521i −0.745064 0.657233i
\(868\) 0 0
\(869\) 32.8401 + 56.8807i 1.11402 + 1.92955i
\(870\) 0 0
\(871\) 0.00401948 + 0.00696194i 0.000136195 + 0.000235896i
\(872\) 0 0
\(873\) 52.2273 6.56817i 1.76763 0.222299i
\(874\) 0 0
\(875\) −5.63801 6.61304i −0.190599 0.223562i
\(876\) 0 0
\(877\) −20.5147 + 35.5326i −0.692734 + 1.19985i 0.278205 + 0.960522i \(0.410261\pi\)
−0.970939 + 0.239328i \(0.923073\pi\)
\(878\) 0 0
\(879\) 26.5741 30.1254i 0.896321 1.01610i
\(880\) 0 0
\(881\) 21.9199i 0.738500i −0.929330 0.369250i \(-0.879615\pi\)
0.929330 0.369250i \(-0.120385\pi\)
\(882\) 0 0
\(883\) 42.0376i 1.41468i 0.706875 + 0.707339i \(0.250105\pi\)
−0.706875 + 0.707339i \(0.749895\pi\)
\(884\) 0 0
\(885\) 1.81835 + 0.367173i 0.0611232 + 0.0123424i
\(886\) 0 0
\(887\) −6.22411 + 10.7805i −0.208985 + 0.361973i −0.951395 0.307973i \(-0.900349\pi\)
0.742410 + 0.669946i \(0.233683\pi\)
\(888\) 0 0
\(889\) 22.3397 + 26.2031i 0.749250 + 0.878825i
\(890\) 0 0
\(891\) 12.7237 + 49.7866i 0.426260 + 1.66792i
\(892\) 0 0
\(893\) −10.5658 18.3005i −0.353570 0.612402i
\(894\) 0 0
\(895\) 27.2237 + 47.1528i 0.909987 + 1.57614i
\(896\) 0 0
\(897\) −0.00965617 + 0.00324666i −0.000322410 + 0.000108403i
\(898\) 0 0
\(899\) 19.6535 34.0408i 0.655480 1.13532i
\(900\) 0 0
\(901\) −0.121715 + 0.0702724i −0.00405493 + 0.00234111i
\(902\) 0 0
\(903\) 28.5145 15.8277i 0.948904 0.526712i
\(904\) 0 0
\(905\) −17.8672 + 30.9468i −0.593925 + 1.02871i
\(906\) 0 0
\(907\) 21.7847 12.5774i 0.723351 0.417627i −0.0926340 0.995700i \(-0.529529\pi\)
0.815985 + 0.578073i \(0.196195\pi\)
\(908\) 0 0
\(909\) −12.1946 + 28.9644i −0.404469 + 0.960690i
\(910\) 0 0
\(911\) −28.9750 16.7287i −0.959985 0.554247i −0.0638164 0.997962i \(-0.520327\pi\)
−0.896168 + 0.443714i \(0.853661\pi\)
\(912\) 0 0
\(913\) 28.1215i 0.930685i
\(914\) 0 0
\(915\) 1.09822 5.43870i 0.0363059 0.179798i
\(916\) 0 0
\(917\) −1.98545 10.7654i −0.0655652 0.355505i
\(918\) 0 0
\(919\) 23.3339 13.4718i 0.769715 0.444395i −0.0630579 0.998010i \(-0.520085\pi\)
0.832773 + 0.553615i \(0.186752\pi\)
\(920\) 0 0
\(921\) 7.47288 2.51258i 0.246240 0.0827922i
\(922\) 0 0
\(923\) 0.00144165 + 0.00249701i 4.74524e−5 + 8.21900e-5i
\(924\) 0 0
\(925\) −2.04868 + 3.54841i −0.0673601 + 0.116671i
\(926\) 0 0
\(927\) −5.76278 45.8232i −0.189275 1.50503i
\(928\) 0 0
\(929\) 20.2980i 0.665955i −0.942935 0.332977i \(-0.891947\pi\)
0.942935 0.332977i \(-0.108053\pi\)
\(930\) 0 0
\(931\) 47.0809 17.9776i 1.54301 0.589191i
\(932\) 0 0
\(933\) 17.0294 5.72571i 0.557516 0.187451i
\(934\) 0 0
\(935\) −5.44235 3.14214i −0.177984 0.102759i
\(936\) 0 0
\(937\) 1.13526i 0.0370873i 0.999828 + 0.0185436i \(0.00590296\pi\)
−0.999828 + 0.0185436i \(0.994097\pi\)
\(938\) 0 0
\(939\) −17.4771 51.9802i −0.570343 1.69631i
\(940\) 0 0
\(941\) 60.2781i 1.96501i −0.186233 0.982506i \(-0.559628\pi\)
0.186233 0.982506i \(-0.440372\pi\)
\(942\) 0 0
\(943\) −40.9550 −1.33368
\(944\) 0 0
\(945\) −18.3913 + 41.7015i −0.598268 + 1.35655i
\(946\) 0 0
\(947\) 15.2331i 0.495010i 0.968887 + 0.247505i \(0.0796107\pi\)
−0.968887 + 0.247505i \(0.920389\pi\)
\(948\) 0 0
\(949\) 0.000320711 0 1.04107e−5 0
\(950\) 0 0
\(951\) −28.8847 + 9.71180i −0.936652 + 0.314927i
\(952\) 0 0
\(953\) 36.5921 1.18533 0.592667 0.805448i \(-0.298075\pi\)
0.592667 + 0.805448i \(0.298075\pi\)
\(954\) 0 0
\(955\) 3.55819 6.16296i 0.115140 0.199429i
\(956\) 0 0
\(957\) 31.9276 + 94.9589i 1.03207 + 3.06959i
\(958\) 0 0
\(959\) 25.1189 + 8.91997i 0.811132 + 0.288041i
\(960\) 0 0
\(961\) −15.9446 −0.514342
\(962\) 0 0
\(963\) 0.712969 1.69344i 0.0229751 0.0545702i
\(964\) 0 0
\(965\) −34.5413 19.9424i −1.11192 0.641970i
\(966\) 0 0
\(967\) −24.8576 + 14.3515i −0.799367 + 0.461515i −0.843250 0.537522i \(-0.819360\pi\)
0.0438830 + 0.999037i \(0.486027\pi\)
\(968\) 0 0
\(969\) 1.31938 + 3.92409i 0.0423846 + 0.126060i
\(970\) 0 0
\(971\) −5.70321 9.87825i −0.183025 0.317008i 0.759884 0.650058i \(-0.225255\pi\)
−0.942909 + 0.333050i \(0.891922\pi\)
\(972\) 0 0
\(973\) 47.2374 + 16.7745i 1.51436 + 0.537765i
\(974\) 0 0
\(975\) −0.00963366 0.00194529i −0.000308524 6.22991e-5i
\(976\) 0 0
\(977\) −43.1702 −1.38114 −0.690569 0.723267i \(-0.742640\pi\)
−0.690569 + 0.723267i \(0.742640\pi\)
\(978\) 0 0
\(979\) 27.7205 48.0132i 0.885950 1.53451i
\(980\) 0 0
\(981\) −5.61717 44.6653i −0.179342 1.42605i
\(982\) 0 0
\(983\) 8.26491 + 14.3152i 0.263610 + 0.456585i 0.967198 0.254022i \(-0.0817536\pi\)
−0.703589 + 0.710607i \(0.748420\pi\)
\(984\) 0 0
\(985\) 10.6157 + 6.12896i 0.338243 + 0.195285i
\(986\) 0 0
\(987\) 6.92079 11.5334i 0.220291 0.367112i
\(988\) 0 0
\(989\) −22.0964 38.2721i −0.702625 1.21698i
\(990\) 0 0
\(991\) 14.7154 + 8.49594i 0.467450 + 0.269883i 0.715172 0.698949i \(-0.246348\pi\)
−0.247721 + 0.968831i \(0.579682\pi\)
\(992\) 0 0
\(993\) −8.36772 24.8872i −0.265542 0.789771i
\(994\) 0 0
\(995\) 58.9099 34.0117i 1.86757 1.07824i
\(996\) 0 0
\(997\) −52.7142 + 30.4345i −1.66947 + 0.963872i −0.701554 + 0.712616i \(0.747510\pi\)
−0.967921 + 0.251256i \(0.919157\pi\)
\(998\) 0 0
\(999\) 3.54412 + 0.263253i 0.112131 + 0.00832896i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.cz.g.367.11 yes 24
3.2 odd 2 3024.2.cz.h.2719.1 24
4.3 odd 2 1008.2.cz.h.367.2 yes 24
7.5 odd 6 1008.2.bf.g.943.8 yes 24
9.4 even 3 1008.2.bf.h.31.5 yes 24
9.5 odd 6 3024.2.bf.g.1711.12 24
12.11 even 2 3024.2.cz.g.2719.1 24
21.5 even 6 3024.2.bf.h.2287.1 24
28.19 even 6 1008.2.bf.h.943.5 yes 24
36.23 even 6 3024.2.bf.h.1711.12 24
36.31 odd 6 1008.2.bf.g.31.8 24
63.5 even 6 3024.2.cz.g.1279.1 24
63.40 odd 6 1008.2.cz.h.607.2 yes 24
84.47 odd 6 3024.2.bf.g.2287.1 24
252.103 even 6 inner 1008.2.cz.g.607.11 yes 24
252.131 odd 6 3024.2.cz.h.1279.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.g.31.8 24 36.31 odd 6
1008.2.bf.g.943.8 yes 24 7.5 odd 6
1008.2.bf.h.31.5 yes 24 9.4 even 3
1008.2.bf.h.943.5 yes 24 28.19 even 6
1008.2.cz.g.367.11 yes 24 1.1 even 1 trivial
1008.2.cz.g.607.11 yes 24 252.103 even 6 inner
1008.2.cz.h.367.2 yes 24 4.3 odd 2
1008.2.cz.h.607.2 yes 24 63.40 odd 6
3024.2.bf.g.1711.12 24 9.5 odd 6
3024.2.bf.g.2287.1 24 84.47 odd 6
3024.2.bf.h.1711.12 24 36.23 even 6
3024.2.bf.h.2287.1 24 21.5 even 6
3024.2.cz.g.1279.1 24 63.5 even 6
3024.2.cz.g.2719.1 24 12.11 even 2
3024.2.cz.h.1279.1 24 252.131 odd 6
3024.2.cz.h.2719.1 24 3.2 odd 2