Properties

Label 1008.2.cz.g.367.1
Level $1008$
Weight $2$
Character 1008.367
Analytic conductor $8.049$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(367,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 4, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.367"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.cz (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-3,0,-3,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 367.1
Character \(\chi\) \(=\) 1008.367
Dual form 1008.2.cz.g.607.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.72726 + 0.128734i) q^{3} +(2.43562 + 1.40621i) q^{5} +(-0.717569 + 2.54659i) q^{7} +(2.96686 - 0.444713i) q^{9} +(2.29039 - 1.32236i) q^{11} +(4.59264 - 2.65156i) q^{13} +(-4.38797 - 2.11534i) q^{15} +(-2.35660 - 1.36058i) q^{17} +(0.274171 + 0.474878i) q^{19} +(0.911596 - 4.49099i) q^{21} +(1.98081 + 1.14362i) q^{23} +(1.45483 + 2.51983i) q^{25} +(-5.06728 + 1.15007i) q^{27} +(-3.72965 + 6.45995i) q^{29} +2.76772 q^{31} +(-3.78587 + 2.57891i) q^{33} +(-5.32874 + 5.19346i) q^{35} +(1.81274 + 3.13976i) q^{37} +(-7.59134 + 5.17117i) q^{39} +(7.12184 - 4.11180i) q^{41} +(-3.93586 - 2.27237i) q^{43} +(7.85149 + 3.08886i) q^{45} +11.2264 q^{47} +(-5.97019 - 3.65470i) q^{49} +(4.24562 + 2.04671i) q^{51} +(-2.53317 + 4.38758i) q^{53} +7.43804 q^{55} +(-0.534697 - 0.784943i) q^{57} +3.35948 q^{59} +14.4210i q^{61} +(-0.996422 + 7.87446i) q^{63} +14.9146 q^{65} +10.8513i q^{67} +(-3.56860 - 1.72034i) q^{69} -12.7616i q^{71} +(4.29405 + 2.47917i) q^{73} +(-2.83725 - 4.16512i) q^{75} +(1.72399 + 6.78157i) q^{77} -5.61310i q^{79} +(8.60446 - 2.63880i) q^{81} +(-0.719239 + 1.24576i) q^{83} +(-3.82652 - 6.62773i) q^{85} +(5.61047 - 11.6381i) q^{87} +(3.24680 - 1.87454i) q^{89} +(3.45690 + 13.5982i) q^{91} +(-4.78058 + 0.356299i) q^{93} +1.54216i q^{95} +(-15.7452 - 9.09049i) q^{97} +(6.20720 - 4.94182i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 3 q^{3} - 3 q^{5} + 4 q^{7} + 17 q^{9} - 9 q^{11} - 3 q^{13} - 6 q^{15} - 3 q^{17} - 4 q^{19} + 13 q^{21} - 6 q^{23} + 15 q^{25} + 9 q^{27} + 18 q^{29} + 34 q^{31} - 21 q^{33} - 42 q^{35} - 3 q^{37}+ \cdots + 30 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.72726 + 0.128734i −0.997234 + 0.0743244i
\(4\) 0 0
\(5\) 2.43562 + 1.40621i 1.08924 + 0.628874i 0.933374 0.358904i \(-0.116849\pi\)
0.155867 + 0.987778i \(0.450183\pi\)
\(6\) 0 0
\(7\) −0.717569 + 2.54659i −0.271215 + 0.962519i
\(8\) 0 0
\(9\) 2.96686 0.444713i 0.988952 0.148238i
\(10\) 0 0
\(11\) 2.29039 1.32236i 0.690580 0.398706i −0.113249 0.993567i \(-0.536126\pi\)
0.803829 + 0.594860i \(0.202793\pi\)
\(12\) 0 0
\(13\) 4.59264 2.65156i 1.27377 0.735411i 0.298074 0.954543i \(-0.403656\pi\)
0.975695 + 0.219131i \(0.0703223\pi\)
\(14\) 0 0
\(15\) −4.38797 2.11534i −1.13297 0.546177i
\(16\) 0 0
\(17\) −2.35660 1.36058i −0.571560 0.329990i 0.186212 0.982510i \(-0.440379\pi\)
−0.757772 + 0.652519i \(0.773712\pi\)
\(18\) 0 0
\(19\) 0.274171 + 0.474878i 0.0628991 + 0.108944i 0.895760 0.444538i \(-0.146632\pi\)
−0.832861 + 0.553482i \(0.813299\pi\)
\(20\) 0 0
\(21\) 0.911596 4.49099i 0.198927 0.980014i
\(22\) 0 0
\(23\) 1.98081 + 1.14362i 0.413028 + 0.238462i 0.692090 0.721811i \(-0.256690\pi\)
−0.279062 + 0.960273i \(0.590023\pi\)
\(24\) 0 0
\(25\) 1.45483 + 2.51983i 0.290965 + 0.503966i
\(26\) 0 0
\(27\) −5.06728 + 1.15007i −0.975199 + 0.221331i
\(28\) 0 0
\(29\) −3.72965 + 6.45995i −0.692579 + 1.19958i 0.278410 + 0.960462i \(0.410192\pi\)
−0.970990 + 0.239121i \(0.923141\pi\)
\(30\) 0 0
\(31\) 2.76772 0.497098 0.248549 0.968619i \(-0.420046\pi\)
0.248549 + 0.968619i \(0.420046\pi\)
\(32\) 0 0
\(33\) −3.78587 + 2.57891i −0.659036 + 0.448931i
\(34\) 0 0
\(35\) −5.32874 + 5.19346i −0.900722 + 0.877855i
\(36\) 0 0
\(37\) 1.81274 + 3.13976i 0.298013 + 0.516174i 0.975681 0.219194i \(-0.0703427\pi\)
−0.677668 + 0.735368i \(0.737009\pi\)
\(38\) 0 0
\(39\) −7.59134 + 5.17117i −1.21559 + 0.828049i
\(40\) 0 0
\(41\) 7.12184 4.11180i 1.11224 0.642155i 0.172835 0.984951i \(-0.444707\pi\)
0.939410 + 0.342796i \(0.111374\pi\)
\(42\) 0 0
\(43\) −3.93586 2.27237i −0.600213 0.346533i 0.168912 0.985631i \(-0.445975\pi\)
−0.769125 + 0.639098i \(0.779308\pi\)
\(44\) 0 0
\(45\) 7.85149 + 3.08886i 1.17043 + 0.460459i
\(46\) 0 0
\(47\) 11.2264 1.63754 0.818768 0.574124i \(-0.194657\pi\)
0.818768 + 0.574124i \(0.194657\pi\)
\(48\) 0 0
\(49\) −5.97019 3.65470i −0.852884 0.522100i
\(50\) 0 0
\(51\) 4.24562 + 2.04671i 0.594505 + 0.286597i
\(52\) 0 0
\(53\) −2.53317 + 4.38758i −0.347957 + 0.602680i −0.985886 0.167415i \(-0.946458\pi\)
0.637929 + 0.770095i \(0.279791\pi\)
\(54\) 0 0
\(55\) 7.43804 1.00294
\(56\) 0 0
\(57\) −0.534697 0.784943i −0.0708224 0.103968i
\(58\) 0 0
\(59\) 3.35948 0.437367 0.218684 0.975796i \(-0.429824\pi\)
0.218684 + 0.975796i \(0.429824\pi\)
\(60\) 0 0
\(61\) 14.4210i 1.84642i 0.384294 + 0.923211i \(0.374445\pi\)
−0.384294 + 0.923211i \(0.625555\pi\)
\(62\) 0 0
\(63\) −0.996422 + 7.87446i −0.125537 + 0.992089i
\(64\) 0 0
\(65\) 14.9146 1.84992
\(66\) 0 0
\(67\) 10.8513i 1.32570i 0.748752 + 0.662851i \(0.230654\pi\)
−0.748752 + 0.662851i \(0.769346\pi\)
\(68\) 0 0
\(69\) −3.56860 1.72034i −0.429609 0.207104i
\(70\) 0 0
\(71\) 12.7616i 1.51453i −0.653109 0.757263i \(-0.726536\pi\)
0.653109 0.757263i \(-0.273464\pi\)
\(72\) 0 0
\(73\) 4.29405 + 2.47917i 0.502581 + 0.290165i 0.729779 0.683684i \(-0.239623\pi\)
−0.227198 + 0.973849i \(0.572956\pi\)
\(74\) 0 0
\(75\) −2.83725 4.16512i −0.327617 0.480947i
\(76\) 0 0
\(77\) 1.72399 + 6.78157i 0.196467 + 0.772831i
\(78\) 0 0
\(79\) 5.61310i 0.631523i −0.948839 0.315761i \(-0.897740\pi\)
0.948839 0.315761i \(-0.102260\pi\)
\(80\) 0 0
\(81\) 8.60446 2.63880i 0.956051 0.293200i
\(82\) 0 0
\(83\) −0.719239 + 1.24576i −0.0789467 + 0.136740i −0.902796 0.430070i \(-0.858489\pi\)
0.823849 + 0.566809i \(0.191822\pi\)
\(84\) 0 0
\(85\) −3.82652 6.62773i −0.415044 0.718878i
\(86\) 0 0
\(87\) 5.61047 11.6381i 0.601506 1.24774i
\(88\) 0 0
\(89\) 3.24680 1.87454i 0.344160 0.198701i −0.317950 0.948107i \(-0.602994\pi\)
0.662110 + 0.749407i \(0.269661\pi\)
\(90\) 0 0
\(91\) 3.45690 + 13.5982i 0.362381 + 1.42548i
\(92\) 0 0
\(93\) −4.78058 + 0.356299i −0.495723 + 0.0369465i
\(94\) 0 0
\(95\) 1.54216i 0.158223i
\(96\) 0 0
\(97\) −15.7452 9.09049i −1.59868 0.922999i −0.991742 0.128251i \(-0.959064\pi\)
−0.606939 0.794748i \(-0.707603\pi\)
\(98\) 0 0
\(99\) 6.20720 4.94182i 0.623847 0.496671i
\(100\) 0 0
\(101\) 2.36076 1.36298i 0.234904 0.135622i −0.377928 0.925835i \(-0.623363\pi\)
0.612832 + 0.790213i \(0.290030\pi\)
\(102\) 0 0
\(103\) −7.63868 + 13.2306i −0.752661 + 1.30365i 0.193867 + 0.981028i \(0.437897\pi\)
−0.946529 + 0.322620i \(0.895436\pi\)
\(104\) 0 0
\(105\) 8.53555 9.65645i 0.832985 0.942373i
\(106\) 0 0
\(107\) −3.60969 + 2.08406i −0.348962 + 0.201473i −0.664228 0.747530i \(-0.731240\pi\)
0.315266 + 0.949003i \(0.397906\pi\)
\(108\) 0 0
\(109\) −3.62697 + 6.28209i −0.347400 + 0.601715i −0.985787 0.168001i \(-0.946269\pi\)
0.638387 + 0.769716i \(0.279602\pi\)
\(110\) 0 0
\(111\) −3.53527 5.18983i −0.335553 0.492597i
\(112\) 0 0
\(113\) 8.08514 + 14.0039i 0.760586 + 1.31737i 0.942549 + 0.334068i \(0.108421\pi\)
−0.181963 + 0.983305i \(0.558245\pi\)
\(114\) 0 0
\(115\) 3.21634 + 5.57086i 0.299925 + 0.519485i
\(116\) 0 0
\(117\) 12.4465 9.90921i 1.15068 0.916107i
\(118\) 0 0
\(119\) 5.15586 5.02497i 0.472637 0.460638i
\(120\) 0 0
\(121\) −2.00273 + 3.46883i −0.182066 + 0.315348i
\(122\) 0 0
\(123\) −11.7719 + 8.01896i −1.06144 + 0.723045i
\(124\) 0 0
\(125\) 5.87892i 0.525826i
\(126\) 0 0
\(127\) 22.0446i 1.95614i 0.208270 + 0.978071i \(0.433217\pi\)
−0.208270 + 0.978071i \(0.566783\pi\)
\(128\) 0 0
\(129\) 7.09078 + 3.41830i 0.624309 + 0.300964i
\(130\) 0 0
\(131\) 5.74098 9.94366i 0.501591 0.868782i −0.498407 0.866943i \(-0.666081\pi\)
0.999998 0.00183866i \(-0.000585263\pi\)
\(132\) 0 0
\(133\) −1.40605 + 0.357442i −0.121920 + 0.0309942i
\(134\) 0 0
\(135\) −13.9592 4.32451i −1.20142 0.372194i
\(136\) 0 0
\(137\) −0.234259 0.405749i −0.0200141 0.0346655i 0.855845 0.517233i \(-0.173038\pi\)
−0.875859 + 0.482567i \(0.839704\pi\)
\(138\) 0 0
\(139\) −1.46737 2.54156i −0.124461 0.215572i 0.797061 0.603899i \(-0.206387\pi\)
−0.921522 + 0.388326i \(0.873053\pi\)
\(140\) 0 0
\(141\) −19.3909 + 1.44521i −1.63301 + 0.121709i
\(142\) 0 0
\(143\) 7.01264 12.1462i 0.586426 1.01572i
\(144\) 0 0
\(145\) −18.1680 + 10.4893i −1.50877 + 0.871091i
\(146\) 0 0
\(147\) 10.7826 + 5.54405i 0.889330 + 0.457266i
\(148\) 0 0
\(149\) −0.0215175 + 0.0372695i −0.00176279 + 0.00305323i −0.866905 0.498473i \(-0.833894\pi\)
0.865143 + 0.501526i \(0.167228\pi\)
\(150\) 0 0
\(151\) 7.73688 4.46689i 0.629618 0.363510i −0.150986 0.988536i \(-0.548245\pi\)
0.780604 + 0.625026i \(0.214911\pi\)
\(152\) 0 0
\(153\) −7.59676 2.98864i −0.614162 0.241618i
\(154\) 0 0
\(155\) 6.74112 + 3.89199i 0.541460 + 0.312612i
\(156\) 0 0
\(157\) 6.85048i 0.546728i −0.961911 0.273364i \(-0.911864\pi\)
0.961911 0.273364i \(-0.0881363\pi\)
\(158\) 0 0
\(159\) 3.81061 7.90459i 0.302201 0.626875i
\(160\) 0 0
\(161\) −4.33370 + 4.22368i −0.341544 + 0.332873i
\(162\) 0 0
\(163\) −11.9751 + 6.91382i −0.937961 + 0.541532i −0.889320 0.457285i \(-0.848822\pi\)
−0.0486402 + 0.998816i \(0.515489\pi\)
\(164\) 0 0
\(165\) −12.8474 + 0.957525i −1.00017 + 0.0745433i
\(166\) 0 0
\(167\) −11.0194 19.0862i −0.852710 1.47694i −0.878754 0.477276i \(-0.841624\pi\)
0.0260438 0.999661i \(-0.491709\pi\)
\(168\) 0 0
\(169\) 7.56157 13.0970i 0.581660 1.00746i
\(170\) 0 0
\(171\) 1.02461 + 1.28697i 0.0783539 + 0.0984168i
\(172\) 0 0
\(173\) 13.6309i 1.03634i −0.855279 0.518168i \(-0.826614\pi\)
0.855279 0.518168i \(-0.173386\pi\)
\(174\) 0 0
\(175\) −7.46090 + 1.89669i −0.563991 + 0.143376i
\(176\) 0 0
\(177\) −5.80270 + 0.432478i −0.436157 + 0.0325070i
\(178\) 0 0
\(179\) −0.827409 0.477705i −0.0618434 0.0357053i 0.468759 0.883326i \(-0.344701\pi\)
−0.530603 + 0.847621i \(0.678034\pi\)
\(180\) 0 0
\(181\) 17.0078i 1.26418i −0.774896 0.632089i \(-0.782198\pi\)
0.774896 0.632089i \(-0.217802\pi\)
\(182\) 0 0
\(183\) −1.85647 24.9088i −0.137234 1.84131i
\(184\) 0 0
\(185\) 10.1964i 0.749651i
\(186\) 0 0
\(187\) −7.19672 −0.526277
\(188\) 0 0
\(189\) 0.707373 13.7295i 0.0514538 0.998675i
\(190\) 0 0
\(191\) 6.56323i 0.474898i −0.971400 0.237449i \(-0.923689\pi\)
0.971400 0.237449i \(-0.0763113\pi\)
\(192\) 0 0
\(193\) −22.2982 −1.60506 −0.802531 0.596611i \(-0.796514\pi\)
−0.802531 + 0.596611i \(0.796514\pi\)
\(194\) 0 0
\(195\) −25.7613 + 1.92001i −1.84481 + 0.137495i
\(196\) 0 0
\(197\) −17.0488 −1.21467 −0.607337 0.794444i \(-0.707762\pi\)
−0.607337 + 0.794444i \(0.707762\pi\)
\(198\) 0 0
\(199\) 9.52787 16.5028i 0.675413 1.16985i −0.300935 0.953645i \(-0.597299\pi\)
0.976348 0.216205i \(-0.0693679\pi\)
\(200\) 0 0
\(201\) −1.39693 18.7431i −0.0985320 1.32203i
\(202\) 0 0
\(203\) −13.7745 14.1333i −0.966783 0.991966i
\(204\) 0 0
\(205\) 23.1281 1.61534
\(206\) 0 0
\(207\) 6.38537 + 2.51207i 0.443814 + 0.174601i
\(208\) 0 0
\(209\) 1.25592 + 0.725105i 0.0868737 + 0.0501566i
\(210\) 0 0
\(211\) 9.26806 5.35092i 0.638040 0.368372i −0.145819 0.989311i \(-0.546582\pi\)
0.783859 + 0.620939i \(0.213248\pi\)
\(212\) 0 0
\(213\) 1.64285 + 22.0427i 0.112566 + 1.51034i
\(214\) 0 0
\(215\) −6.39084 11.0693i −0.435851 0.754917i
\(216\) 0 0
\(217\) −1.98603 + 7.04824i −0.134821 + 0.478466i
\(218\) 0 0
\(219\) −7.73609 3.72938i −0.522757 0.252008i
\(220\) 0 0
\(221\) −14.4307 −0.970714
\(222\) 0 0
\(223\) 9.37765 16.2426i 0.627974 1.08768i −0.359984 0.932959i \(-0.617218\pi\)
0.987958 0.154724i \(-0.0494489\pi\)
\(224\) 0 0
\(225\) 5.43686 + 6.82900i 0.362457 + 0.455266i
\(226\) 0 0
\(227\) 11.0322 + 19.1084i 0.732235 + 1.26827i 0.955926 + 0.293608i \(0.0948561\pi\)
−0.223691 + 0.974660i \(0.571811\pi\)
\(228\) 0 0
\(229\) 3.77115 + 2.17728i 0.249205 + 0.143878i 0.619400 0.785076i \(-0.287376\pi\)
−0.370195 + 0.928954i \(0.620709\pi\)
\(230\) 0 0
\(231\) −3.85079 11.4916i −0.253363 0.756091i
\(232\) 0 0
\(233\) −11.9938 20.7738i −0.785738 1.36094i −0.928557 0.371189i \(-0.878950\pi\)
0.142820 0.989749i \(-0.454383\pi\)
\(234\) 0 0
\(235\) 27.3432 + 15.7866i 1.78367 + 1.02980i
\(236\) 0 0
\(237\) 0.722594 + 9.69528i 0.0469375 + 0.629776i
\(238\) 0 0
\(239\) −5.03528 + 2.90712i −0.325705 + 0.188046i −0.653933 0.756553i \(-0.726882\pi\)
0.328227 + 0.944599i \(0.393549\pi\)
\(240\) 0 0
\(241\) −19.7657 + 11.4117i −1.27322 + 0.735094i −0.975593 0.219589i \(-0.929528\pi\)
−0.297627 + 0.954682i \(0.596195\pi\)
\(242\) 0 0
\(243\) −14.5224 + 5.66557i −0.931615 + 0.363447i
\(244\) 0 0
\(245\) −9.40185 17.2968i −0.600662 1.10505i
\(246\) 0 0
\(247\) 2.51834 + 1.45396i 0.160238 + 0.0925135i
\(248\) 0 0
\(249\) 1.08194 2.24434i 0.0685653 0.142229i
\(250\) 0 0
\(251\) 11.8200 0.746073 0.373036 0.927817i \(-0.378317\pi\)
0.373036 + 0.927817i \(0.378317\pi\)
\(252\) 0 0
\(253\) 6.04912 0.380305
\(254\) 0 0
\(255\) 7.46261 + 10.9552i 0.467327 + 0.686042i
\(256\) 0 0
\(257\) 13.8901 + 8.01947i 0.866443 + 0.500241i 0.866165 0.499759i \(-0.166578\pi\)
0.000278427 1.00000i \(0.499911\pi\)
\(258\) 0 0
\(259\) −9.29644 + 2.36331i −0.577653 + 0.146849i
\(260\) 0 0
\(261\) −8.19252 + 20.8244i −0.507104 + 1.28900i
\(262\) 0 0
\(263\) 26.0915 15.0639i 1.60887 0.928880i 0.619244 0.785199i \(-0.287439\pi\)
0.989624 0.143682i \(-0.0458942\pi\)
\(264\) 0 0
\(265\) −12.3397 + 7.12431i −0.758019 + 0.437643i
\(266\) 0 0
\(267\) −5.36675 + 3.65579i −0.328440 + 0.223731i
\(268\) 0 0
\(269\) 2.95818 + 1.70791i 0.180363 + 0.104133i 0.587463 0.809251i \(-0.300127\pi\)
−0.407100 + 0.913384i \(0.633460\pi\)
\(270\) 0 0
\(271\) −13.6039 23.5627i −0.826381 1.43133i −0.900859 0.434111i \(-0.857063\pi\)
0.0744785 0.997223i \(-0.476271\pi\)
\(272\) 0 0
\(273\) −7.72151 23.0427i −0.467327 1.39461i
\(274\) 0 0
\(275\) 6.66425 + 3.84761i 0.401869 + 0.232019i
\(276\) 0 0
\(277\) −2.99541 5.18820i −0.179977 0.311729i 0.761896 0.647700i \(-0.224269\pi\)
−0.941872 + 0.335971i \(0.890936\pi\)
\(278\) 0 0
\(279\) 8.21143 1.23084i 0.491606 0.0736886i
\(280\) 0 0
\(281\) 2.69154 4.66188i 0.160564 0.278105i −0.774507 0.632565i \(-0.782002\pi\)
0.935071 + 0.354460i \(0.115335\pi\)
\(282\) 0 0
\(283\) −3.48890 −0.207393 −0.103697 0.994609i \(-0.533067\pi\)
−0.103697 + 0.994609i \(0.533067\pi\)
\(284\) 0 0
\(285\) −0.198528 2.66372i −0.0117598 0.157785i
\(286\) 0 0
\(287\) 5.36063 + 21.0869i 0.316428 + 1.24472i
\(288\) 0 0
\(289\) −4.79762 8.30973i −0.282213 0.488807i
\(290\) 0 0
\(291\) 28.3663 + 13.6747i 1.66286 + 0.801625i
\(292\) 0 0
\(293\) 26.2148 15.1351i 1.53149 0.884205i 0.532194 0.846622i \(-0.321368\pi\)
0.999294 0.0375823i \(-0.0119656\pi\)
\(294\) 0 0
\(295\) 8.18241 + 4.72412i 0.476399 + 0.275049i
\(296\) 0 0
\(297\) −10.0853 + 9.33488i −0.585206 + 0.541665i
\(298\) 0 0
\(299\) 12.1296 0.701470
\(300\) 0 0
\(301\) 8.61103 8.39242i 0.496332 0.483731i
\(302\) 0 0
\(303\) −3.90218 + 2.65814i −0.224174 + 0.152706i
\(304\) 0 0
\(305\) −20.2789 + 35.1241i −1.16117 + 2.01120i
\(306\) 0 0
\(307\) −15.5495 −0.887456 −0.443728 0.896162i \(-0.646344\pi\)
−0.443728 + 0.896162i \(0.646344\pi\)
\(308\) 0 0
\(309\) 11.4908 23.8360i 0.653687 1.35598i
\(310\) 0 0
\(311\) 18.7047 1.06065 0.530323 0.847796i \(-0.322071\pi\)
0.530323 + 0.847796i \(0.322071\pi\)
\(312\) 0 0
\(313\) 14.7439i 0.833372i −0.909050 0.416686i \(-0.863191\pi\)
0.909050 0.416686i \(-0.136809\pi\)
\(314\) 0 0
\(315\) −13.5000 + 17.7780i −0.760640 + 1.00168i
\(316\) 0 0
\(317\) −29.4472 −1.65392 −0.826960 0.562261i \(-0.809932\pi\)
−0.826960 + 0.562261i \(0.809932\pi\)
\(318\) 0 0
\(319\) 19.7278i 1.10454i
\(320\) 0 0
\(321\) 5.96659 4.06440i 0.333023 0.226853i
\(322\) 0 0
\(323\) 1.49213i 0.0830244i
\(324\) 0 0
\(325\) 13.3630 + 7.71512i 0.741245 + 0.427958i
\(326\) 0 0
\(327\) 5.45600 11.3177i 0.301717 0.625871i
\(328\) 0 0
\(329\) −8.05570 + 28.5889i −0.444125 + 1.57616i
\(330\) 0 0
\(331\) 26.1343i 1.43647i 0.695800 + 0.718236i \(0.255050\pi\)
−0.695800 + 0.718236i \(0.744950\pi\)
\(332\) 0 0
\(333\) 6.77444 + 8.50907i 0.371237 + 0.466294i
\(334\) 0 0
\(335\) −15.2592 + 26.4297i −0.833699 + 1.44401i
\(336\) 0 0
\(337\) 13.7702 + 23.8507i 0.750110 + 1.29923i 0.947769 + 0.318958i \(0.103333\pi\)
−0.197659 + 0.980271i \(0.563334\pi\)
\(338\) 0 0
\(339\) −15.7679 23.1475i −0.856395 1.25720i
\(340\) 0 0
\(341\) 6.33918 3.65992i 0.343286 0.198196i
\(342\) 0 0
\(343\) 13.5910 12.5811i 0.733846 0.679316i
\(344\) 0 0
\(345\) −6.27261 9.20827i −0.337706 0.495757i
\(346\) 0 0
\(347\) 11.9584i 0.641962i 0.947086 + 0.320981i \(0.104013\pi\)
−0.947086 + 0.320981i \(0.895987\pi\)
\(348\) 0 0
\(349\) 2.51240 + 1.45053i 0.134485 + 0.0776452i 0.565733 0.824588i \(-0.308593\pi\)
−0.431248 + 0.902234i \(0.641927\pi\)
\(350\) 0 0
\(351\) −20.2227 + 18.7181i −1.07941 + 0.999097i
\(352\) 0 0
\(353\) 23.9384 13.8208i 1.27411 0.735610i 0.298354 0.954455i \(-0.403563\pi\)
0.975759 + 0.218846i \(0.0702292\pi\)
\(354\) 0 0
\(355\) 17.9455 31.0825i 0.952447 1.64969i
\(356\) 0 0
\(357\) −8.25864 + 9.34317i −0.437093 + 0.494493i
\(358\) 0 0
\(359\) 2.49496 1.44047i 0.131679 0.0760249i −0.432713 0.901532i \(-0.642444\pi\)
0.564392 + 0.825507i \(0.309110\pi\)
\(360\) 0 0
\(361\) 9.34966 16.1941i 0.492087 0.852320i
\(362\) 0 0
\(363\) 3.01268 6.24939i 0.158125 0.328008i
\(364\) 0 0
\(365\) 6.97245 + 12.0766i 0.364954 + 0.632120i
\(366\) 0 0
\(367\) 0.682581 + 1.18227i 0.0356304 + 0.0617137i 0.883291 0.468826i \(-0.155323\pi\)
−0.847660 + 0.530539i \(0.821989\pi\)
\(368\) 0 0
\(369\) 19.3009 15.3663i 1.00476 0.799937i
\(370\) 0 0
\(371\) −9.35561 9.59931i −0.485719 0.498371i
\(372\) 0 0
\(373\) −4.76730 + 8.25721i −0.246841 + 0.427542i −0.962648 0.270757i \(-0.912726\pi\)
0.715806 + 0.698299i \(0.246059\pi\)
\(374\) 0 0
\(375\) 0.756815 + 10.1544i 0.0390817 + 0.524372i
\(376\) 0 0
\(377\) 39.5577i 2.03732i
\(378\) 0 0
\(379\) 5.58137i 0.286696i −0.989672 0.143348i \(-0.954213\pi\)
0.989672 0.143348i \(-0.0457867\pi\)
\(380\) 0 0
\(381\) −2.83788 38.0768i −0.145389 1.95073i
\(382\) 0 0
\(383\) −16.5981 + 28.7488i −0.848124 + 1.46899i 0.0347558 + 0.999396i \(0.488935\pi\)
−0.882880 + 0.469599i \(0.844399\pi\)
\(384\) 0 0
\(385\) −5.33730 + 18.9416i −0.272014 + 0.965353i
\(386\) 0 0
\(387\) −12.6877 4.99146i −0.644951 0.253730i
\(388\) 0 0
\(389\) 0.338305 + 0.585961i 0.0171527 + 0.0297094i 0.874474 0.485072i \(-0.161207\pi\)
−0.857322 + 0.514781i \(0.827873\pi\)
\(390\) 0 0
\(391\) −3.11199 5.39013i −0.157380 0.272590i
\(392\) 0 0
\(393\) −8.63608 + 17.9144i −0.435632 + 0.903659i
\(394\) 0 0
\(395\) 7.89316 13.6714i 0.397148 0.687881i
\(396\) 0 0
\(397\) −20.5945 + 11.8902i −1.03361 + 0.596754i −0.918016 0.396543i \(-0.870210\pi\)
−0.115592 + 0.993297i \(0.536877\pi\)
\(398\) 0 0
\(399\) 2.38261 0.798402i 0.119279 0.0399701i
\(400\) 0 0
\(401\) 17.7910 30.8149i 0.888440 1.53882i 0.0467213 0.998908i \(-0.485123\pi\)
0.841719 0.539916i \(-0.181544\pi\)
\(402\) 0 0
\(403\) 12.7112 7.33879i 0.633188 0.365571i
\(404\) 0 0
\(405\) 24.6679 + 5.67253i 1.22576 + 0.281870i
\(406\) 0 0
\(407\) 8.30379 + 4.79420i 0.411604 + 0.237640i
\(408\) 0 0
\(409\) 13.0895i 0.647235i 0.946188 + 0.323617i \(0.104899\pi\)
−0.946188 + 0.323617i \(0.895101\pi\)
\(410\) 0 0
\(411\) 0.456861 + 0.670678i 0.0225353 + 0.0330821i
\(412\) 0 0
\(413\) −2.41066 + 8.55520i −0.118621 + 0.420974i
\(414\) 0 0
\(415\) −3.50358 + 2.02280i −0.171984 + 0.0992951i
\(416\) 0 0
\(417\) 2.86172 + 4.20104i 0.140139 + 0.205726i
\(418\) 0 0
\(419\) −10.5482 18.2700i −0.515313 0.892548i −0.999842 0.0177728i \(-0.994342\pi\)
0.484529 0.874775i \(-0.338991\pi\)
\(420\) 0 0
\(421\) 14.0124 24.2702i 0.682924 1.18286i −0.291161 0.956674i \(-0.594041\pi\)
0.974084 0.226185i \(-0.0726253\pi\)
\(422\) 0 0
\(423\) 33.3071 4.99252i 1.61944 0.242745i
\(424\) 0 0
\(425\) 7.91765i 0.384062i
\(426\) 0 0
\(427\) −36.7243 10.3481i −1.77722 0.500778i
\(428\) 0 0
\(429\) −10.5490 + 21.8825i −0.509312 + 1.05650i
\(430\) 0 0
\(431\) −9.70704 5.60436i −0.467572 0.269953i 0.247651 0.968849i \(-0.420341\pi\)
−0.715223 + 0.698897i \(0.753675\pi\)
\(432\) 0 0
\(433\) 5.09237i 0.244724i −0.992486 0.122362i \(-0.960953\pi\)
0.992486 0.122362i \(-0.0390468\pi\)
\(434\) 0 0
\(435\) 30.0306 20.4566i 1.43986 0.980820i
\(436\) 0 0
\(437\) 1.25419i 0.0599962i
\(438\) 0 0
\(439\) −12.7128 −0.606747 −0.303374 0.952872i \(-0.598113\pi\)
−0.303374 + 0.952872i \(0.598113\pi\)
\(440\) 0 0
\(441\) −19.3380 8.18794i −0.920856 0.389902i
\(442\) 0 0
\(443\) 12.8916i 0.612498i 0.951951 + 0.306249i \(0.0990740\pi\)
−0.951951 + 0.306249i \(0.900926\pi\)
\(444\) 0 0
\(445\) 10.5439 0.499831
\(446\) 0 0
\(447\) 0.0323686 0.0671441i 0.00153098 0.00317581i
\(448\) 0 0
\(449\) −10.8543 −0.512245 −0.256122 0.966644i \(-0.582445\pi\)
−0.256122 + 0.966644i \(0.582445\pi\)
\(450\) 0 0
\(451\) 10.8745 18.8353i 0.512062 0.886918i
\(452\) 0 0
\(453\) −12.7886 + 8.71148i −0.600859 + 0.409301i
\(454\) 0 0
\(455\) −10.7022 + 37.9812i −0.501728 + 1.78059i
\(456\) 0 0
\(457\) 17.0059 0.795503 0.397751 0.917493i \(-0.369791\pi\)
0.397751 + 0.917493i \(0.369791\pi\)
\(458\) 0 0
\(459\) 13.5063 + 4.18421i 0.630421 + 0.195302i
\(460\) 0 0
\(461\) −6.55493 3.78449i −0.305294 0.176261i 0.339525 0.940597i \(-0.389734\pi\)
−0.644819 + 0.764336i \(0.723067\pi\)
\(462\) 0 0
\(463\) 3.62448 2.09260i 0.168444 0.0972512i −0.413408 0.910546i \(-0.635662\pi\)
0.581852 + 0.813295i \(0.302328\pi\)
\(464\) 0 0
\(465\) −12.1447 5.85466i −0.563197 0.271503i
\(466\) 0 0
\(467\) −4.17316 7.22813i −0.193111 0.334478i 0.753169 0.657827i \(-0.228524\pi\)
−0.946280 + 0.323350i \(0.895191\pi\)
\(468\) 0 0
\(469\) −27.6338 7.78657i −1.27601 0.359551i
\(470\) 0 0
\(471\) 0.881887 + 11.8326i 0.0406352 + 0.545216i
\(472\) 0 0
\(473\) −12.0196 −0.552660
\(474\) 0 0
\(475\) −0.797742 + 1.38173i −0.0366029 + 0.0633981i
\(476\) 0 0
\(477\) −5.56433 + 14.1438i −0.254773 + 0.647602i
\(478\) 0 0
\(479\) −13.4529 23.3011i −0.614677 1.06465i −0.990441 0.137937i \(-0.955953\pi\)
0.375764 0.926716i \(-0.377380\pi\)
\(480\) 0 0
\(481\) 16.6506 + 9.61321i 0.759200 + 0.438325i
\(482\) 0 0
\(483\) 6.94170 7.85329i 0.315858 0.357337i
\(484\) 0 0
\(485\) −25.5662 44.2819i −1.16090 2.01074i
\(486\) 0 0
\(487\) −26.8047 15.4757i −1.21464 0.701270i −0.250870 0.968021i \(-0.580717\pi\)
−0.963766 + 0.266751i \(0.914050\pi\)
\(488\) 0 0
\(489\) 19.7940 13.4836i 0.895117 0.609747i
\(490\) 0 0
\(491\) −9.30274 + 5.37094i −0.419827 + 0.242387i −0.695003 0.719007i \(-0.744597\pi\)
0.275176 + 0.961394i \(0.411264\pi\)
\(492\) 0 0
\(493\) 17.5786 10.1490i 0.791701 0.457089i
\(494\) 0 0
\(495\) 22.0676 3.30779i 0.991864 0.148674i
\(496\) 0 0
\(497\) 32.4986 + 9.15734i 1.45776 + 0.410763i
\(498\) 0 0
\(499\) −2.01094 1.16102i −0.0900220 0.0519742i 0.454313 0.890842i \(-0.349885\pi\)
−0.544335 + 0.838868i \(0.683218\pi\)
\(500\) 0 0
\(501\) 21.4905 + 31.5483i 0.960124 + 1.40947i
\(502\) 0 0
\(503\) −37.1284 −1.65547 −0.827736 0.561117i \(-0.810372\pi\)
−0.827736 + 0.561117i \(0.810372\pi\)
\(504\) 0 0
\(505\) 7.66654 0.341156
\(506\) 0 0
\(507\) −11.3748 + 23.5954i −0.505172 + 1.04791i
\(508\) 0 0
\(509\) 36.2251 + 20.9146i 1.60565 + 0.927023i 0.990328 + 0.138747i \(0.0443076\pi\)
0.615323 + 0.788275i \(0.289026\pi\)
\(510\) 0 0
\(511\) −9.39469 + 9.15619i −0.415597 + 0.405046i
\(512\) 0 0
\(513\) −1.93544 2.09103i −0.0854519 0.0923210i
\(514\) 0 0
\(515\) −37.2098 + 21.4831i −1.63966 + 0.946658i
\(516\) 0 0
\(517\) 25.7128 14.8453i 1.13085 0.652896i
\(518\) 0 0
\(519\) 1.75475 + 23.5441i 0.0770251 + 1.03347i
\(520\) 0 0
\(521\) −5.56496 3.21293i −0.243805 0.140761i 0.373119 0.927783i \(-0.378288\pi\)
−0.616924 + 0.787022i \(0.711622\pi\)
\(522\) 0 0
\(523\) −1.15469 1.99999i −0.0504912 0.0874533i 0.839675 0.543089i \(-0.182745\pi\)
−0.890166 + 0.455636i \(0.849412\pi\)
\(524\) 0 0
\(525\) 12.6428 4.23654i 0.551775 0.184898i
\(526\) 0 0
\(527\) −6.52242 3.76572i −0.284121 0.164037i
\(528\) 0 0
\(529\) −8.88425 15.3880i −0.386272 0.669042i
\(530\) 0 0
\(531\) 9.96709 1.49400i 0.432535 0.0648343i
\(532\) 0 0
\(533\) 21.8054 37.7680i 0.944496 1.63591i
\(534\) 0 0
\(535\) −11.7224 −0.506806
\(536\) 0 0
\(537\) 1.49065 + 0.718605i 0.0643261 + 0.0310101i
\(538\) 0 0
\(539\) −18.5069 0.475960i −0.797149 0.0205011i
\(540\) 0 0
\(541\) −0.713219 1.23533i −0.0306637 0.0531111i 0.850286 0.526320i \(-0.176429\pi\)
−0.880950 + 0.473209i \(0.843095\pi\)
\(542\) 0 0
\(543\) 2.18947 + 29.3768i 0.0939593 + 1.26068i
\(544\) 0 0
\(545\) −17.6678 + 10.2005i −0.756806 + 0.436942i
\(546\) 0 0
\(547\) 3.62835 + 2.09483i 0.155137 + 0.0895685i 0.575559 0.817760i \(-0.304785\pi\)
−0.420422 + 0.907329i \(0.638118\pi\)
\(548\) 0 0
\(549\) 6.41321 + 42.7851i 0.273709 + 1.82602i
\(550\) 0 0
\(551\) −4.09025 −0.174251
\(552\) 0 0
\(553\) 14.2942 + 4.02778i 0.607852 + 0.171279i
\(554\) 0 0
\(555\) −1.31261 17.6118i −0.0557174 0.747578i
\(556\) 0 0
\(557\) 8.75539 15.1648i 0.370978 0.642552i −0.618739 0.785597i \(-0.712356\pi\)
0.989716 + 0.143045i \(0.0456893\pi\)
\(558\) 0 0
\(559\) −24.1013 −1.01938
\(560\) 0 0
\(561\) 12.4306 0.926461i 0.524821 0.0391152i
\(562\) 0 0
\(563\) −4.72155 −0.198989 −0.0994947 0.995038i \(-0.531723\pi\)
−0.0994947 + 0.995038i \(0.531723\pi\)
\(564\) 0 0
\(565\) 45.4774i 1.91325i
\(566\) 0 0
\(567\) 0.545634 + 23.8055i 0.0229145 + 0.999737i
\(568\) 0 0
\(569\) 23.7443 0.995411 0.497705 0.867346i \(-0.334176\pi\)
0.497705 + 0.867346i \(0.334176\pi\)
\(570\) 0 0
\(571\) 29.6501i 1.24082i 0.784278 + 0.620409i \(0.213034\pi\)
−0.784278 + 0.620409i \(0.786966\pi\)
\(572\) 0 0
\(573\) 0.844908 + 11.3364i 0.0352965 + 0.473585i
\(574\) 0 0
\(575\) 6.65509i 0.277536i
\(576\) 0 0
\(577\) 13.4530 + 7.76707i 0.560054 + 0.323347i 0.753167 0.657829i \(-0.228525\pi\)
−0.193113 + 0.981176i \(0.561858\pi\)
\(578\) 0 0
\(579\) 38.5148 2.87053i 1.60062 0.119295i
\(580\) 0 0
\(581\) −2.65633 2.72552i −0.110203 0.113074i
\(582\) 0 0
\(583\) 13.3990i 0.554931i
\(584\) 0 0
\(585\) 44.2494 6.63270i 1.82949 0.274228i
\(586\) 0 0
\(587\) −0.553171 + 0.958120i −0.0228318 + 0.0395458i −0.877216 0.480097i \(-0.840602\pi\)
0.854384 + 0.519643i \(0.173935\pi\)
\(588\) 0 0
\(589\) 0.758829 + 1.31433i 0.0312670 + 0.0541561i
\(590\) 0 0
\(591\) 29.4477 2.19475i 1.21131 0.0902800i
\(592\) 0 0
\(593\) 14.2753 8.24185i 0.586216 0.338452i −0.177384 0.984142i \(-0.556763\pi\)
0.763600 + 0.645690i \(0.223430\pi\)
\(594\) 0 0
\(595\) 19.6239 4.98871i 0.804500 0.204517i
\(596\) 0 0
\(597\) −14.3327 + 29.7311i −0.586596 + 1.21681i
\(598\) 0 0
\(599\) 20.5047i 0.837801i 0.908032 + 0.418900i \(0.137584\pi\)
−0.908032 + 0.418900i \(0.862416\pi\)
\(600\) 0 0
\(601\) 15.8353 + 9.14249i 0.645934 + 0.372930i 0.786897 0.617085i \(-0.211686\pi\)
−0.140963 + 0.990015i \(0.545020\pi\)
\(602\) 0 0
\(603\) 4.82573 + 32.1943i 0.196519 + 1.31105i
\(604\) 0 0
\(605\) −9.75577 + 5.63250i −0.396629 + 0.228994i
\(606\) 0 0
\(607\) −0.148266 + 0.256804i −0.00601794 + 0.0104234i −0.869019 0.494779i \(-0.835249\pi\)
0.863001 + 0.505203i \(0.168582\pi\)
\(608\) 0 0
\(609\) 25.6116 + 22.6387i 1.03784 + 0.917367i
\(610\) 0 0
\(611\) 51.5588 29.7675i 2.08584 1.20426i
\(612\) 0 0
\(613\) 14.4270 24.9882i 0.582700 1.00927i −0.412458 0.910976i \(-0.635330\pi\)
0.995158 0.0982888i \(-0.0313369\pi\)
\(614\) 0 0
\(615\) −39.9483 + 2.97737i −1.61087 + 0.120059i
\(616\) 0 0
\(617\) −13.6978 23.7253i −0.551454 0.955146i −0.998170 0.0604700i \(-0.980740\pi\)
0.446716 0.894676i \(-0.352593\pi\)
\(618\) 0 0
\(619\) 2.51347 + 4.35345i 0.101025 + 0.174980i 0.912107 0.409952i \(-0.134455\pi\)
−0.811082 + 0.584932i \(0.801121\pi\)
\(620\) 0 0
\(621\) −11.3526 3.51699i −0.455563 0.141132i
\(622\) 0 0
\(623\) 2.44387 + 9.61335i 0.0979117 + 0.385151i
\(624\) 0 0
\(625\) 15.5411 26.9180i 0.621644 1.07672i
\(626\) 0 0
\(627\) −2.26264 1.09077i −0.0903613 0.0435610i
\(628\) 0 0
\(629\) 9.86556i 0.393366i
\(630\) 0 0
\(631\) 7.26095i 0.289054i 0.989501 + 0.144527i \(0.0461660\pi\)
−0.989501 + 0.144527i \(0.953834\pi\)
\(632\) 0 0
\(633\) −15.3195 + 10.4355i −0.608896 + 0.414775i
\(634\) 0 0
\(635\) −30.9992 + 53.6923i −1.23017 + 2.13071i
\(636\) 0 0
\(637\) −37.1096 0.954384i −1.47034 0.0378141i
\(638\) 0 0
\(639\) −5.67526 37.8619i −0.224510 1.49779i
\(640\) 0 0
\(641\) −13.2794 23.0007i −0.524507 0.908472i −0.999593 0.0285328i \(-0.990916\pi\)
0.475086 0.879939i \(-0.342417\pi\)
\(642\) 0 0
\(643\) −0.856940 1.48426i −0.0337944 0.0585337i 0.848634 0.528981i \(-0.177426\pi\)
−0.882428 + 0.470448i \(0.844092\pi\)
\(644\) 0 0
\(645\) 12.4636 + 18.2968i 0.490755 + 0.720434i
\(646\) 0 0
\(647\) 13.8968 24.0699i 0.546339 0.946287i −0.452182 0.891926i \(-0.649354\pi\)
0.998521 0.0543614i \(-0.0173123\pi\)
\(648\) 0 0
\(649\) 7.69453 4.44244i 0.302037 0.174381i
\(650\) 0 0
\(651\) 2.52305 12.4298i 0.0988860 0.487163i
\(652\) 0 0
\(653\) −7.65604 + 13.2607i −0.299604 + 0.518929i −0.976045 0.217567i \(-0.930188\pi\)
0.676441 + 0.736497i \(0.263521\pi\)
\(654\) 0 0
\(655\) 27.9657 16.1460i 1.09271 0.630876i
\(656\) 0 0
\(657\) 13.8423 + 5.44572i 0.540041 + 0.212458i
\(658\) 0 0
\(659\) −41.7362 24.0964i −1.62581 0.938663i −0.985324 0.170694i \(-0.945399\pi\)
−0.640488 0.767968i \(-0.721268\pi\)
\(660\) 0 0
\(661\) 17.5852i 0.683987i −0.939702 0.341993i \(-0.888898\pi\)
0.939702 0.341993i \(-0.111102\pi\)
\(662\) 0 0
\(663\) 24.9256 1.85772i 0.968029 0.0721477i
\(664\) 0 0
\(665\) −3.92725 1.10661i −0.152292 0.0429124i
\(666\) 0 0
\(667\) −14.7755 + 8.53064i −0.572110 + 0.330308i
\(668\) 0 0
\(669\) −14.1067 + 29.2624i −0.545396 + 1.13135i
\(670\) 0 0
\(671\) 19.0698 + 33.0298i 0.736180 + 1.27510i
\(672\) 0 0
\(673\) −7.47021 + 12.9388i −0.287955 + 0.498753i −0.973322 0.229445i \(-0.926309\pi\)
0.685366 + 0.728199i \(0.259642\pi\)
\(674\) 0 0
\(675\) −10.2700 11.0955i −0.395292 0.427068i
\(676\) 0 0
\(677\) 1.54926i 0.0595427i 0.999557 + 0.0297714i \(0.00947792\pi\)
−0.999557 + 0.0297714i \(0.990522\pi\)
\(678\) 0 0
\(679\) 34.4479 33.5734i 1.32199 1.28843i
\(680\) 0 0
\(681\) −21.5154 31.5849i −0.824473 1.21034i
\(682\) 0 0
\(683\) −5.97005 3.44681i −0.228438 0.131889i 0.381413 0.924405i \(-0.375437\pi\)
−0.609851 + 0.792516i \(0.708771\pi\)
\(684\) 0 0
\(685\) 1.31767i 0.0503455i
\(686\) 0 0
\(687\) −6.79405 3.27525i −0.259209 0.124958i
\(688\) 0 0
\(689\) 26.8674i 1.02357i
\(690\) 0 0
\(691\) −39.3194 −1.49578 −0.747890 0.663822i \(-0.768933\pi\)
−0.747890 + 0.663822i \(0.768933\pi\)
\(692\) 0 0
\(693\) 8.13067 + 19.3532i 0.308859 + 0.735169i
\(694\) 0 0
\(695\) 8.25370i 0.313081i
\(696\) 0 0
\(697\) −22.3778 −0.847619
\(698\) 0 0
\(699\) 23.3906 + 34.3378i 0.884715 + 1.29877i
\(700\) 0 0
\(701\) −21.0215 −0.793970 −0.396985 0.917825i \(-0.629943\pi\)
−0.396985 + 0.917825i \(0.629943\pi\)
\(702\) 0 0
\(703\) −0.994003 + 1.72166i −0.0374895 + 0.0649338i
\(704\) 0 0
\(705\) −49.2611 23.7476i −1.85528 0.894385i
\(706\) 0 0
\(707\) 1.77695 + 6.98990i 0.0668290 + 0.262882i
\(708\) 0 0
\(709\) 38.0038 1.42726 0.713630 0.700522i \(-0.247050\pi\)
0.713630 + 0.700522i \(0.247050\pi\)
\(710\) 0 0
\(711\) −2.49622 16.6532i −0.0936154 0.624545i
\(712\) 0 0
\(713\) 5.48234 + 3.16523i 0.205315 + 0.118539i
\(714\) 0 0
\(715\) 34.1602 19.7224i 1.27752 0.737577i
\(716\) 0 0
\(717\) 8.32300 5.66956i 0.310828 0.211734i
\(718\) 0 0
\(719\) 3.72516 + 6.45216i 0.138925 + 0.240625i 0.927090 0.374839i \(-0.122302\pi\)
−0.788165 + 0.615464i \(0.788969\pi\)
\(720\) 0 0
\(721\) −28.2115 28.9464i −1.05065 1.07802i
\(722\) 0 0
\(723\) 32.6714 22.2555i 1.21506 0.827692i
\(724\) 0 0
\(725\) −21.7040 −0.806066
\(726\) 0 0
\(727\) −9.88775 + 17.1261i −0.366716 + 0.635171i −0.989050 0.147581i \(-0.952851\pi\)
0.622334 + 0.782752i \(0.286185\pi\)
\(728\) 0 0
\(729\) 24.3547 11.6554i 0.902025 0.431683i
\(730\) 0 0
\(731\) 6.18350 + 10.7101i 0.228705 + 0.396129i
\(732\) 0 0
\(733\) 28.4508 + 16.4261i 1.05085 + 0.606711i 0.922888 0.385068i \(-0.125822\pi\)
0.127966 + 0.991779i \(0.459155\pi\)
\(734\) 0 0
\(735\) 18.4661 + 28.6657i 0.681133 + 1.05735i
\(736\) 0 0
\(737\) 14.3494 + 24.8538i 0.528566 + 0.915502i
\(738\) 0 0
\(739\) −22.2229 12.8304i −0.817484 0.471975i 0.0320642 0.999486i \(-0.489792\pi\)
−0.849548 + 0.527511i \(0.823125\pi\)
\(740\) 0 0
\(741\) −4.53700 2.18718i −0.166671 0.0803480i
\(742\) 0 0
\(743\) 38.0089 21.9445i 1.39441 0.805064i 0.400612 0.916248i \(-0.368798\pi\)
0.993800 + 0.111184i \(0.0354643\pi\)
\(744\) 0 0
\(745\) −0.104817 + 0.0605162i −0.00384020 + 0.00221714i
\(746\) 0 0
\(747\) −1.57987 + 4.01584i −0.0578045 + 0.146932i
\(748\) 0 0
\(749\) −2.71703 10.6878i −0.0992780 0.390525i
\(750\) 0 0
\(751\) 7.84327 + 4.52831i 0.286205 + 0.165241i 0.636229 0.771500i \(-0.280493\pi\)
−0.350024 + 0.936741i \(0.613827\pi\)
\(752\) 0 0
\(753\) −20.4162 + 1.52163i −0.744009 + 0.0554514i
\(754\) 0 0
\(755\) 25.1255 0.914409
\(756\) 0 0
\(757\) 26.8619 0.976314 0.488157 0.872756i \(-0.337669\pi\)
0.488157 + 0.872756i \(0.337669\pi\)
\(758\) 0 0
\(759\) −10.4484 + 0.778726i −0.379253 + 0.0282660i
\(760\) 0 0
\(761\) −10.5578 6.09556i −0.382721 0.220964i 0.296281 0.955101i \(-0.404254\pi\)
−0.679001 + 0.734137i \(0.737587\pi\)
\(762\) 0 0
\(763\) −13.3953 13.7442i −0.484942 0.497574i
\(764\) 0 0
\(765\) −14.3002 17.9618i −0.517024 0.649410i
\(766\) 0 0
\(767\) 15.4289 8.90787i 0.557105 0.321645i
\(768\) 0 0
\(769\) −21.7503 + 12.5575i −0.784335 + 0.452836i −0.837964 0.545725i \(-0.816254\pi\)
0.0536296 + 0.998561i \(0.482921\pi\)
\(770\) 0 0
\(771\) −25.0243 12.0636i −0.901227 0.434460i
\(772\) 0 0
\(773\) −37.6545 21.7398i −1.35434 0.781928i −0.365484 0.930817i \(-0.619097\pi\)
−0.988854 + 0.148890i \(0.952430\pi\)
\(774\) 0 0
\(775\) 4.02655 + 6.97420i 0.144638 + 0.250521i
\(776\) 0 0
\(777\) 15.7531 5.27882i 0.565141 0.189376i
\(778\) 0 0
\(779\) 3.90520 + 2.25467i 0.139918 + 0.0807819i
\(780\) 0 0
\(781\) −16.8755 29.2292i −0.603852 1.04590i
\(782\) 0 0
\(783\) 11.4698 37.0238i 0.409898 1.32312i
\(784\) 0 0
\(785\) 9.63318 16.6852i 0.343823 0.595519i
\(786\) 0 0
\(787\) 24.3945 0.869570 0.434785 0.900534i \(-0.356824\pi\)
0.434785 + 0.900534i \(0.356824\pi\)
\(788\) 0 0
\(789\) −43.1275 + 29.3781i −1.53538 + 1.04589i
\(790\) 0 0
\(791\) −41.4637 + 10.5408i −1.47428 + 0.374786i
\(792\) 0 0
\(793\) 38.2382 + 66.2306i 1.35788 + 2.35192i
\(794\) 0 0
\(795\) 20.3967 13.8941i 0.723395 0.492772i
\(796\) 0 0
\(797\) −44.9314 + 25.9412i −1.59155 + 0.918883i −0.598510 + 0.801115i \(0.704240\pi\)
−0.993041 + 0.117768i \(0.962426\pi\)
\(798\) 0 0
\(799\) −26.4561 15.2744i −0.935950 0.540371i
\(800\) 0 0
\(801\) 8.79914 7.00538i 0.310902 0.247523i
\(802\) 0 0
\(803\) 13.1134 0.462763
\(804\) 0 0
\(805\) −16.4946 + 4.19320i −0.581359 + 0.147791i
\(806\) 0 0
\(807\) −5.32941 2.56918i −0.187604 0.0904395i
\(808\) 0 0
\(809\) −20.4027 + 35.3386i −0.717322 + 1.24244i 0.244735 + 0.969590i \(0.421299\pi\)
−0.962057 + 0.272848i \(0.912034\pi\)
\(810\) 0 0
\(811\) −11.1712 −0.392275 −0.196137 0.980576i \(-0.562840\pi\)
−0.196137 + 0.980576i \(0.562840\pi\)
\(812\) 0 0
\(813\) 26.5309 + 38.9477i 0.930478 + 1.36595i
\(814\) 0 0
\(815\) −38.8890 −1.36222
\(816\) 0 0
\(817\) 2.49207i 0.0871865i
\(818\) 0 0
\(819\) 16.3034 + 38.8067i 0.569688 + 1.35601i
\(820\) 0 0
\(821\) −2.72262 −0.0950202 −0.0475101 0.998871i \(-0.515129\pi\)
−0.0475101 + 0.998871i \(0.515129\pi\)
\(822\) 0 0
\(823\) 43.9095i 1.53059i −0.643681 0.765294i \(-0.722593\pi\)
0.643681 0.765294i \(-0.277407\pi\)
\(824\) 0 0
\(825\) −12.0062 5.78790i −0.418002 0.201509i
\(826\) 0 0
\(827\) 16.2663i 0.565635i 0.959174 + 0.282818i \(0.0912691\pi\)
−0.959174 + 0.282818i \(0.908731\pi\)
\(828\) 0 0
\(829\) 10.7476 + 6.20515i 0.373281 + 0.215514i 0.674891 0.737918i \(-0.264191\pi\)
−0.301610 + 0.953431i \(0.597524\pi\)
\(830\) 0 0
\(831\) 5.84175 + 8.57577i 0.202648 + 0.297490i
\(832\) 0 0
\(833\) 9.09683 + 16.7356i 0.315187 + 0.579855i
\(834\) 0 0
\(835\) 61.9824i 2.14499i
\(836\) 0 0
\(837\) −14.0248 + 3.18307i −0.484769 + 0.110023i
\(838\) 0 0
\(839\) −0.102613 + 0.177730i −0.00354258 + 0.00613593i −0.867791 0.496929i \(-0.834461\pi\)
0.864249 + 0.503065i \(0.167794\pi\)
\(840\) 0 0
\(841\) −13.3206 23.0720i −0.459333 0.795588i
\(842\) 0 0
\(843\) −4.04885 + 8.39878i −0.139450 + 0.289269i
\(844\) 0 0
\(845\) 36.8342 21.2662i 1.26714 0.731581i
\(846\) 0 0
\(847\) −7.39658 7.58925i −0.254149 0.260770i
\(848\) 0 0
\(849\) 6.02623 0.449138i 0.206820 0.0154144i
\(850\) 0 0
\(851\) 8.29238i 0.284259i
\(852\) 0 0
\(853\) 12.9524 + 7.47805i 0.443480 + 0.256044i 0.705073 0.709135i \(-0.250914\pi\)
−0.261592 + 0.965178i \(0.584248\pi\)
\(854\) 0 0
\(855\) 0.685820 + 4.57537i 0.0234545 + 0.156474i
\(856\) 0 0
\(857\) −29.1218 + 16.8135i −0.994783 + 0.574338i −0.906701 0.421775i \(-0.861407\pi\)
−0.0880827 + 0.996113i \(0.528074\pi\)
\(858\) 0 0
\(859\) 8.44207 14.6221i 0.288040 0.498899i −0.685302 0.728259i \(-0.740330\pi\)
0.973342 + 0.229360i \(0.0736632\pi\)
\(860\) 0 0
\(861\) −11.9738 35.7324i −0.408066 1.21776i
\(862\) 0 0
\(863\) −25.5168 + 14.7321i −0.868602 + 0.501487i −0.866883 0.498511i \(-0.833880\pi\)
−0.00171845 + 0.999999i \(0.500547\pi\)
\(864\) 0 0
\(865\) 19.1678 33.1996i 0.651725 1.12882i
\(866\) 0 0
\(867\) 9.35648 + 13.7354i 0.317763 + 0.466480i
\(868\) 0 0
\(869\) −7.42253 12.8562i −0.251792 0.436117i
\(870\) 0 0
\(871\) 28.7730 + 49.8363i 0.974936 + 1.68864i
\(872\) 0 0
\(873\) −50.7563 19.9681i −1.71784 0.675817i
\(874\) 0 0
\(875\) 14.9712 + 4.21853i 0.506118 + 0.142612i
\(876\) 0 0
\(877\) −17.3493 + 30.0498i −0.585844 + 1.01471i 0.408926 + 0.912567i \(0.365903\pi\)
−0.994770 + 0.102143i \(0.967430\pi\)
\(878\) 0 0
\(879\) −43.3315 + 29.5171i −1.46153 + 0.995586i
\(880\) 0 0
\(881\) 1.50899i 0.0508393i −0.999677 0.0254196i \(-0.991908\pi\)
0.999677 0.0254196i \(-0.00809220\pi\)
\(882\) 0 0
\(883\) 36.2503i 1.21992i −0.792432 0.609960i \(-0.791185\pi\)
0.792432 0.609960i \(-0.208815\pi\)
\(884\) 0 0
\(885\) −14.7413 7.10643i −0.495524 0.238880i
\(886\) 0 0
\(887\) −16.5409 + 28.6496i −0.555387 + 0.961959i 0.442486 + 0.896775i \(0.354097\pi\)
−0.997873 + 0.0651837i \(0.979237\pi\)
\(888\) 0 0
\(889\) −56.1385 15.8185i −1.88282 0.530536i
\(890\) 0 0
\(891\) 16.2182 17.4221i 0.543329 0.583662i
\(892\) 0 0
\(893\) 3.07795 + 5.33116i 0.103000 + 0.178401i
\(894\) 0 0
\(895\) −1.34350 2.32701i −0.0449083 0.0777834i
\(896\) 0 0
\(897\) −20.9509 + 1.56148i −0.699530 + 0.0521364i
\(898\) 0 0
\(899\) −10.3226 + 17.8794i −0.344280 + 0.596310i
\(900\) 0 0
\(901\) 11.9393 6.89317i 0.397757 0.229645i
\(902\) 0 0
\(903\) −13.7931 + 15.6044i −0.459006 + 0.519283i
\(904\) 0 0
\(905\) 23.9164 41.4244i 0.795008 1.37700i
\(906\) 0 0
\(907\) 29.9958 17.3181i 0.995993 0.575037i 0.0889325 0.996038i \(-0.471654\pi\)
0.907060 + 0.421001i \(0.138321\pi\)
\(908\) 0 0
\(909\) 6.39788 5.09363i 0.212204 0.168945i
\(910\) 0 0
\(911\) −5.24077 3.02576i −0.173634 0.100248i 0.410664 0.911787i \(-0.365297\pi\)
−0.584298 + 0.811539i \(0.698630\pi\)
\(912\) 0 0
\(913\) 3.80437i 0.125906i
\(914\) 0 0
\(915\) 30.5053 63.2790i 1.00847 2.09194i
\(916\) 0 0
\(917\) 21.2028 + 21.7551i 0.700179 + 0.718418i
\(918\) 0 0
\(919\) −17.5675 + 10.1426i −0.579499 + 0.334574i −0.760934 0.648829i \(-0.775259\pi\)
0.181435 + 0.983403i \(0.441926\pi\)
\(920\) 0 0
\(921\) 26.8580 2.00174i 0.885001 0.0659596i
\(922\) 0 0
\(923\) −33.8383 58.6096i −1.11380 1.92916i
\(924\) 0 0
\(925\) −5.27445 + 9.13562i −0.173423 + 0.300377i
\(926\) 0 0
\(927\) −16.7790 + 42.6502i −0.551096 + 1.40082i
\(928\) 0 0
\(929\) 5.32035i 0.174555i −0.996184 0.0872775i \(-0.972183\pi\)
0.996184 0.0872775i \(-0.0278167\pi\)
\(930\) 0 0
\(931\) 0.0986831 3.83712i 0.00323421 0.125757i
\(932\) 0 0
\(933\) −32.3079 + 2.40793i −1.05771 + 0.0788319i
\(934\) 0 0
\(935\) −17.5285 10.1201i −0.573243 0.330962i
\(936\) 0 0
\(937\) 12.6595i 0.413566i −0.978387 0.206783i \(-0.933701\pi\)
0.978387 0.206783i \(-0.0662995\pi\)
\(938\) 0 0
\(939\) 1.89803 + 25.4665i 0.0619399 + 0.831067i
\(940\) 0 0
\(941\) 36.1276i 1.17772i −0.808233 0.588862i \(-0.799576\pi\)
0.808233 0.588862i \(-0.200424\pi\)
\(942\) 0 0
\(943\) 18.8094 0.612518
\(944\) 0 0
\(945\) 21.0294 32.4452i 0.684087 1.05544i
\(946\) 0 0
\(947\) 14.7825i 0.480367i 0.970728 + 0.240183i \(0.0772076\pi\)
−0.970728 + 0.240183i \(0.922792\pi\)
\(948\) 0 0
\(949\) 26.2947 0.853562
\(950\) 0 0
\(951\) 50.8630 3.79085i 1.64934 0.122927i
\(952\) 0 0
\(953\) −38.7897 −1.25652 −0.628260 0.778003i \(-0.716233\pi\)
−0.628260 + 0.778003i \(0.716233\pi\)
\(954\) 0 0
\(955\) 9.22924 15.9855i 0.298651 0.517279i
\(956\) 0 0
\(957\) −2.53963 34.0750i −0.0820945 1.10149i
\(958\) 0 0
\(959\) 1.20137 0.305409i 0.0387943 0.00986216i
\(960\) 0 0
\(961\) −23.3397 −0.752894
\(962\) 0 0
\(963\) −9.78263 + 7.78837i −0.315241 + 0.250977i
\(964\) 0 0
\(965\) −54.3100 31.3559i −1.74830 1.00938i
\(966\) 0 0
\(967\) −11.6680 + 6.73651i −0.375217 + 0.216632i −0.675735 0.737144i \(-0.736174\pi\)
0.300518 + 0.953776i \(0.402840\pi\)
\(968\) 0 0
\(969\) 0.192087 + 2.57730i 0.00617074 + 0.0827947i
\(970\) 0 0
\(971\) 24.9384 + 43.1946i 0.800312 + 1.38618i 0.919411 + 0.393299i \(0.128666\pi\)
−0.119098 + 0.992882i \(0.538000\pi\)
\(972\) 0 0
\(973\) 7.52524 1.91304i 0.241248 0.0613293i
\(974\) 0 0
\(975\) −24.0746 11.6058i −0.771003 0.371682i
\(976\) 0 0
\(977\) −1.24236 −0.0397466 −0.0198733 0.999803i \(-0.506326\pi\)
−0.0198733 + 0.999803i \(0.506326\pi\)
\(978\) 0 0
\(979\) 4.95763 8.58687i 0.158447 0.274437i
\(980\) 0 0
\(981\) −7.96695 + 20.2510i −0.254365 + 0.646565i
\(982\) 0 0
\(983\) 11.2694 + 19.5192i 0.359439 + 0.622567i 0.987867 0.155301i \(-0.0496346\pi\)
−0.628428 + 0.777868i \(0.716301\pi\)
\(984\) 0 0
\(985\) −41.5243 23.9741i −1.32307 0.763877i
\(986\) 0 0
\(987\) 10.2339 50.4176i 0.325750 1.60481i
\(988\) 0 0
\(989\) −5.19747 9.00228i −0.165270 0.286256i
\(990\) 0 0
\(991\) −7.51321 4.33776i −0.238665 0.137793i 0.375898 0.926661i \(-0.377334\pi\)
−0.614563 + 0.788868i \(0.710668\pi\)
\(992\) 0 0
\(993\) −3.36437 45.1408i −0.106765 1.43250i
\(994\) 0 0
\(995\) 46.4125 26.7963i 1.47138 0.849499i
\(996\) 0 0
\(997\) 7.45870 4.30628i 0.236219 0.136381i −0.377219 0.926124i \(-0.623119\pi\)
0.613438 + 0.789743i \(0.289786\pi\)
\(998\) 0 0
\(999\) −12.7966 13.8253i −0.404867 0.437413i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.cz.g.367.1 yes 24
3.2 odd 2 3024.2.cz.h.2719.3 24
4.3 odd 2 1008.2.cz.h.367.12 yes 24
7.5 odd 6 1008.2.bf.g.943.5 yes 24
9.4 even 3 1008.2.bf.h.31.8 yes 24
9.5 odd 6 3024.2.bf.g.1711.10 24
12.11 even 2 3024.2.cz.g.2719.3 24
21.5 even 6 3024.2.bf.h.2287.3 24
28.19 even 6 1008.2.bf.h.943.8 yes 24
36.23 even 6 3024.2.bf.h.1711.10 24
36.31 odd 6 1008.2.bf.g.31.5 24
63.5 even 6 3024.2.cz.g.1279.3 24
63.40 odd 6 1008.2.cz.h.607.12 yes 24
84.47 odd 6 3024.2.bf.g.2287.3 24
252.103 even 6 inner 1008.2.cz.g.607.1 yes 24
252.131 odd 6 3024.2.cz.h.1279.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.g.31.5 24 36.31 odd 6
1008.2.bf.g.943.5 yes 24 7.5 odd 6
1008.2.bf.h.31.8 yes 24 9.4 even 3
1008.2.bf.h.943.8 yes 24 28.19 even 6
1008.2.cz.g.367.1 yes 24 1.1 even 1 trivial
1008.2.cz.g.607.1 yes 24 252.103 even 6 inner
1008.2.cz.h.367.12 yes 24 4.3 odd 2
1008.2.cz.h.607.12 yes 24 63.40 odd 6
3024.2.bf.g.1711.10 24 9.5 odd 6
3024.2.bf.g.2287.3 24 84.47 odd 6
3024.2.bf.h.1711.10 24 36.23 even 6
3024.2.bf.h.2287.3 24 21.5 even 6
3024.2.cz.g.1279.3 24 63.5 even 6
3024.2.cz.g.2719.3 24 12.11 even 2
3024.2.cz.h.1279.3 24 252.131 odd 6
3024.2.cz.h.2719.3 24 3.2 odd 2