Properties

Label 1008.2.ca.e.257.19
Level $1008$
Weight $2$
Character 1008.257
Analytic conductor $8.049$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(257,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.257"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.ca (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 257.19
Character \(\chi\) \(=\) 1008.257
Dual form 1008.2.ca.e.353.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.32026 + 1.12112i) q^{3} +(1.38468 + 2.39834i) q^{5} +(1.42373 + 2.23002i) q^{7} +(0.486198 + 2.96034i) q^{9} +(-2.09513 - 1.20962i) q^{11} +(-0.0461613 - 0.0266512i) q^{13} +(-0.860670 + 4.71884i) q^{15} +(1.79727 + 3.11297i) q^{17} +(-3.96978 - 2.29195i) q^{19} +(-0.620412 + 4.54038i) q^{21} +(-0.0925928 + 0.0534585i) q^{23} +(-1.33469 + 2.31176i) q^{25} +(-2.67697 + 4.45352i) q^{27} +(6.57376 - 3.79536i) q^{29} -6.81563i q^{31} +(-1.41000 - 3.94590i) q^{33} +(-3.37694 + 6.50246i) q^{35} +(2.06198 - 3.57146i) q^{37} +(-0.0310660 - 0.0869389i) q^{39} +(-0.838974 + 1.45315i) q^{41} +(-1.74347 - 3.01978i) q^{43} +(-6.42667 + 5.26520i) q^{45} -13.1940 q^{47} +(-2.94599 + 6.34989i) q^{49} +(-1.11712 + 6.12489i) q^{51} +(5.27512 - 3.04559i) q^{53} -6.69977i q^{55} +(-2.67161 - 7.47657i) q^{57} +9.44833 q^{59} +2.65498i q^{61} +(-5.90941 + 5.29896i) q^{63} -0.147614i q^{65} +14.1871 q^{67} +(-0.182180 - 0.0332279i) q^{69} +1.40262i q^{71} +(5.54168 - 3.19949i) q^{73} +(-4.35390 + 1.55579i) q^{75} +(-0.285412 - 6.39435i) q^{77} -4.22133 q^{79} +(-8.52722 + 2.87862i) q^{81} +(6.86670 + 11.8935i) q^{83} +(-4.97731 + 8.62095i) q^{85} +(12.9341 + 2.35907i) q^{87} +(-5.71724 + 9.90254i) q^{89} +(-0.00628839 - 0.140885i) q^{91} +(7.64111 - 8.99843i) q^{93} -12.6945i q^{95} +(-14.3549 + 8.28778i) q^{97} +(2.56224 - 6.79040i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{9} - 8 q^{15} + 8 q^{21} + 12 q^{23} - 24 q^{25} + 18 q^{27} + 18 q^{29} + 10 q^{39} + 6 q^{41} + 6 q^{43} + 6 q^{45} - 36 q^{47} + 6 q^{49} + 12 q^{51} + 12 q^{53} + 4 q^{57} - 46 q^{63} + 54 q^{75}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.32026 + 1.12112i 0.762255 + 0.647277i
\(4\) 0 0
\(5\) 1.38468 + 2.39834i 0.619249 + 1.07257i 0.989623 + 0.143688i \(0.0458962\pi\)
−0.370374 + 0.928883i \(0.620770\pi\)
\(6\) 0 0
\(7\) 1.42373 + 2.23002i 0.538119 + 0.842869i
\(8\) 0 0
\(9\) 0.486198 + 2.96034i 0.162066 + 0.986780i
\(10\) 0 0
\(11\) −2.09513 1.20962i −0.631704 0.364715i 0.149707 0.988730i \(-0.452167\pi\)
−0.781412 + 0.624016i \(0.785500\pi\)
\(12\) 0 0
\(13\) −0.0461613 0.0266512i −0.0128028 0.00739172i 0.493585 0.869698i \(-0.335686\pi\)
−0.506388 + 0.862306i \(0.669020\pi\)
\(14\) 0 0
\(15\) −0.860670 + 4.71884i −0.222224 + 1.21840i
\(16\) 0 0
\(17\) 1.79727 + 3.11297i 0.435903 + 0.755006i 0.997369 0.0724940i \(-0.0230958\pi\)
−0.561466 + 0.827500i \(0.689762\pi\)
\(18\) 0 0
\(19\) −3.96978 2.29195i −0.910730 0.525810i −0.0300639 0.999548i \(-0.509571\pi\)
−0.880666 + 0.473738i \(0.842904\pi\)
\(20\) 0 0
\(21\) −0.620412 + 4.54038i −0.135385 + 0.990793i
\(22\) 0 0
\(23\) −0.0925928 + 0.0534585i −0.0193069 + 0.0111469i −0.509622 0.860398i \(-0.670215\pi\)
0.490315 + 0.871545i \(0.336882\pi\)
\(24\) 0 0
\(25\) −1.33469 + 2.31176i −0.266939 + 0.462351i
\(26\) 0 0
\(27\) −2.67697 + 4.45352i −0.515184 + 0.857080i
\(28\) 0 0
\(29\) 6.57376 3.79536i 1.22072 0.704781i 0.255646 0.966770i \(-0.417712\pi\)
0.965071 + 0.261989i \(0.0843785\pi\)
\(30\) 0 0
\(31\) 6.81563i 1.22412i −0.790810 0.612062i \(-0.790340\pi\)
0.790810 0.612062i \(-0.209660\pi\)
\(32\) 0 0
\(33\) −1.41000 3.94590i −0.245449 0.686893i
\(34\) 0 0
\(35\) −3.37694 + 6.50246i −0.570807 + 1.09912i
\(36\) 0 0
\(37\) 2.06198 3.57146i 0.338988 0.587144i −0.645255 0.763967i \(-0.723249\pi\)
0.984243 + 0.176823i \(0.0565821\pi\)
\(38\) 0 0
\(39\) −0.0310660 0.0869389i −0.00497454 0.0139214i
\(40\) 0 0
\(41\) −0.838974 + 1.45315i −0.131026 + 0.226943i −0.924072 0.382218i \(-0.875160\pi\)
0.793047 + 0.609161i \(0.208494\pi\)
\(42\) 0 0
\(43\) −1.74347 3.01978i −0.265877 0.460513i 0.701916 0.712260i \(-0.252328\pi\)
−0.967793 + 0.251747i \(0.918995\pi\)
\(44\) 0 0
\(45\) −6.42667 + 5.26520i −0.958032 + 0.784890i
\(46\) 0 0
\(47\) −13.1940 −1.92454 −0.962268 0.272104i \(-0.912280\pi\)
−0.962268 + 0.272104i \(0.912280\pi\)
\(48\) 0 0
\(49\) −2.94599 + 6.34989i −0.420855 + 0.907128i
\(50\) 0 0
\(51\) −1.11712 + 6.12489i −0.156428 + 0.857657i
\(52\) 0 0
\(53\) 5.27512 3.04559i 0.724593 0.418344i −0.0918477 0.995773i \(-0.529277\pi\)
0.816441 + 0.577429i \(0.195944\pi\)
\(54\) 0 0
\(55\) 6.69977i 0.903397i
\(56\) 0 0
\(57\) −2.67161 7.47657i −0.353864 0.990295i
\(58\) 0 0
\(59\) 9.44833 1.23007 0.615034 0.788500i \(-0.289142\pi\)
0.615034 + 0.788500i \(0.289142\pi\)
\(60\) 0 0
\(61\) 2.65498i 0.339935i 0.985450 + 0.169967i \(0.0543663\pi\)
−0.985450 + 0.169967i \(0.945634\pi\)
\(62\) 0 0
\(63\) −5.90941 + 5.29896i −0.744515 + 0.667606i
\(64\) 0 0
\(65\) 0.147614i 0.0183093i
\(66\) 0 0
\(67\) 14.1871 1.73323 0.866616 0.498975i \(-0.166290\pi\)
0.866616 + 0.498975i \(0.166290\pi\)
\(68\) 0 0
\(69\) −0.182180 0.0332279i −0.0219319 0.00400017i
\(70\) 0 0
\(71\) 1.40262i 0.166460i 0.996530 + 0.0832300i \(0.0265236\pi\)
−0.996530 + 0.0832300i \(0.973476\pi\)
\(72\) 0 0
\(73\) 5.54168 3.19949i 0.648605 0.374472i −0.139317 0.990248i \(-0.544491\pi\)
0.787921 + 0.615776i \(0.211157\pi\)
\(74\) 0 0
\(75\) −4.35390 + 1.55579i −0.502745 + 0.179647i
\(76\) 0 0
\(77\) −0.285412 6.39435i −0.0325257 0.728704i
\(78\) 0 0
\(79\) −4.22133 −0.474937 −0.237469 0.971395i \(-0.576318\pi\)
−0.237469 + 0.971395i \(0.576318\pi\)
\(80\) 0 0
\(81\) −8.52722 + 2.87862i −0.947469 + 0.319847i
\(82\) 0 0
\(83\) 6.86670 + 11.8935i 0.753719 + 1.30548i 0.946009 + 0.324141i \(0.105075\pi\)
−0.192290 + 0.981338i \(0.561591\pi\)
\(84\) 0 0
\(85\) −4.97731 + 8.62095i −0.539865 + 0.935073i
\(86\) 0 0
\(87\) 12.9341 + 2.35907i 1.38669 + 0.252918i
\(88\) 0 0
\(89\) −5.71724 + 9.90254i −0.606026 + 1.04967i 0.385863 + 0.922556i \(0.373904\pi\)
−0.991888 + 0.127111i \(0.959429\pi\)
\(90\) 0 0
\(91\) −0.00628839 0.140885i −0.000659203 0.0147687i
\(92\) 0 0
\(93\) 7.64111 8.99843i 0.792346 0.933094i
\(94\) 0 0
\(95\) 12.6945i 1.30243i
\(96\) 0 0
\(97\) −14.3549 + 8.28778i −1.45751 + 0.841496i −0.998889 0.0471333i \(-0.984991\pi\)
−0.458626 + 0.888630i \(0.651658\pi\)
\(98\) 0 0
\(99\) 2.56224 6.79040i 0.257515 0.682461i
\(100\) 0 0
\(101\) −5.25000 + 9.09326i −0.522394 + 0.904813i 0.477266 + 0.878759i \(0.341628\pi\)
−0.999661 + 0.0260545i \(0.991706\pi\)
\(102\) 0 0
\(103\) 13.3602 7.71349i 1.31642 0.760033i 0.333266 0.942833i \(-0.391849\pi\)
0.983150 + 0.182800i \(0.0585160\pi\)
\(104\) 0 0
\(105\) −11.7485 + 4.79903i −1.14653 + 0.468338i
\(106\) 0 0
\(107\) 9.76426 + 5.63740i 0.943946 + 0.544988i 0.891195 0.453620i \(-0.149868\pi\)
0.0527511 + 0.998608i \(0.483201\pi\)
\(108\) 0 0
\(109\) −8.06307 13.9657i −0.772302 1.33767i −0.936298 0.351206i \(-0.885772\pi\)
0.163996 0.986461i \(-0.447562\pi\)
\(110\) 0 0
\(111\) 6.72638 2.40355i 0.638440 0.228135i
\(112\) 0 0
\(113\) 11.7542 + 6.78629i 1.10574 + 0.638400i 0.937723 0.347384i \(-0.112930\pi\)
0.168018 + 0.985784i \(0.446263\pi\)
\(114\) 0 0
\(115\) −0.256423 0.148046i −0.0239116 0.0138054i
\(116\) 0 0
\(117\) 0.0564532 0.149611i 0.00521910 0.0138315i
\(118\) 0 0
\(119\) −4.38315 + 8.43998i −0.401803 + 0.773692i
\(120\) 0 0
\(121\) −2.57363 4.45766i −0.233966 0.405242i
\(122\) 0 0
\(123\) −2.73681 + 0.977949i −0.246770 + 0.0881787i
\(124\) 0 0
\(125\) 6.45432 0.577292
\(126\) 0 0
\(127\) 9.23056 0.819080 0.409540 0.912292i \(-0.365689\pi\)
0.409540 + 0.912292i \(0.365689\pi\)
\(128\) 0 0
\(129\) 1.08368 5.94155i 0.0954129 0.523124i
\(130\) 0 0
\(131\) 1.59440 + 2.76158i 0.139303 + 0.241280i 0.927233 0.374485i \(-0.122180\pi\)
−0.787930 + 0.615765i \(0.788847\pi\)
\(132\) 0 0
\(133\) −0.540789 12.1158i −0.0468924 1.05057i
\(134\) 0 0
\(135\) −14.3878 0.253588i −1.23831 0.0218254i
\(136\) 0 0
\(137\) 4.87507 + 2.81462i 0.416505 + 0.240470i 0.693581 0.720379i \(-0.256032\pi\)
−0.277076 + 0.960848i \(0.589365\pi\)
\(138\) 0 0
\(139\) −18.6739 10.7814i −1.58390 0.914467i −0.994282 0.106786i \(-0.965944\pi\)
−0.589620 0.807680i \(-0.700723\pi\)
\(140\) 0 0
\(141\) −17.4195 14.7919i −1.46699 1.24571i
\(142\) 0 0
\(143\) 0.0644758 + 0.111675i 0.00539174 + 0.00933877i
\(144\) 0 0
\(145\) 18.2052 + 10.5107i 1.51186 + 0.872870i
\(146\) 0 0
\(147\) −11.0085 + 5.08075i −0.907962 + 0.419053i
\(148\) 0 0
\(149\) 16.5674 9.56517i 1.35725 0.783609i 0.367998 0.929826i \(-0.380043\pi\)
0.989252 + 0.146217i \(0.0467099\pi\)
\(150\) 0 0
\(151\) −3.94050 + 6.82515i −0.320673 + 0.555423i −0.980627 0.195884i \(-0.937243\pi\)
0.659954 + 0.751306i \(0.270576\pi\)
\(152\) 0 0
\(153\) −8.34161 + 6.83406i −0.674380 + 0.552501i
\(154\) 0 0
\(155\) 16.3462 9.43748i 1.31296 0.758037i
\(156\) 0 0
\(157\) 19.9593i 1.59293i −0.604687 0.796463i \(-0.706702\pi\)
0.604687 0.796463i \(-0.293298\pi\)
\(158\) 0 0
\(159\) 10.3790 + 1.89303i 0.823109 + 0.150127i
\(160\) 0 0
\(161\) −0.251041 0.130373i −0.0197848 0.0102749i
\(162\) 0 0
\(163\) −12.0423 + 20.8578i −0.943223 + 1.63371i −0.183951 + 0.982935i \(0.558889\pi\)
−0.759271 + 0.650774i \(0.774444\pi\)
\(164\) 0 0
\(165\) 7.51122 8.84547i 0.584748 0.688619i
\(166\) 0 0
\(167\) 0.793686 1.37470i 0.0614172 0.106378i −0.833682 0.552245i \(-0.813771\pi\)
0.895099 + 0.445867i \(0.147105\pi\)
\(168\) 0 0
\(169\) −6.49858 11.2559i −0.499891 0.865836i
\(170\) 0 0
\(171\) 4.85486 12.8662i 0.371260 0.983906i
\(172\) 0 0
\(173\) 4.23711 0.322142 0.161071 0.986943i \(-0.448505\pi\)
0.161071 + 0.986943i \(0.448505\pi\)
\(174\) 0 0
\(175\) −7.05551 + 0.314923i −0.533346 + 0.0238059i
\(176\) 0 0
\(177\) 12.4743 + 10.5927i 0.937626 + 0.796194i
\(178\) 0 0
\(179\) −3.38034 + 1.95164i −0.252658 + 0.145872i −0.620981 0.783826i \(-0.713266\pi\)
0.368323 + 0.929698i \(0.379932\pi\)
\(180\) 0 0
\(181\) 15.3685i 1.14233i 0.820835 + 0.571166i \(0.193509\pi\)
−0.820835 + 0.571166i \(0.806491\pi\)
\(182\) 0 0
\(183\) −2.97654 + 3.50527i −0.220032 + 0.259117i
\(184\) 0 0
\(185\) 11.4208 0.839671
\(186\) 0 0
\(187\) 8.69608i 0.635921i
\(188\) 0 0
\(189\) −13.7427 + 0.370896i −0.999636 + 0.0269787i
\(190\) 0 0
\(191\) 2.63751i 0.190844i −0.995437 0.0954219i \(-0.969580\pi\)
0.995437 0.0954219i \(-0.0304200\pi\)
\(192\) 0 0
\(193\) −7.45930 −0.536932 −0.268466 0.963289i \(-0.586517\pi\)
−0.268466 + 0.963289i \(0.586517\pi\)
\(194\) 0 0
\(195\) 0.165492 0.194890i 0.0118512 0.0139563i
\(196\) 0 0
\(197\) 2.77770i 0.197903i −0.995092 0.0989515i \(-0.968451\pi\)
0.995092 0.0989515i \(-0.0315489\pi\)
\(198\) 0 0
\(199\) 3.49892 2.02010i 0.248032 0.143201i −0.370831 0.928700i \(-0.620927\pi\)
0.618863 + 0.785499i \(0.287594\pi\)
\(200\) 0 0
\(201\) 18.7308 + 15.9054i 1.32117 + 1.12188i
\(202\) 0 0
\(203\) 17.8230 + 9.25606i 1.25093 + 0.649648i
\(204\) 0 0
\(205\) −4.64685 −0.324550
\(206\) 0 0
\(207\) −0.203274 0.248115i −0.0141285 0.0172452i
\(208\) 0 0
\(209\) 5.54479 + 9.60386i 0.383541 + 0.664313i
\(210\) 0 0
\(211\) 10.4855 18.1614i 0.721849 1.25028i −0.238409 0.971165i \(-0.576626\pi\)
0.960258 0.279115i \(-0.0900410\pi\)
\(212\) 0 0
\(213\) −1.57250 + 1.85183i −0.107746 + 0.126885i
\(214\) 0 0
\(215\) 4.82831 8.36289i 0.329288 0.570344i
\(216\) 0 0
\(217\) 15.1990 9.70361i 1.03178 0.658724i
\(218\) 0 0
\(219\) 10.9035 + 1.98869i 0.736789 + 0.134383i
\(220\) 0 0
\(221\) 0.191598i 0.0128883i
\(222\) 0 0
\(223\) −8.82344 + 5.09421i −0.590861 + 0.341134i −0.765438 0.643510i \(-0.777478\pi\)
0.174577 + 0.984644i \(0.444144\pi\)
\(224\) 0 0
\(225\) −7.49251 2.82717i −0.499501 0.188478i
\(226\) 0 0
\(227\) 5.03151 8.71483i 0.333953 0.578424i −0.649330 0.760507i \(-0.724951\pi\)
0.983283 + 0.182083i \(0.0582839\pi\)
\(228\) 0 0
\(229\) 12.9518 7.47775i 0.855882 0.494144i −0.00674926 0.999977i \(-0.502148\pi\)
0.862631 + 0.505834i \(0.168815\pi\)
\(230\) 0 0
\(231\) 6.79199 8.76221i 0.446880 0.576511i
\(232\) 0 0
\(233\) −14.3200 8.26764i −0.938133 0.541631i −0.0487581 0.998811i \(-0.515526\pi\)
−0.889374 + 0.457180i \(0.848860\pi\)
\(234\) 0 0
\(235\) −18.2694 31.6436i −1.19177 2.06420i
\(236\) 0 0
\(237\) −5.57328 4.73260i −0.362023 0.307416i
\(238\) 0 0
\(239\) −9.02155 5.20859i −0.583555 0.336916i 0.178990 0.983851i \(-0.442717\pi\)
−0.762545 + 0.646935i \(0.776050\pi\)
\(240\) 0 0
\(241\) −8.97668 5.18269i −0.578239 0.333846i 0.182194 0.983263i \(-0.441680\pi\)
−0.760433 + 0.649416i \(0.775013\pi\)
\(242\) 0 0
\(243\) −14.4855 5.75946i −0.929243 0.369470i
\(244\) 0 0
\(245\) −19.3085 + 1.72711i −1.23357 + 0.110341i
\(246\) 0 0
\(247\) 0.122167 + 0.211599i 0.00777328 + 0.0134637i
\(248\) 0 0
\(249\) −4.26810 + 23.4009i −0.270480 + 1.48297i
\(250\) 0 0
\(251\) −13.1006 −0.826903 −0.413452 0.910526i \(-0.635677\pi\)
−0.413452 + 0.910526i \(0.635677\pi\)
\(252\) 0 0
\(253\) 0.258658 0.0162617
\(254\) 0 0
\(255\) −16.2364 + 5.80180i −1.01677 + 0.363323i
\(256\) 0 0
\(257\) 0.443415 + 0.768018i 0.0276595 + 0.0479076i 0.879524 0.475855i \(-0.157861\pi\)
−0.851864 + 0.523763i \(0.824528\pi\)
\(258\) 0 0
\(259\) 10.9001 0.486527i 0.677301 0.0302313i
\(260\) 0 0
\(261\) 14.4317 + 17.6153i 0.893301 + 1.09036i
\(262\) 0 0
\(263\) −6.17036 3.56246i −0.380481 0.219671i 0.297547 0.954707i \(-0.403832\pi\)
−0.678028 + 0.735037i \(0.737165\pi\)
\(264\) 0 0
\(265\) 14.6087 + 8.43436i 0.897407 + 0.518118i
\(266\) 0 0
\(267\) −18.6502 + 6.66429i −1.14137 + 0.407848i
\(268\) 0 0
\(269\) −15.7987 27.3641i −0.963261 1.66842i −0.714216 0.699925i \(-0.753217\pi\)
−0.249045 0.968492i \(-0.580117\pi\)
\(270\) 0 0
\(271\) 15.8215 + 9.13455i 0.961088 + 0.554884i 0.896508 0.443028i \(-0.146096\pi\)
0.0645803 + 0.997913i \(0.479429\pi\)
\(272\) 0 0
\(273\) 0.149646 0.193055i 0.00905698 0.0116842i
\(274\) 0 0
\(275\) 5.59270 3.22895i 0.337253 0.194713i
\(276\) 0 0
\(277\) 15.2845 26.4735i 0.918357 1.59064i 0.116447 0.993197i \(-0.462850\pi\)
0.801910 0.597444i \(-0.203817\pi\)
\(278\) 0 0
\(279\) 20.1766 3.31375i 1.20794 0.198389i
\(280\) 0 0
\(281\) 3.92237 2.26458i 0.233989 0.135094i −0.378422 0.925633i \(-0.623533\pi\)
0.612411 + 0.790540i \(0.290200\pi\)
\(282\) 0 0
\(283\) 9.36150i 0.556484i −0.960511 0.278242i \(-0.910248\pi\)
0.960511 0.278242i \(-0.0897517\pi\)
\(284\) 0 0
\(285\) 14.2320 16.7601i 0.843032 0.992784i
\(286\) 0 0
\(287\) −4.43502 + 0.197957i −0.261791 + 0.0116850i
\(288\) 0 0
\(289\) 2.03962 3.53272i 0.119977 0.207807i
\(290\) 0 0
\(291\) −28.2438 5.15139i −1.65568 0.301980i
\(292\) 0 0
\(293\) 8.17267 14.1555i 0.477452 0.826972i −0.522214 0.852815i \(-0.674894\pi\)
0.999666 + 0.0258430i \(0.00822701\pi\)
\(294\) 0 0
\(295\) 13.0829 + 22.6603i 0.761719 + 1.31934i
\(296\) 0 0
\(297\) 10.9957 6.09255i 0.638033 0.353526i
\(298\) 0 0
\(299\) 0.00569894 0.000329578
\(300\) 0 0
\(301\) 4.25195 8.18734i 0.245078 0.471910i
\(302\) 0 0
\(303\) −17.1260 + 6.11966i −0.983862 + 0.351565i
\(304\) 0 0
\(305\) −6.36754 + 3.67630i −0.364604 + 0.210504i
\(306\) 0 0
\(307\) 0.985041i 0.0562193i −0.999605 0.0281096i \(-0.991051\pi\)
0.999605 0.0281096i \(-0.00894875\pi\)
\(308\) 0 0
\(309\) 26.2867 + 4.79444i 1.49540 + 0.272746i
\(310\) 0 0
\(311\) 26.2604 1.48909 0.744545 0.667573i \(-0.232667\pi\)
0.744545 + 0.667573i \(0.232667\pi\)
\(312\) 0 0
\(313\) 14.5329i 0.821446i −0.911760 0.410723i \(-0.865276\pi\)
0.911760 0.410723i \(-0.134724\pi\)
\(314\) 0 0
\(315\) −20.8914 6.83540i −1.17709 0.385131i
\(316\) 0 0
\(317\) 29.4620i 1.65475i 0.561649 + 0.827375i \(0.310167\pi\)
−0.561649 + 0.827375i \(0.689833\pi\)
\(318\) 0 0
\(319\) −18.3638 −1.02818
\(320\) 0 0
\(321\) 6.57123 + 18.3897i 0.366770 + 1.02641i
\(322\) 0 0
\(323\) 16.4771i 0.916808i
\(324\) 0 0
\(325\) 0.123222 0.0711425i 0.00683515 0.00394627i
\(326\) 0 0
\(327\) 5.01172 27.4780i 0.277149 1.51954i
\(328\) 0 0
\(329\) −18.7846 29.4228i −1.03563 1.62213i
\(330\) 0 0
\(331\) 5.82030 0.319913 0.159956 0.987124i \(-0.448865\pi\)
0.159956 + 0.987124i \(0.448865\pi\)
\(332\) 0 0
\(333\) 11.5753 + 4.36773i 0.634320 + 0.239350i
\(334\) 0 0
\(335\) 19.6447 + 34.0255i 1.07330 + 1.85901i
\(336\) 0 0
\(337\) −11.4909 + 19.9028i −0.625950 + 1.08418i 0.362407 + 0.932020i \(0.381955\pi\)
−0.988356 + 0.152157i \(0.951378\pi\)
\(338\) 0 0
\(339\) 7.91043 + 22.1375i 0.429636 + 1.20234i
\(340\) 0 0
\(341\) −8.24433 + 14.2796i −0.446456 + 0.773284i
\(342\) 0 0
\(343\) −18.3547 + 2.47092i −0.991060 + 0.133417i
\(344\) 0 0
\(345\) −0.172570 0.482940i −0.00929085 0.0260006i
\(346\) 0 0
\(347\) 14.9459i 0.802336i −0.916005 0.401168i \(-0.868604\pi\)
0.916005 0.401168i \(-0.131396\pi\)
\(348\) 0 0
\(349\) 0.768588 0.443744i 0.0411416 0.0237531i −0.479288 0.877658i \(-0.659105\pi\)
0.520430 + 0.853905i \(0.325772\pi\)
\(350\) 0 0
\(351\) 0.242264 0.134235i 0.0129311 0.00716496i
\(352\) 0 0
\(353\) 2.52498 4.37339i 0.134391 0.232772i −0.790974 0.611850i \(-0.790426\pi\)
0.925365 + 0.379078i \(0.123759\pi\)
\(354\) 0 0
\(355\) −3.36395 + 1.94218i −0.178540 + 0.103080i
\(356\) 0 0
\(357\) −15.2491 + 6.22899i −0.807069 + 0.329673i
\(358\) 0 0
\(359\) −30.2467 17.4629i −1.59636 0.921659i −0.992181 0.124810i \(-0.960168\pi\)
−0.604179 0.796848i \(-0.706499\pi\)
\(360\) 0 0
\(361\) 1.00610 + 1.74261i 0.0529524 + 0.0917163i
\(362\) 0 0
\(363\) 1.59968 8.77063i 0.0839614 0.460339i
\(364\) 0 0
\(365\) 15.3469 + 8.86056i 0.803296 + 0.463783i
\(366\) 0 0
\(367\) 19.9959 + 11.5446i 1.04378 + 0.602625i 0.920901 0.389797i \(-0.127455\pi\)
0.122876 + 0.992422i \(0.460788\pi\)
\(368\) 0 0
\(369\) −4.70971 1.77713i −0.245178 0.0925137i
\(370\) 0 0
\(371\) 14.3021 + 7.42753i 0.742527 + 0.385618i
\(372\) 0 0
\(373\) −0.899257 1.55756i −0.0465617 0.0806473i 0.841805 0.539781i \(-0.181493\pi\)
−0.888367 + 0.459134i \(0.848160\pi\)
\(374\) 0 0
\(375\) 8.52141 + 7.23604i 0.440044 + 0.373668i
\(376\) 0 0
\(377\) −0.404605 −0.0208382
\(378\) 0 0
\(379\) 3.34605 0.171875 0.0859375 0.996301i \(-0.472611\pi\)
0.0859375 + 0.996301i \(0.472611\pi\)
\(380\) 0 0
\(381\) 12.1868 + 10.3485i 0.624348 + 0.530171i
\(382\) 0 0
\(383\) −0.989164 1.71328i −0.0505439 0.0875447i 0.839647 0.543133i \(-0.182762\pi\)
−0.890190 + 0.455589i \(0.849429\pi\)
\(384\) 0 0
\(385\) 14.9406 9.53866i 0.761445 0.486135i
\(386\) 0 0
\(387\) 8.09191 6.62949i 0.411335 0.336996i
\(388\) 0 0
\(389\) −30.2325 17.4547i −1.53285 0.884990i −0.999229 0.0392657i \(-0.987498\pi\)
−0.533619 0.845725i \(-0.679169\pi\)
\(390\) 0 0
\(391\) −0.332829 0.192159i −0.0168319 0.00971789i
\(392\) 0 0
\(393\) −0.991021 + 5.43352i −0.0499904 + 0.274085i
\(394\) 0 0
\(395\) −5.84521 10.1242i −0.294104 0.509404i
\(396\) 0 0
\(397\) 2.73751 + 1.58050i 0.137392 + 0.0793231i 0.567120 0.823635i \(-0.308057\pi\)
−0.429729 + 0.902958i \(0.641391\pi\)
\(398\) 0 0
\(399\) 12.8692 16.6024i 0.644268 0.831158i
\(400\) 0 0
\(401\) −28.6041 + 16.5146i −1.42842 + 0.824698i −0.996996 0.0774514i \(-0.975322\pi\)
−0.431423 + 0.902150i \(0.641988\pi\)
\(402\) 0 0
\(403\) −0.181645 + 0.314618i −0.00904838 + 0.0156723i
\(404\) 0 0
\(405\) −18.7114 16.4652i −0.929778 0.818163i
\(406\) 0 0
\(407\) −8.64023 + 4.98844i −0.428280 + 0.247268i
\(408\) 0 0
\(409\) 1.07813i 0.0533099i −0.999645 0.0266549i \(-0.991514\pi\)
0.999645 0.0266549i \(-0.00848553\pi\)
\(410\) 0 0
\(411\) 3.28087 + 9.18157i 0.161833 + 0.452893i
\(412\) 0 0
\(413\) 13.4519 + 21.0700i 0.661923 + 1.03679i
\(414\) 0 0
\(415\) −19.0164 + 32.9374i −0.933479 + 1.61683i
\(416\) 0 0
\(417\) −12.5673 35.1699i −0.615425 1.72228i
\(418\) 0 0
\(419\) −13.2799 + 23.0015i −0.648768 + 1.12370i 0.334650 + 0.942343i \(0.391382\pi\)
−0.983418 + 0.181356i \(0.941951\pi\)
\(420\) 0 0
\(421\) 3.32791 + 5.76411i 0.162192 + 0.280925i 0.935655 0.352917i \(-0.114810\pi\)
−0.773462 + 0.633842i \(0.781477\pi\)
\(422\) 0 0
\(423\) −6.41487 39.0586i −0.311902 1.89909i
\(424\) 0 0
\(425\) −9.59524 −0.465437
\(426\) 0 0
\(427\) −5.92065 + 3.77997i −0.286521 + 0.182926i
\(428\) 0 0
\(429\) −0.0400759 + 0.219726i −0.00193488 + 0.0106085i
\(430\) 0 0
\(431\) 13.2930 7.67471i 0.640300 0.369678i −0.144430 0.989515i \(-0.546135\pi\)
0.784730 + 0.619837i \(0.212801\pi\)
\(432\) 0 0
\(433\) 15.9407i 0.766060i −0.923736 0.383030i \(-0.874881\pi\)
0.923736 0.383030i \(-0.125119\pi\)
\(434\) 0 0
\(435\) 12.2519 + 34.2871i 0.587431 + 1.64394i
\(436\) 0 0
\(437\) 0.490097 0.0234445
\(438\) 0 0
\(439\) 20.6424i 0.985207i 0.870254 + 0.492603i \(0.163955\pi\)
−0.870254 + 0.492603i \(0.836045\pi\)
\(440\) 0 0
\(441\) −20.2302 5.63382i −0.963342 0.268277i
\(442\) 0 0
\(443\) 1.45354i 0.0690595i 0.999404 + 0.0345298i \(0.0109934\pi\)
−0.999404 + 0.0345298i \(0.989007\pi\)
\(444\) 0 0
\(445\) −31.6662 −1.50112
\(446\) 0 0
\(447\) 32.5970 + 5.94537i 1.54178 + 0.281207i
\(448\) 0 0
\(449\) 9.09933i 0.429424i 0.976677 + 0.214712i \(0.0688813\pi\)
−0.976677 + 0.214712i \(0.931119\pi\)
\(450\) 0 0
\(451\) 3.51551 2.02968i 0.165539 0.0955740i
\(452\) 0 0
\(453\) −12.8543 + 4.59324i −0.603947 + 0.215809i
\(454\) 0 0
\(455\) 0.329182 0.210163i 0.0154323 0.00985257i
\(456\) 0 0
\(457\) −14.4642 −0.676606 −0.338303 0.941037i \(-0.609853\pi\)
−0.338303 + 0.941037i \(0.609853\pi\)
\(458\) 0 0
\(459\) −18.6749 0.329149i −0.871670 0.0153634i
\(460\) 0 0
\(461\) 13.2769 + 22.9963i 0.618369 + 1.07105i 0.989783 + 0.142579i \(0.0455395\pi\)
−0.371415 + 0.928467i \(0.621127\pi\)
\(462\) 0 0
\(463\) −15.4968 + 26.8412i −0.720196 + 1.24742i 0.240725 + 0.970593i \(0.422615\pi\)
−0.960921 + 0.276823i \(0.910718\pi\)
\(464\) 0 0
\(465\) 32.1618 + 5.86601i 1.49147 + 0.272030i
\(466\) 0 0
\(467\) −10.1348 + 17.5541i −0.468985 + 0.812306i −0.999371 0.0354503i \(-0.988713\pi\)
0.530387 + 0.847756i \(0.322047\pi\)
\(468\) 0 0
\(469\) 20.1986 + 31.6376i 0.932686 + 1.46089i
\(470\) 0 0
\(471\) 22.3767 26.3516i 1.03106 1.21422i
\(472\) 0 0
\(473\) 8.43577i 0.387877i
\(474\) 0 0
\(475\) 10.5969 6.11811i 0.486218 0.280718i
\(476\) 0 0
\(477\) 11.5807 + 14.1354i 0.530245 + 0.647215i
\(478\) 0 0
\(479\) −8.01288 + 13.8787i −0.366118 + 0.634135i −0.988955 0.148217i \(-0.952647\pi\)
0.622837 + 0.782352i \(0.285980\pi\)
\(480\) 0 0
\(481\) −0.190368 + 0.109909i −0.00868001 + 0.00501141i
\(482\) 0 0
\(483\) −0.185276 0.453573i −0.00843036 0.0206383i
\(484\) 0 0
\(485\) −39.7538 22.9519i −1.80513 1.04219i
\(486\) 0 0
\(487\) −8.54048 14.7925i −0.387006 0.670314i 0.605039 0.796196i \(-0.293157\pi\)
−0.992045 + 0.125881i \(0.959824\pi\)
\(488\) 0 0
\(489\) −39.2830 + 14.0371i −1.77644 + 0.634778i
\(490\) 0 0
\(491\) −12.9745 7.49082i −0.585530 0.338056i 0.177798 0.984067i \(-0.443103\pi\)
−0.763328 + 0.646011i \(0.776436\pi\)
\(492\) 0 0
\(493\) 23.6297 + 13.6426i 1.06423 + 0.614432i
\(494\) 0 0
\(495\) 19.8336 3.25742i 0.891454 0.146410i
\(496\) 0 0
\(497\) −3.12787 + 1.99695i −0.140304 + 0.0895753i
\(498\) 0 0
\(499\) 12.6638 + 21.9343i 0.566910 + 0.981916i 0.996869 + 0.0790682i \(0.0251945\pi\)
−0.429960 + 0.902848i \(0.641472\pi\)
\(500\) 0 0
\(501\) 2.58908 0.925160i 0.115671 0.0413331i
\(502\) 0 0
\(503\) −9.95401 −0.443827 −0.221914 0.975066i \(-0.571230\pi\)
−0.221914 + 0.975066i \(0.571230\pi\)
\(504\) 0 0
\(505\) −29.0783 −1.29397
\(506\) 0 0
\(507\) 4.03929 22.1464i 0.179391 0.983556i
\(508\) 0 0
\(509\) −5.82977 10.0975i −0.258400 0.447562i 0.707413 0.706800i \(-0.249862\pi\)
−0.965813 + 0.259238i \(0.916529\pi\)
\(510\) 0 0
\(511\) 15.0248 + 7.80285i 0.664657 + 0.345178i
\(512\) 0 0
\(513\) 20.8342 11.5440i 0.919854 0.509679i
\(514\) 0 0
\(515\) 36.9992 + 21.3615i 1.63038 + 0.941300i
\(516\) 0 0
\(517\) 27.6430 + 15.9597i 1.21574 + 0.701906i
\(518\) 0 0
\(519\) 5.59411 + 4.75029i 0.245554 + 0.208515i
\(520\) 0 0
\(521\) 8.59307 + 14.8836i 0.376469 + 0.652064i 0.990546 0.137183i \(-0.0438048\pi\)
−0.614077 + 0.789246i \(0.710471\pi\)
\(522\) 0 0
\(523\) 38.1175 + 22.0071i 1.66676 + 0.962305i 0.969367 + 0.245616i \(0.0789903\pi\)
0.697394 + 0.716688i \(0.254343\pi\)
\(524\) 0 0
\(525\) −9.66821 7.49426i −0.421955 0.327076i
\(526\) 0 0
\(527\) 21.2168 12.2495i 0.924220 0.533599i
\(528\) 0 0
\(529\) −11.4943 + 19.9087i −0.499751 + 0.865595i
\(530\) 0 0
\(531\) 4.59376 + 27.9703i 0.199352 + 1.21381i
\(532\) 0 0
\(533\) 0.0774562 0.0447194i 0.00335500 0.00193701i
\(534\) 0 0
\(535\) 31.2240i 1.34993i
\(536\) 0 0
\(537\) −6.65095 1.21307i −0.287010 0.0523478i
\(538\) 0 0
\(539\) 13.8532 9.74030i 0.596699 0.419544i
\(540\) 0 0
\(541\) −5.06580 + 8.77423i −0.217796 + 0.377234i −0.954134 0.299380i \(-0.903220\pi\)
0.736338 + 0.676614i \(0.236553\pi\)
\(542\) 0 0
\(543\) −17.2299 + 20.2905i −0.739405 + 0.870749i
\(544\) 0 0
\(545\) 22.3296 38.6760i 0.956495 1.65670i
\(546\) 0 0
\(547\) −17.0000 29.4449i −0.726869 1.25897i −0.958200 0.286099i \(-0.907642\pi\)
0.231331 0.972875i \(-0.425692\pi\)
\(548\) 0 0
\(549\) −7.85963 + 1.29084i −0.335441 + 0.0550919i
\(550\) 0 0
\(551\) −34.7952 −1.48232
\(552\) 0 0
\(553\) −6.01004 9.41366i −0.255573 0.400310i
\(554\) 0 0
\(555\) 15.0784 + 12.8040i 0.640044 + 0.543500i
\(556\) 0 0
\(557\) −1.88366 + 1.08753i −0.0798133 + 0.0460802i −0.539376 0.842065i \(-0.681340\pi\)
0.459562 + 0.888146i \(0.348006\pi\)
\(558\) 0 0
\(559\) 0.185863i 0.00786116i
\(560\) 0 0
\(561\) 9.74932 11.4811i 0.411617 0.484734i
\(562\) 0 0
\(563\) 4.49555 0.189465 0.0947324 0.995503i \(-0.469800\pi\)
0.0947324 + 0.995503i \(0.469800\pi\)
\(564\) 0 0
\(565\) 37.5874i 1.58131i
\(566\) 0 0
\(567\) −18.5599 14.9175i −0.779440 0.626476i
\(568\) 0 0
\(569\) 6.12306i 0.256692i −0.991729 0.128346i \(-0.959033\pi\)
0.991729 0.128346i \(-0.0409668\pi\)
\(570\) 0 0
\(571\) 32.3658 1.35447 0.677233 0.735769i \(-0.263179\pi\)
0.677233 + 0.735769i \(0.263179\pi\)
\(572\) 0 0
\(573\) 2.95696 3.48222i 0.123529 0.145472i
\(574\) 0 0
\(575\) 0.285403i 0.0119021i
\(576\) 0 0
\(577\) −34.2034 + 19.7473i −1.42390 + 0.822092i −0.996630 0.0820304i \(-0.973860\pi\)
−0.427274 + 0.904122i \(0.640526\pi\)
\(578\) 0 0
\(579\) −9.84825 8.36274i −0.409279 0.347544i
\(580\) 0 0
\(581\) −16.7464 + 32.2460i −0.694757 + 1.33779i
\(582\) 0 0
\(583\) −14.7361 −0.610305
\(584\) 0 0
\(585\) 0.436988 0.0717697i 0.0180672 0.00296731i
\(586\) 0 0
\(587\) 0.129711 + 0.224667i 0.00535376 + 0.00927298i 0.868690 0.495356i \(-0.164963\pi\)
−0.863336 + 0.504629i \(0.831629\pi\)
\(588\) 0 0
\(589\) −15.6211 + 27.0565i −0.643656 + 1.11485i
\(590\) 0 0
\(591\) 3.11412 3.66730i 0.128098 0.150853i
\(592\) 0 0
\(593\) −3.13549 + 5.43083i −0.128759 + 0.223017i −0.923196 0.384329i \(-0.874433\pi\)
0.794437 + 0.607347i \(0.207766\pi\)
\(594\) 0 0
\(595\) −26.3112 + 1.17440i −1.07866 + 0.0481458i
\(596\) 0 0
\(597\) 6.88427 + 1.25563i 0.281754 + 0.0513893i
\(598\) 0 0
\(599\) 6.37396i 0.260433i −0.991486 0.130217i \(-0.958433\pi\)
0.991486 0.130217i \(-0.0415672\pi\)
\(600\) 0 0
\(601\) 15.0862 8.71001i 0.615378 0.355289i −0.159689 0.987167i \(-0.551049\pi\)
0.775067 + 0.631879i \(0.217716\pi\)
\(602\) 0 0
\(603\) 6.89775 + 41.9987i 0.280898 + 1.71032i
\(604\) 0 0
\(605\) 7.12732 12.3449i 0.289767 0.501891i
\(606\) 0 0
\(607\) −1.56183 + 0.901722i −0.0633927 + 0.0365998i −0.531361 0.847145i \(-0.678319\pi\)
0.467969 + 0.883745i \(0.344986\pi\)
\(608\) 0 0
\(609\) 13.1540 + 32.2021i 0.533026 + 1.30489i
\(610\) 0 0
\(611\) 0.609050 + 0.351635i 0.0246395 + 0.0142256i
\(612\) 0 0
\(613\) −17.6290 30.5343i −0.712028 1.23327i −0.964095 0.265559i \(-0.914443\pi\)
0.252066 0.967710i \(-0.418890\pi\)
\(614\) 0 0
\(615\) −6.13507 5.20966i −0.247390 0.210074i
\(616\) 0 0
\(617\) −7.73458 4.46556i −0.311383 0.179777i 0.336162 0.941804i \(-0.390871\pi\)
−0.647545 + 0.762027i \(0.724204\pi\)
\(618\) 0 0
\(619\) −33.3546 19.2573i −1.34064 0.774016i −0.353735 0.935346i \(-0.615088\pi\)
−0.986901 + 0.161330i \(0.948422\pi\)
\(620\) 0 0
\(621\) 0.00979028 0.555470i 0.000392870 0.0222903i
\(622\) 0 0
\(623\) −30.2227 + 1.34899i −1.21085 + 0.0540461i
\(624\) 0 0
\(625\) 15.6107 + 27.0384i 0.624426 + 1.08154i
\(626\) 0 0
\(627\) −3.44645 + 18.8960i −0.137638 + 0.754633i
\(628\) 0 0
\(629\) 14.8238 0.591063
\(630\) 0 0
\(631\) 24.5826 0.978616 0.489308 0.872111i \(-0.337249\pi\)
0.489308 + 0.872111i \(0.337249\pi\)
\(632\) 0 0
\(633\) 34.2046 12.2224i 1.35951 0.485796i
\(634\) 0 0
\(635\) 12.7814 + 22.1380i 0.507214 + 0.878521i
\(636\) 0 0
\(637\) 0.305223 0.214605i 0.0120934 0.00850297i
\(638\) 0 0
\(639\) −4.15222 + 0.681950i −0.164259 + 0.0269775i
\(640\) 0 0
\(641\) 29.1635 + 16.8376i 1.15189 + 0.665044i 0.949347 0.314229i \(-0.101746\pi\)
0.202543 + 0.979273i \(0.435079\pi\)
\(642\) 0 0
\(643\) 2.02496 + 1.16911i 0.0798567 + 0.0461053i 0.539397 0.842052i \(-0.318652\pi\)
−0.459540 + 0.888157i \(0.651986\pi\)
\(644\) 0 0
\(645\) 15.7504 5.62812i 0.620172 0.221607i
\(646\) 0 0
\(647\) 1.89769 + 3.28689i 0.0746059 + 0.129221i 0.900915 0.433996i \(-0.142897\pi\)
−0.826309 + 0.563217i \(0.809563\pi\)
\(648\) 0 0
\(649\) −19.7955 11.4289i −0.777040 0.448624i
\(650\) 0 0
\(651\) 30.9456 + 4.22850i 1.21285 + 0.165728i
\(652\) 0 0
\(653\) 10.1456 5.85755i 0.397027 0.229224i −0.288173 0.957578i \(-0.593048\pi\)
0.685200 + 0.728355i \(0.259715\pi\)
\(654\) 0 0
\(655\) −4.41547 + 7.64782i −0.172527 + 0.298825i
\(656\) 0 0
\(657\) 12.1659 + 14.8497i 0.474638 + 0.579341i
\(658\) 0 0
\(659\) −22.4962 + 12.9882i −0.876329 + 0.505949i −0.869446 0.494028i \(-0.835524\pi\)
−0.00688257 + 0.999976i \(0.502191\pi\)
\(660\) 0 0
\(661\) 6.86096i 0.266860i −0.991058 0.133430i \(-0.957401\pi\)
0.991058 0.133430i \(-0.0425992\pi\)
\(662\) 0 0
\(663\) 0.214804 0.252960i 0.00834229 0.00982417i
\(664\) 0 0
\(665\) 28.3090 18.0736i 1.09778 0.700862i
\(666\) 0 0
\(667\) −0.405789 + 0.702846i −0.0157122 + 0.0272143i
\(668\) 0 0
\(669\) −17.3605 3.16639i −0.671195 0.122420i
\(670\) 0 0
\(671\) 3.21152 5.56251i 0.123979 0.214738i
\(672\) 0 0
\(673\) −0.652179 1.12961i −0.0251397 0.0435432i 0.853182 0.521614i \(-0.174670\pi\)
−0.878322 + 0.478070i \(0.841336\pi\)
\(674\) 0 0
\(675\) −6.72251 12.1326i −0.258749 0.466984i
\(676\) 0 0
\(677\) −13.2303 −0.508483 −0.254241 0.967141i \(-0.581826\pi\)
−0.254241 + 0.967141i \(0.581826\pi\)
\(678\) 0 0
\(679\) −38.9193 20.2121i −1.49359 0.775668i
\(680\) 0 0
\(681\) 16.4133 5.86498i 0.628958 0.224747i
\(682\) 0 0
\(683\) −1.49949 + 0.865733i −0.0573765 + 0.0331264i −0.528414 0.848987i \(-0.677213\pi\)
0.471037 + 0.882113i \(0.343880\pi\)
\(684\) 0 0
\(685\) 15.5894i 0.595642i
\(686\) 0 0
\(687\) 25.4833 + 4.64791i 0.972248 + 0.177329i
\(688\) 0 0
\(689\) −0.324675 −0.0123691
\(690\) 0 0
\(691\) 8.40092i 0.319586i 0.987151 + 0.159793i \(0.0510827\pi\)
−0.987151 + 0.159793i \(0.948917\pi\)
\(692\) 0 0
\(693\) 18.7907 3.95384i 0.713799 0.150194i
\(694\) 0 0
\(695\) 59.7153i 2.26513i
\(696\) 0 0
\(697\) −6.03146 −0.228458
\(698\) 0 0
\(699\) −9.63717 26.9698i −0.364511 1.02009i
\(700\) 0 0
\(701\) 21.3493i 0.806353i −0.915122 0.403176i \(-0.867906\pi\)
0.915122 0.403176i \(-0.132094\pi\)
\(702\) 0 0
\(703\) −16.3712 + 9.45193i −0.617452 + 0.356486i
\(704\) 0 0
\(705\) 11.3556 62.2601i 0.427678 2.34485i
\(706\) 0 0
\(707\) −27.7527 + 1.23874i −1.04375 + 0.0465877i
\(708\) 0 0
\(709\) −19.2617 −0.723390 −0.361695 0.932296i \(-0.617802\pi\)
−0.361695 + 0.932296i \(0.617802\pi\)
\(710\) 0 0
\(711\) −2.05240 12.4966i −0.0769712 0.468658i
\(712\) 0 0
\(713\) 0.364353 + 0.631078i 0.0136451 + 0.0236341i
\(714\) 0 0
\(715\) −0.178557 + 0.309270i −0.00667766 + 0.0115660i
\(716\) 0 0
\(717\) −6.07139 16.9909i −0.226740 0.634538i
\(718\) 0 0
\(719\) −5.39920 + 9.35168i −0.201356 + 0.348759i −0.948966 0.315380i \(-0.897868\pi\)
0.747610 + 0.664138i \(0.231201\pi\)
\(720\) 0 0
\(721\) 36.2225 + 18.8115i 1.34900 + 0.700577i
\(722\) 0 0
\(723\) −6.04120 16.9064i −0.224675 0.628757i
\(724\) 0 0
\(725\) 20.2626i 0.752534i
\(726\) 0 0
\(727\) 25.9316 14.9716i 0.961751 0.555267i 0.0650393 0.997883i \(-0.479283\pi\)
0.896711 + 0.442616i \(0.145949\pi\)
\(728\) 0 0
\(729\) −12.6676 23.8439i −0.469171 0.883107i
\(730\) 0 0
\(731\) 6.26700 10.8548i 0.231793 0.401478i
\(732\) 0 0
\(733\) −13.8872 + 8.01776i −0.512934 + 0.296143i −0.734039 0.679107i \(-0.762367\pi\)
0.221105 + 0.975250i \(0.429034\pi\)
\(734\) 0 0
\(735\) −27.4286 19.3668i −1.01172 0.714355i
\(736\) 0 0
\(737\) −29.7238 17.1610i −1.09489 0.632135i
\(738\) 0 0
\(739\) −11.5186 19.9508i −0.423719 0.733903i 0.572581 0.819848i \(-0.305942\pi\)
−0.996300 + 0.0859453i \(0.972609\pi\)
\(740\) 0 0
\(741\) −0.0759346 + 0.416330i −0.00278953 + 0.0152943i
\(742\) 0 0
\(743\) −37.2352 21.4978i −1.36603 0.788676i −0.375609 0.926778i \(-0.622567\pi\)
−0.990418 + 0.138102i \(0.955900\pi\)
\(744\) 0 0
\(745\) 45.8811 + 26.4895i 1.68095 + 0.970498i
\(746\) 0 0
\(747\) −31.8702 + 26.1104i −1.16607 + 0.955328i
\(748\) 0 0
\(749\) 1.33015 + 29.8006i 0.0486026 + 1.08889i
\(750\) 0 0
\(751\) 17.6900 + 30.6400i 0.645518 + 1.11807i 0.984182 + 0.177162i \(0.0566917\pi\)
−0.338664 + 0.940907i \(0.609975\pi\)
\(752\) 0 0
\(753\) −17.2963 14.6873i −0.630311 0.535235i
\(754\) 0 0
\(755\) −21.8254 −0.794307
\(756\) 0 0
\(757\) −24.6138 −0.894604 −0.447302 0.894383i \(-0.647615\pi\)
−0.447302 + 0.894383i \(0.647615\pi\)
\(758\) 0 0
\(759\) 0.341497 + 0.289986i 0.0123956 + 0.0105258i
\(760\) 0 0
\(761\) 6.89264 + 11.9384i 0.249858 + 0.432766i 0.963486 0.267758i \(-0.0862828\pi\)
−0.713628 + 0.700525i \(0.752949\pi\)
\(762\) 0 0
\(763\) 19.6641 37.8641i 0.711887 1.37077i
\(764\) 0 0
\(765\) −27.9409 10.5430i −1.01021 0.381184i
\(766\) 0 0
\(767\) −0.436147 0.251810i −0.0157484 0.00909233i
\(768\) 0 0
\(769\) 20.0352 + 11.5673i 0.722486 + 0.417128i 0.815667 0.578522i \(-0.196370\pi\)
−0.0931808 + 0.995649i \(0.529703\pi\)
\(770\) 0 0
\(771\) −0.275611 + 1.51111i −0.00992591 + 0.0544212i
\(772\) 0 0
\(773\) −26.5072 45.9118i −0.953398 1.65133i −0.737993 0.674808i \(-0.764226\pi\)
−0.215405 0.976525i \(-0.569107\pi\)
\(774\) 0 0
\(775\) 15.7561 + 9.09678i 0.565975 + 0.326766i
\(776\) 0 0
\(777\) 14.9365 + 11.5780i 0.535844 + 0.415357i
\(778\) 0 0
\(779\) 6.66108 3.84578i 0.238658 0.137789i
\(780\) 0 0
\(781\) 1.69664 2.93866i 0.0607104 0.105154i
\(782\) 0 0
\(783\) −0.695075 + 39.4364i −0.0248400 + 1.40934i
\(784\) 0 0
\(785\) 47.8693 27.6373i 1.70853 0.986418i
\(786\) 0 0
\(787\) 5.96329i 0.212568i 0.994336 + 0.106284i \(0.0338953\pi\)
−0.994336 + 0.106284i \(0.966105\pi\)
\(788\) 0 0
\(789\) −4.15258 11.6211i −0.147836 0.413722i
\(790\) 0 0
\(791\) 1.60123 + 35.8739i 0.0569333 + 1.27553i
\(792\) 0 0
\(793\) 0.0707584 0.122557i 0.00251271 0.00435213i
\(794\) 0 0
\(795\) 9.83150 + 27.5137i 0.348688 + 0.975809i
\(796\) 0 0
\(797\) −5.28758 + 9.15836i −0.187296 + 0.324406i −0.944348 0.328949i \(-0.893306\pi\)
0.757052 + 0.653355i \(0.226639\pi\)
\(798\) 0 0
\(799\) −23.7131 41.0724i −0.838910 1.45304i
\(800\) 0 0
\(801\) −32.0946 12.1104i −1.13401 0.427899i
\(802\) 0 0
\(803\) −15.4807 −0.546302
\(804\) 0 0
\(805\) −0.0349316 0.782607i −0.00123118 0.0275833i
\(806\) 0 0
\(807\) 9.81989 53.8400i 0.345677 1.89526i
\(808\) 0 0
\(809\) 32.1452 18.5591i 1.13017 0.652501i 0.186189 0.982514i \(-0.440386\pi\)
0.943977 + 0.330012i \(0.107053\pi\)
\(810\) 0 0
\(811\) 7.02945i 0.246837i −0.992355 0.123419i \(-0.960614\pi\)
0.992355 0.123419i \(-0.0393858\pi\)
\(812\) 0 0
\(813\) 10.6477 + 29.7978i 0.373431 + 1.04505i
\(814\) 0 0
\(815\) −66.6989 −2.33636
\(816\) 0 0
\(817\) 15.9838i 0.559203i
\(818\) 0 0
\(819\) 0.414010 0.0871137i 0.0144667 0.00304400i
\(820\) 0 0
\(821\) 21.4378i 0.748184i −0.927392 0.374092i \(-0.877954\pi\)
0.927392 0.374092i \(-0.122046\pi\)
\(822\) 0 0
\(823\) 19.4491 0.677953 0.338977 0.940795i \(-0.389919\pi\)
0.338977 + 0.940795i \(0.389919\pi\)
\(824\) 0 0
\(825\) 11.0039 + 2.00700i 0.383106 + 0.0698748i
\(826\) 0 0
\(827\) 16.3789i 0.569549i −0.958595 0.284774i \(-0.908081\pi\)
0.958595 0.284774i \(-0.0919187\pi\)
\(828\) 0 0
\(829\) −13.5517 + 7.82408i −0.470670 + 0.271741i −0.716520 0.697566i \(-0.754266\pi\)
0.245850 + 0.969308i \(0.420933\pi\)
\(830\) 0 0
\(831\) 49.8595 17.8164i 1.72961 0.618043i
\(832\) 0 0
\(833\) −25.0618 + 2.24173i −0.868339 + 0.0776713i
\(834\) 0 0
\(835\) 4.39601 0.152130
\(836\) 0 0
\(837\) 30.3535 + 18.2453i 1.04917 + 0.630648i
\(838\) 0 0
\(839\) 0.260756 + 0.451642i 0.00900229 + 0.0155924i 0.870491 0.492184i \(-0.163801\pi\)
−0.861489 + 0.507776i \(0.830468\pi\)
\(840\) 0 0
\(841\) 14.3096 24.7849i 0.493433 0.854652i
\(842\) 0 0
\(843\) 7.71742 + 1.40758i 0.265802 + 0.0484798i
\(844\) 0 0
\(845\) 17.9969 31.1716i 0.619114 1.07234i
\(846\) 0 0
\(847\) 6.27652 12.0858i 0.215664 0.415271i
\(848\) 0 0
\(849\) 10.4953 12.3597i 0.360199 0.424183i
\(850\) 0 0
\(851\) 0.440921i 0.0151146i
\(852\) 0 0
\(853\) −15.3460 + 8.85999i −0.525436 + 0.303360i −0.739156 0.673535i \(-0.764775\pi\)
0.213720 + 0.976895i \(0.431442\pi\)
\(854\) 0 0
\(855\) 37.5801 6.17205i 1.28521 0.211080i
\(856\) 0 0
\(857\) −1.41363 + 2.44849i −0.0482888 + 0.0836387i −0.889160 0.457597i \(-0.848710\pi\)
0.840871 + 0.541236i \(0.182043\pi\)
\(858\) 0 0
\(859\) −7.97741 + 4.60576i −0.272186 + 0.157147i −0.629881 0.776692i \(-0.716896\pi\)
0.357695 + 0.933839i \(0.383563\pi\)
\(860\) 0 0
\(861\) −6.07733 4.71081i −0.207115 0.160544i
\(862\) 0 0
\(863\) −15.7016 9.06534i −0.534490 0.308588i 0.208353 0.978054i \(-0.433190\pi\)
−0.742843 + 0.669466i \(0.766523\pi\)
\(864\) 0 0
\(865\) 5.86705 + 10.1620i 0.199486 + 0.345520i
\(866\) 0 0
\(867\) 6.65342 2.37748i 0.225962 0.0807434i
\(868\) 0 0
\(869\) 8.84423 + 5.10622i 0.300020 + 0.173217i
\(870\) 0 0
\(871\) −0.654896 0.378104i −0.0221903 0.0128116i
\(872\) 0 0
\(873\) −31.5139 38.4657i −1.06659 1.30187i
\(874\) 0 0
\(875\) 9.18921 + 14.3933i 0.310652 + 0.486581i
\(876\) 0 0
\(877\) −7.10432 12.3050i −0.239896 0.415512i 0.720788 0.693155i \(-0.243780\pi\)
−0.960684 + 0.277643i \(0.910447\pi\)
\(878\) 0 0
\(879\) 26.6600 9.52647i 0.899220 0.321320i
\(880\) 0 0
\(881\) −46.0649 −1.55197 −0.775984 0.630753i \(-0.782746\pi\)
−0.775984 + 0.630753i \(0.782746\pi\)
\(882\) 0 0
\(883\) −8.16154 −0.274658 −0.137329 0.990526i \(-0.543852\pi\)
−0.137329 + 0.990526i \(0.543852\pi\)
\(884\) 0 0
\(885\) −8.13190 + 44.5851i −0.273351 + 1.49871i
\(886\) 0 0
\(887\) −13.5643 23.4941i −0.455446 0.788856i 0.543267 0.839560i \(-0.317187\pi\)
−0.998714 + 0.0507036i \(0.983854\pi\)
\(888\) 0 0
\(889\) 13.1418 + 20.5843i 0.440763 + 0.690377i
\(890\) 0 0
\(891\) 21.3477 + 4.28364i 0.715173 + 0.143507i
\(892\) 0 0
\(893\) 52.3771 + 30.2399i 1.75273 + 1.01194i
\(894\) 0 0
\(895\) −9.36139 5.40480i −0.312917 0.180662i
\(896\) 0 0
\(897\) 0.00752410 + 0.00638917i 0.000251223 + 0.000213328i
\(898\) 0 0
\(899\) −25.8678 44.8043i −0.862739 1.49431i
\(900\) 0 0
\(901\) 18.9617 + 10.9475i 0.631704 + 0.364715i
\(902\) 0 0
\(903\) 14.7927 6.04253i 0.492269 0.201083i
\(904\) 0 0
\(905\) −36.8589 + 21.2805i −1.22523 + 0.707388i
\(906\) 0 0
\(907\) −12.7926 + 22.1574i −0.424770 + 0.735724i −0.996399 0.0847887i \(-0.972978\pi\)
0.571629 + 0.820512i \(0.306312\pi\)
\(908\) 0 0
\(909\) −29.4717 11.1206i −0.977514 0.368849i
\(910\) 0 0
\(911\) −4.57426 + 2.64095i −0.151552 + 0.0874986i −0.573858 0.818955i \(-0.694554\pi\)
0.422306 + 0.906453i \(0.361221\pi\)
\(912\) 0 0
\(913\) 33.2245i 1.09957i
\(914\) 0 0
\(915\) −12.5284 2.28506i −0.414176 0.0755418i
\(916\) 0 0
\(917\) −3.88838 + 7.48728i −0.128406 + 0.247252i
\(918\) 0 0
\(919\) 27.7214 48.0149i 0.914445 1.58387i 0.106733 0.994288i \(-0.465961\pi\)
0.807712 0.589578i \(-0.200706\pi\)
\(920\) 0 0
\(921\) 1.10435 1.30051i 0.0363894 0.0428534i
\(922\) 0 0
\(923\) 0.0373815 0.0647466i 0.00123043 0.00213116i
\(924\) 0 0
\(925\) 5.50423 + 9.53360i 0.180978 + 0.313463i
\(926\) 0 0
\(927\) 29.3303 + 35.8003i 0.963332 + 1.17584i
\(928\) 0 0
\(929\) −35.2009 −1.15490 −0.577452 0.816425i \(-0.695953\pi\)
−0.577452 + 0.816425i \(0.695953\pi\)
\(930\) 0 0
\(931\) 26.2486 18.4556i 0.860262 0.604858i
\(932\) 0 0
\(933\) 34.6706 + 29.4409i 1.13507 + 0.963853i
\(934\) 0 0
\(935\) 20.8562 12.0413i 0.682070 0.393793i
\(936\) 0 0
\(937\) 47.6315i 1.55605i −0.628231 0.778027i \(-0.716221\pi\)
0.628231 0.778027i \(-0.283779\pi\)
\(938\) 0 0
\(939\) 16.2930 19.1872i 0.531702 0.626151i
\(940\) 0 0
\(941\) 20.7603 0.676767 0.338384 0.941008i \(-0.390120\pi\)
0.338384 + 0.941008i \(0.390120\pi\)
\(942\) 0 0
\(943\) 0.179401i 0.00584210i
\(944\) 0 0
\(945\) −19.9188 32.4462i −0.647960 1.05547i
\(946\) 0 0
\(947\) 7.51326i 0.244148i −0.992521 0.122074i \(-0.961045\pi\)
0.992521 0.122074i \(-0.0389545\pi\)
\(948\) 0 0
\(949\) −0.341082 −0.0110720
\(950\) 0 0
\(951\) −33.0303 + 38.8976i −1.07108 + 1.26134i
\(952\) 0 0
\(953\) 53.6047i 1.73643i 0.496192 + 0.868213i \(0.334731\pi\)
−0.496192 + 0.868213i \(0.665269\pi\)
\(954\) 0 0
\(955\) 6.32566 3.65212i 0.204694 0.118180i
\(956\) 0 0
\(957\) −24.2451 20.5880i −0.783733 0.665514i
\(958\) 0 0
\(959\) 0.664114 + 14.8788i 0.0214454 + 0.480461i
\(960\) 0 0
\(961\) −15.4528 −0.498477
\(962\) 0 0
\(963\) −11.9412 + 31.6464i −0.384801 + 1.01979i
\(964\) 0 0
\(965\) −10.3288 17.8899i −0.332495 0.575898i
\(966\) 0 0
\(967\) 5.72860 9.92223i 0.184220 0.319078i −0.759094 0.650981i \(-0.774358\pi\)
0.943313 + 0.331904i \(0.107691\pi\)
\(968\) 0 0
\(969\) 18.4727 21.7541i 0.593429 0.698842i
\(970\) 0 0
\(971\) −4.02601 + 6.97326i −0.129201 + 0.223782i −0.923367 0.383918i \(-0.874575\pi\)
0.794166 + 0.607700i \(0.207908\pi\)
\(972\) 0 0
\(973\) −2.54388 56.9931i −0.0815532 1.82711i
\(974\) 0 0
\(975\) 0.242445 + 0.0442197i 0.00776446 + 0.00141616i
\(976\) 0 0
\(977\) 47.8756i 1.53168i −0.643034 0.765838i \(-0.722324\pi\)
0.643034 0.765838i \(-0.277676\pi\)
\(978\) 0 0
\(979\) 23.9567 13.8314i 0.765658 0.442053i
\(980\) 0 0
\(981\) 37.4228 30.6595i 1.19482 0.978883i
\(982\) 0 0
\(983\) −1.18090 + 2.04538i −0.0376648 + 0.0652374i −0.884243 0.467027i \(-0.845325\pi\)
0.846578 + 0.532264i \(0.178659\pi\)
\(984\) 0 0
\(985\) 6.66187 3.84623i 0.212265 0.122551i
\(986\) 0 0
\(987\) 8.18568 59.9056i 0.260553 1.90682i
\(988\) 0 0
\(989\) 0.322866 + 0.186407i 0.0102665 + 0.00592739i
\(990\) 0 0
\(991\) 11.8241 + 20.4800i 0.375606 + 0.650568i 0.990417 0.138106i \(-0.0441014\pi\)
−0.614812 + 0.788674i \(0.710768\pi\)
\(992\) 0 0
\(993\) 7.68434 + 6.52523i 0.243855 + 0.207072i
\(994\) 0 0
\(995\) 9.68979 + 5.59440i 0.307187 + 0.177355i
\(996\) 0 0
\(997\) 36.7446 + 21.2145i 1.16371 + 0.671869i 0.952191 0.305504i \(-0.0988250\pi\)
0.211521 + 0.977373i \(0.432158\pi\)
\(998\) 0 0
\(999\) 10.3857 + 18.7438i 0.328588 + 0.593027i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.ca.e.257.19 48
3.2 odd 2 3024.2.ca.e.2609.4 48
4.3 odd 2 504.2.bs.a.257.6 48
7.3 odd 6 1008.2.df.e.689.11 48
9.2 odd 6 1008.2.df.e.929.11 48
9.7 even 3 3024.2.df.e.1601.4 48
12.11 even 2 1512.2.bs.a.1097.4 48
21.17 even 6 3024.2.df.e.17.4 48
28.3 even 6 504.2.cx.a.185.14 yes 48
36.7 odd 6 1512.2.cx.a.89.4 48
36.11 even 6 504.2.cx.a.425.14 yes 48
63.38 even 6 inner 1008.2.ca.e.353.19 48
63.52 odd 6 3024.2.ca.e.2033.4 48
84.59 odd 6 1512.2.cx.a.17.4 48
252.115 even 6 1512.2.bs.a.521.4 48
252.227 odd 6 504.2.bs.a.353.6 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bs.a.257.6 48 4.3 odd 2
504.2.bs.a.353.6 yes 48 252.227 odd 6
504.2.cx.a.185.14 yes 48 28.3 even 6
504.2.cx.a.425.14 yes 48 36.11 even 6
1008.2.ca.e.257.19 48 1.1 even 1 trivial
1008.2.ca.e.353.19 48 63.38 even 6 inner
1008.2.df.e.689.11 48 7.3 odd 6
1008.2.df.e.929.11 48 9.2 odd 6
1512.2.bs.a.521.4 48 252.115 even 6
1512.2.bs.a.1097.4 48 12.11 even 2
1512.2.cx.a.17.4 48 84.59 odd 6
1512.2.cx.a.89.4 48 36.7 odd 6
3024.2.ca.e.2033.4 48 63.52 odd 6
3024.2.ca.e.2609.4 48 3.2 odd 2
3024.2.df.e.17.4 48 21.17 even 6
3024.2.df.e.1601.4 48 9.7 even 3