Properties

Label 1008.2.bf.i.31.1
Level $1008$
Weight $2$
Character 1008.31
Analytic conductor $8.049$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(31,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.1
Character \(\chi\) \(=\) 1008.31
Dual form 1008.2.bf.i.943.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.72863 - 0.108820i) q^{3} -0.435427i q^{5} +(2.49096 + 0.891704i) q^{7} +(2.97632 + 0.376218i) q^{9} +4.82050i q^{11} +(-4.31639 - 2.49207i) q^{13} +(-0.0473830 + 0.752691i) q^{15} +(-4.92142 - 2.84139i) q^{17} +(3.70969 + 6.42537i) q^{19} +(-4.20890 - 1.81249i) q^{21} -3.16029i q^{23} +4.81040 q^{25} +(-5.10401 - 0.974224i) q^{27} +(2.49630 + 4.32372i) q^{29} +(-1.32968 - 2.30307i) q^{31} +(0.524566 - 8.33285i) q^{33} +(0.388272 - 1.08463i) q^{35} +(1.06500 + 1.84463i) q^{37} +(7.19025 + 4.77757i) q^{39} +(0.112731 + 0.0650855i) q^{41} +(-6.53530 + 3.77315i) q^{43} +(0.163815 - 1.29597i) q^{45} +(-4.29337 + 7.43633i) q^{47} +(5.40973 + 4.44239i) q^{49} +(8.19812 + 5.44725i) q^{51} +(-5.61000 + 9.71680i) q^{53} +2.09897 q^{55} +(-5.71347 - 11.5108i) q^{57} +(6.20064 + 10.7398i) q^{59} +(7.65803 + 4.42137i) q^{61} +(7.07840 + 3.59114i) q^{63} +(-1.08511 + 1.87947i) q^{65} +(-0.811298 + 0.468403i) q^{67} +(-0.343902 + 5.46297i) q^{69} +6.27328i q^{71} +(11.2357 + 6.48693i) q^{73} +(-8.31540 - 0.523467i) q^{75} +(-4.29846 + 12.0077i) q^{77} +(2.98242 + 1.72190i) q^{79} +(8.71692 + 2.23949i) q^{81} +(-3.68712 - 6.38628i) q^{83} +(-1.23721 + 2.14292i) q^{85} +(-3.84467 - 7.74576i) q^{87} +(-13.2599 + 7.65563i) q^{89} +(-8.52975 - 10.0566i) q^{91} +(2.04790 + 4.12585i) q^{93} +(2.79778 - 1.61530i) q^{95} +(-2.83887 + 1.63902i) q^{97} +(-1.81356 + 14.3473i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{9} - 6 q^{13} - 18 q^{17} - 8 q^{21} - 32 q^{25} - 12 q^{29} + 30 q^{33} + 2 q^{37} + 36 q^{41} + 30 q^{45} + 2 q^{49} - 12 q^{53} - 46 q^{57} + 42 q^{61} + 18 q^{65} - 42 q^{69} - 66 q^{77}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.72863 0.108820i −0.998024 0.0628271i
\(4\) 0 0
\(5\) 0.435427i 0.194729i −0.995249 0.0973643i \(-0.968959\pi\)
0.995249 0.0973643i \(-0.0310412\pi\)
\(6\) 0 0
\(7\) 2.49096 + 0.891704i 0.941493 + 0.337032i
\(8\) 0 0
\(9\) 2.97632 + 0.376218i 0.992106 + 0.125406i
\(10\) 0 0
\(11\) 4.82050i 1.45344i 0.686936 + 0.726718i \(0.258955\pi\)
−0.686936 + 0.726718i \(0.741045\pi\)
\(12\) 0 0
\(13\) −4.31639 2.49207i −1.19715 0.691176i −0.237232 0.971453i \(-0.576240\pi\)
−0.959919 + 0.280277i \(0.909574\pi\)
\(14\) 0 0
\(15\) −0.0473830 + 0.752691i −0.0122342 + 0.194344i
\(16\) 0 0
\(17\) −4.92142 2.84139i −1.19362 0.689137i −0.234495 0.972117i \(-0.575344\pi\)
−0.959126 + 0.282980i \(0.908677\pi\)
\(18\) 0 0
\(19\) 3.70969 + 6.42537i 0.851061 + 1.47408i 0.880252 + 0.474506i \(0.157373\pi\)
−0.0291916 + 0.999574i \(0.509293\pi\)
\(20\) 0 0
\(21\) −4.20890 1.81249i −0.918458 0.395518i
\(22\) 0 0
\(23\) 3.16029i 0.658966i −0.944162 0.329483i \(-0.893126\pi\)
0.944162 0.329483i \(-0.106874\pi\)
\(24\) 0 0
\(25\) 4.81040 0.962081
\(26\) 0 0
\(27\) −5.10401 0.974224i −0.982267 0.187489i
\(28\) 0 0
\(29\) 2.49630 + 4.32372i 0.463552 + 0.802895i 0.999135 0.0415876i \(-0.0132416\pi\)
−0.535583 + 0.844482i \(0.679908\pi\)
\(30\) 0 0
\(31\) −1.32968 2.30307i −0.238817 0.413644i 0.721558 0.692354i \(-0.243426\pi\)
−0.960375 + 0.278710i \(0.910093\pi\)
\(32\) 0 0
\(33\) 0.524566 8.33285i 0.0913151 1.45056i
\(34\) 0 0
\(35\) 0.388272 1.08463i 0.0656299 0.183336i
\(36\) 0 0
\(37\) 1.06500 + 1.84463i 0.175085 + 0.303256i 0.940191 0.340649i \(-0.110647\pi\)
−0.765106 + 0.643904i \(0.777313\pi\)
\(38\) 0 0
\(39\) 7.19025 + 4.77757i 1.15136 + 0.765024i
\(40\) 0 0
\(41\) 0.112731 + 0.0650855i 0.0176057 + 0.0101646i 0.508777 0.860898i \(-0.330098\pi\)
−0.491171 + 0.871063i \(0.663431\pi\)
\(42\) 0 0
\(43\) −6.53530 + 3.77315i −0.996623 + 0.575401i −0.907247 0.420597i \(-0.861821\pi\)
−0.0893758 + 0.995998i \(0.528487\pi\)
\(44\) 0 0
\(45\) 0.163815 1.29597i 0.0244201 0.193191i
\(46\) 0 0
\(47\) −4.29337 + 7.43633i −0.626252 + 1.08470i 0.362045 + 0.932161i \(0.382079\pi\)
−0.988297 + 0.152540i \(0.951255\pi\)
\(48\) 0 0
\(49\) 5.40973 + 4.44239i 0.772818 + 0.634627i
\(50\) 0 0
\(51\) 8.19812 + 5.44725i 1.14797 + 0.762768i
\(52\) 0 0
\(53\) −5.61000 + 9.71680i −0.770593 + 1.33471i 0.166646 + 0.986017i \(0.446706\pi\)
−0.937239 + 0.348689i \(0.886627\pi\)
\(54\) 0 0
\(55\) 2.09897 0.283025
\(56\) 0 0
\(57\) −5.71347 11.5108i −0.756767 1.52464i
\(58\) 0 0
\(59\) 6.20064 + 10.7398i 0.807255 + 1.39821i 0.914758 + 0.404002i \(0.132381\pi\)
−0.107503 + 0.994205i \(0.534286\pi\)
\(60\) 0 0
\(61\) 7.65803 + 4.42137i 0.980510 + 0.566098i 0.902424 0.430849i \(-0.141786\pi\)
0.0780862 + 0.996947i \(0.475119\pi\)
\(62\) 0 0
\(63\) 7.07840 + 3.59114i 0.891795 + 0.452441i
\(64\) 0 0
\(65\) −1.08511 + 1.87947i −0.134592 + 0.233120i
\(66\) 0 0
\(67\) −0.811298 + 0.468403i −0.0991158 + 0.0572246i −0.548739 0.835994i \(-0.684892\pi\)
0.449623 + 0.893219i \(0.351558\pi\)
\(68\) 0 0
\(69\) −0.343902 + 5.46297i −0.0414009 + 0.657664i
\(70\) 0 0
\(71\) 6.27328i 0.744501i 0.928132 + 0.372251i \(0.121414\pi\)
−0.928132 + 0.372251i \(0.878586\pi\)
\(72\) 0 0
\(73\) 11.2357 + 6.48693i 1.31504 + 0.759238i 0.982926 0.184002i \(-0.0589054\pi\)
0.332112 + 0.943240i \(0.392239\pi\)
\(74\) 0 0
\(75\) −8.31540 0.523467i −0.960180 0.0604448i
\(76\) 0 0
\(77\) −4.29846 + 12.0077i −0.489855 + 1.36840i
\(78\) 0 0
\(79\) 2.98242 + 1.72190i 0.335548 + 0.193729i 0.658302 0.752754i \(-0.271275\pi\)
−0.322754 + 0.946483i \(0.604608\pi\)
\(80\) 0 0
\(81\) 8.71692 + 2.23949i 0.968547 + 0.248832i
\(82\) 0 0
\(83\) −3.68712 6.38628i −0.404714 0.700985i 0.589574 0.807714i \(-0.299296\pi\)
−0.994288 + 0.106729i \(0.965962\pi\)
\(84\) 0 0
\(85\) −1.23721 + 2.14292i −0.134195 + 0.232432i
\(86\) 0 0
\(87\) −3.84467 7.74576i −0.412192 0.830432i
\(88\) 0 0
\(89\) −13.2599 + 7.65563i −1.40555 + 0.811495i −0.994955 0.100322i \(-0.968013\pi\)
−0.410596 + 0.911817i \(0.634679\pi\)
\(90\) 0 0
\(91\) −8.52975 10.0566i −0.894161 1.05422i
\(92\) 0 0
\(93\) 2.04790 + 4.12585i 0.212358 + 0.427831i
\(94\) 0 0
\(95\) 2.79778 1.61530i 0.287046 0.165726i
\(96\) 0 0
\(97\) −2.83887 + 1.63902i −0.288244 + 0.166418i −0.637150 0.770740i \(-0.719887\pi\)
0.348906 + 0.937158i \(0.386553\pi\)
\(98\) 0 0
\(99\) −1.81356 + 14.3473i −0.182269 + 1.44196i
\(100\) 0 0
\(101\) 16.8555i 1.67719i −0.544759 0.838593i \(-0.683379\pi\)
0.544759 0.838593i \(-0.316621\pi\)
\(102\) 0 0
\(103\) 3.29089 0.324261 0.162130 0.986769i \(-0.448163\pi\)
0.162130 + 0.986769i \(0.448163\pi\)
\(104\) 0 0
\(105\) −0.789206 + 1.83267i −0.0770187 + 0.178850i
\(106\) 0 0
\(107\) 10.1078 5.83572i 0.977154 0.564160i 0.0757442 0.997127i \(-0.475867\pi\)
0.901410 + 0.432967i \(0.142533\pi\)
\(108\) 0 0
\(109\) 9.15538 15.8576i 0.876926 1.51888i 0.0222293 0.999753i \(-0.492924\pi\)
0.854697 0.519128i \(-0.173743\pi\)
\(110\) 0 0
\(111\) −1.64025 3.30458i −0.155686 0.313657i
\(112\) 0 0
\(113\) −2.20802 + 3.82441i −0.207713 + 0.359770i −0.950994 0.309210i \(-0.899935\pi\)
0.743281 + 0.668980i \(0.233269\pi\)
\(114\) 0 0
\(115\) −1.37607 −0.128320
\(116\) 0 0
\(117\) −11.9094 9.04109i −1.10102 0.835849i
\(118\) 0 0
\(119\) −9.72538 11.4662i −0.891524 1.05111i
\(120\) 0 0
\(121\) −12.2372 −1.11247
\(122\) 0 0
\(123\) −0.187788 0.124776i −0.0169323 0.0112507i
\(124\) 0 0
\(125\) 4.27171i 0.382073i
\(126\) 0 0
\(127\) 2.65009i 0.235158i 0.993064 + 0.117579i \(0.0375133\pi\)
−0.993064 + 0.117579i \(0.962487\pi\)
\(128\) 0 0
\(129\) 11.7077 5.81122i 1.03081 0.511649i
\(130\) 0 0
\(131\) −0.863493 −0.0754437 −0.0377219 0.999288i \(-0.512010\pi\)
−0.0377219 + 0.999288i \(0.512010\pi\)
\(132\) 0 0
\(133\) 3.51115 + 19.3132i 0.304455 + 1.67467i
\(134\) 0 0
\(135\) −0.424203 + 2.22242i −0.0365096 + 0.191275i
\(136\) 0 0
\(137\) 6.86336 0.586377 0.293188 0.956055i \(-0.405284\pi\)
0.293188 + 0.956055i \(0.405284\pi\)
\(138\) 0 0
\(139\) −4.26364 + 7.38484i −0.361637 + 0.626374i −0.988230 0.152972i \(-0.951115\pi\)
0.626593 + 0.779346i \(0.284449\pi\)
\(140\) 0 0
\(141\) 8.23086 12.3875i 0.693164 1.04321i
\(142\) 0 0
\(143\) 12.0130 20.8072i 1.00458 1.73998i
\(144\) 0 0
\(145\) 1.88266 1.08696i 0.156347 0.0902668i
\(146\) 0 0
\(147\) −8.86799 8.26793i −0.731420 0.681927i
\(148\) 0 0
\(149\) −10.5895 −0.867527 −0.433764 0.901027i \(-0.642815\pi\)
−0.433764 + 0.901027i \(0.642815\pi\)
\(150\) 0 0
\(151\) 8.37187i 0.681293i 0.940191 + 0.340647i \(0.110646\pi\)
−0.940191 + 0.340647i \(0.889354\pi\)
\(152\) 0 0
\(153\) −13.5787 10.3084i −1.09778 0.833384i
\(154\) 0 0
\(155\) −1.00282 + 0.578978i −0.0805483 + 0.0465046i
\(156\) 0 0
\(157\) 13.9034 8.02712i 1.10961 0.640634i 0.170882 0.985292i \(-0.445338\pi\)
0.938728 + 0.344658i \(0.112005\pi\)
\(158\) 0 0
\(159\) 10.7550 16.1863i 0.852926 1.28365i
\(160\) 0 0
\(161\) 2.81804 7.87214i 0.222093 0.620412i
\(162\) 0 0
\(163\) −6.55417 + 3.78405i −0.513362 + 0.296390i −0.734215 0.678917i \(-0.762449\pi\)
0.220852 + 0.975307i \(0.429116\pi\)
\(164\) 0 0
\(165\) −3.62835 0.228410i −0.282466 0.0177817i
\(166\) 0 0
\(167\) −1.74172 + 3.01674i −0.134778 + 0.233443i −0.925513 0.378717i \(-0.876365\pi\)
0.790735 + 0.612159i \(0.209699\pi\)
\(168\) 0 0
\(169\) 5.92082 + 10.2552i 0.455447 + 0.788858i
\(170\) 0 0
\(171\) 8.62386 + 20.5196i 0.659483 + 1.56917i
\(172\) 0 0
\(173\) 6.69039 + 3.86270i 0.508661 + 0.293676i 0.732283 0.681000i \(-0.238455\pi\)
−0.223622 + 0.974676i \(0.571788\pi\)
\(174\) 0 0
\(175\) 11.9825 + 4.28946i 0.905792 + 0.324252i
\(176\) 0 0
\(177\) −9.54991 19.2399i −0.717815 1.44616i
\(178\) 0 0
\(179\) −18.3972 10.6216i −1.37507 0.793899i −0.383511 0.923536i \(-0.625285\pi\)
−0.991561 + 0.129637i \(0.958619\pi\)
\(180\) 0 0
\(181\) 5.62129i 0.417827i −0.977934 0.208914i \(-0.933007\pi\)
0.977934 0.208914i \(-0.0669927\pi\)
\(182\) 0 0
\(183\) −12.7568 8.47625i −0.943007 0.626582i
\(184\) 0 0
\(185\) 0.803202 0.463729i 0.0590525 0.0340940i
\(186\) 0 0
\(187\) 13.6969 23.7237i 1.00162 1.73485i
\(188\) 0 0
\(189\) −11.8451 6.97801i −0.861607 0.507576i
\(190\) 0 0
\(191\) 10.8827 + 6.28314i 0.787446 + 0.454632i 0.839063 0.544035i \(-0.183104\pi\)
−0.0516165 + 0.998667i \(0.516437\pi\)
\(192\) 0 0
\(193\) 10.5334 + 18.2443i 0.758209 + 1.31326i 0.943763 + 0.330622i \(0.107259\pi\)
−0.185554 + 0.982634i \(0.559408\pi\)
\(194\) 0 0
\(195\) 2.08028 3.13083i 0.148972 0.224203i
\(196\) 0 0
\(197\) −21.1720 −1.50844 −0.754222 0.656619i \(-0.771986\pi\)
−0.754222 + 0.656619i \(0.771986\pi\)
\(198\) 0 0
\(199\) 5.87039 10.1678i 0.416141 0.720778i −0.579406 0.815039i \(-0.696716\pi\)
0.995548 + 0.0942612i \(0.0300489\pi\)
\(200\) 0 0
\(201\) 1.45341 0.721410i 0.102515 0.0508843i
\(202\) 0 0
\(203\) 2.36270 + 12.9962i 0.165829 + 0.912152i
\(204\) 0 0
\(205\) 0.0283399 0.0490862i 0.00197935 0.00342833i
\(206\) 0 0
\(207\) 1.18896 9.40602i 0.0826383 0.653764i
\(208\) 0 0
\(209\) −30.9735 + 17.8825i −2.14248 + 1.23696i
\(210\) 0 0
\(211\) −7.83611 4.52418i −0.539460 0.311457i 0.205400 0.978678i \(-0.434150\pi\)
−0.744860 + 0.667221i \(0.767484\pi\)
\(212\) 0 0
\(213\) 0.682657 10.8442i 0.0467749 0.743031i
\(214\) 0 0
\(215\) 1.64293 + 2.84564i 0.112047 + 0.194071i
\(216\) 0 0
\(217\) −1.25852 6.92253i −0.0854336 0.469932i
\(218\) 0 0
\(219\) −18.7164 12.4362i −1.26474 0.840358i
\(220\) 0 0
\(221\) 14.1619 + 24.5291i 0.952630 + 1.65000i
\(222\) 0 0
\(223\) −6.74216 11.6778i −0.451488 0.782001i 0.546990 0.837139i \(-0.315773\pi\)
−0.998479 + 0.0551381i \(0.982440\pi\)
\(224\) 0 0
\(225\) 14.3173 + 1.80976i 0.954486 + 0.120651i
\(226\) 0 0
\(227\) −24.0716 −1.59769 −0.798845 0.601537i \(-0.794555\pi\)
−0.798845 + 0.601537i \(0.794555\pi\)
\(228\) 0 0
\(229\) 14.0833i 0.930651i −0.885140 0.465326i \(-0.845937\pi\)
0.885140 0.465326i \(-0.154063\pi\)
\(230\) 0 0
\(231\) 8.73711 20.2890i 0.574859 1.33492i
\(232\) 0 0
\(233\) 1.10903 + 1.92090i 0.0726551 + 0.125842i 0.900064 0.435757i \(-0.143519\pi\)
−0.827409 + 0.561600i \(0.810186\pi\)
\(234\) 0 0
\(235\) 3.23798 + 1.86945i 0.211222 + 0.121949i
\(236\) 0 0
\(237\) −4.96811 3.30107i −0.322714 0.214428i
\(238\) 0 0
\(239\) 10.5001 + 6.06225i 0.679197 + 0.392134i 0.799552 0.600596i \(-0.205070\pi\)
−0.120356 + 0.992731i \(0.538403\pi\)
\(240\) 0 0
\(241\) 4.67094i 0.300881i −0.988619 0.150441i \(-0.951931\pi\)
0.988619 0.150441i \(-0.0480693\pi\)
\(242\) 0 0
\(243\) −14.8246 4.81982i −0.951000 0.309191i
\(244\) 0 0
\(245\) 1.93433 2.35554i 0.123580 0.150490i
\(246\) 0 0
\(247\) 36.9792i 2.35293i
\(248\) 0 0
\(249\) 5.67871 + 11.4407i 0.359874 + 0.725028i
\(250\) 0 0
\(251\) −10.4901 −0.662132 −0.331066 0.943608i \(-0.607408\pi\)
−0.331066 + 0.943608i \(0.607408\pi\)
\(252\) 0 0
\(253\) 15.2342 0.957764
\(254\) 0 0
\(255\) 2.37188 3.56968i 0.148533 0.223542i
\(256\) 0 0
\(257\) 5.12259i 0.319538i −0.987154 0.159769i \(-0.948925\pi\)
0.987154 0.159769i \(-0.0510750\pi\)
\(258\) 0 0
\(259\) 1.00800 + 5.54456i 0.0626341 + 0.344522i
\(260\) 0 0
\(261\) 5.80312 + 13.8079i 0.359204 + 0.854688i
\(262\) 0 0
\(263\) 19.0949i 1.17744i −0.808336 0.588722i \(-0.799631\pi\)
0.808336 0.588722i \(-0.200369\pi\)
\(264\) 0 0
\(265\) 4.23095 + 2.44274i 0.259905 + 0.150056i
\(266\) 0 0
\(267\) 23.7546 11.7908i 1.45376 0.721585i
\(268\) 0 0
\(269\) 6.02481 + 3.47842i 0.367339 + 0.212083i 0.672295 0.740283i \(-0.265309\pi\)
−0.304956 + 0.952366i \(0.598642\pi\)
\(270\) 0 0
\(271\) −1.40013 2.42510i −0.0850521 0.147315i 0.820361 0.571846i \(-0.193772\pi\)
−0.905413 + 0.424531i \(0.860439\pi\)
\(272\) 0 0
\(273\) 13.6504 + 18.3123i 0.826161 + 1.10831i
\(274\) 0 0
\(275\) 23.1885i 1.39832i
\(276\) 0 0
\(277\) 14.3011 0.859270 0.429635 0.903003i \(-0.358642\pi\)
0.429635 + 0.903003i \(0.358642\pi\)
\(278\) 0 0
\(279\) −3.09109 7.35492i −0.185059 0.440328i
\(280\) 0 0
\(281\) −9.38363 16.2529i −0.559780 0.969568i −0.997514 0.0704634i \(-0.977552\pi\)
0.437734 0.899104i \(-0.355781\pi\)
\(282\) 0 0
\(283\) 9.73617 + 16.8635i 0.578755 + 1.00243i 0.995622 + 0.0934662i \(0.0297947\pi\)
−0.416867 + 0.908967i \(0.636872\pi\)
\(284\) 0 0
\(285\) −5.01209 + 2.48779i −0.296891 + 0.147364i
\(286\) 0 0
\(287\) 0.222772 + 0.262648i 0.0131498 + 0.0155036i
\(288\) 0 0
\(289\) 7.64694 + 13.2449i 0.449820 + 0.779111i
\(290\) 0 0
\(291\) 5.08571 2.52434i 0.298130 0.147979i
\(292\) 0 0
\(293\) 8.77997 + 5.06912i 0.512932 + 0.296141i 0.734038 0.679109i \(-0.237633\pi\)
−0.221106 + 0.975250i \(0.570967\pi\)
\(294\) 0 0
\(295\) 4.67641 2.69992i 0.272271 0.157196i
\(296\) 0 0
\(297\) 4.69624 24.6039i 0.272504 1.42766i
\(298\) 0 0
\(299\) −7.87566 + 13.6410i −0.455461 + 0.788882i
\(300\) 0 0
\(301\) −19.6437 + 3.57122i −1.13224 + 0.205841i
\(302\) 0 0
\(303\) −1.83421 + 29.1369i −0.105373 + 1.67387i
\(304\) 0 0
\(305\) 1.92518 3.33451i 0.110236 0.190933i
\(306\) 0 0
\(307\) −9.48057 −0.541085 −0.270542 0.962708i \(-0.587203\pi\)
−0.270542 + 0.962708i \(0.587203\pi\)
\(308\) 0 0
\(309\) −5.68872 0.358114i −0.323620 0.0203724i
\(310\) 0 0
\(311\) −0.470145 0.814314i −0.0266595 0.0461755i 0.852388 0.522910i \(-0.175154\pi\)
−0.879047 + 0.476735i \(0.841820\pi\)
\(312\) 0 0
\(313\) −11.6547 6.72885i −0.658763 0.380337i 0.133042 0.991110i \(-0.457525\pi\)
−0.791806 + 0.610773i \(0.790859\pi\)
\(314\) 0 0
\(315\) 1.56368 3.08212i 0.0881031 0.173658i
\(316\) 0 0
\(317\) 2.19415 3.80037i 0.123236 0.213450i −0.797806 0.602914i \(-0.794006\pi\)
0.921042 + 0.389464i \(0.127340\pi\)
\(318\) 0 0
\(319\) −20.8425 + 12.0334i −1.16696 + 0.673742i
\(320\) 0 0
\(321\) −18.1076 + 8.98787i −1.01067 + 0.501654i
\(322\) 0 0
\(323\) 42.1626i 2.34599i
\(324\) 0 0
\(325\) −20.7636 11.9879i −1.15176 0.664967i
\(326\) 0 0
\(327\) −17.5519 + 26.4156i −0.970621 + 1.46079i
\(328\) 0 0
\(329\) −17.3256 + 14.6952i −0.955191 + 0.810171i
\(330\) 0 0
\(331\) −3.65849 2.11223i −0.201089 0.116099i 0.396075 0.918218i \(-0.370372\pi\)
−0.597163 + 0.802120i \(0.703706\pi\)
\(332\) 0 0
\(333\) 2.47579 + 5.89088i 0.135672 + 0.322818i
\(334\) 0 0
\(335\) 0.203955 + 0.353261i 0.0111433 + 0.0193007i
\(336\) 0 0
\(337\) −0.959055 + 1.66113i −0.0522431 + 0.0904876i −0.890964 0.454073i \(-0.849970\pi\)
0.838721 + 0.544561i \(0.183304\pi\)
\(338\) 0 0
\(339\) 4.23302 6.37070i 0.229906 0.346009i
\(340\) 0 0
\(341\) 11.1020 6.40972i 0.601205 0.347106i
\(342\) 0 0
\(343\) 9.51410 + 15.8897i 0.513713 + 0.857962i
\(344\) 0 0
\(345\) 2.37872 + 0.149744i 0.128066 + 0.00806195i
\(346\) 0 0
\(347\) 23.3138 13.4602i 1.25155 0.722583i 0.280133 0.959961i \(-0.409621\pi\)
0.971417 + 0.237378i \(0.0762881\pi\)
\(348\) 0 0
\(349\) −8.15394 + 4.70768i −0.436470 + 0.251996i −0.702099 0.712079i \(-0.747754\pi\)
0.265629 + 0.964075i \(0.414420\pi\)
\(350\) 0 0
\(351\) 19.6031 + 16.9247i 1.04633 + 0.903372i
\(352\) 0 0
\(353\) 7.76281i 0.413173i 0.978428 + 0.206586i \(0.0662354\pi\)
−0.978428 + 0.206586i \(0.933765\pi\)
\(354\) 0 0
\(355\) 2.73155 0.144976
\(356\) 0 0
\(357\) 15.5638 + 20.8792i 0.823725 + 1.10504i
\(358\) 0 0
\(359\) 17.8936 10.3309i 0.944387 0.545242i 0.0530541 0.998592i \(-0.483104\pi\)
0.891333 + 0.453350i \(0.149771\pi\)
\(360\) 0 0
\(361\) −18.0236 + 31.2177i −0.948608 + 1.64304i
\(362\) 0 0
\(363\) 21.1536 + 1.33165i 1.11028 + 0.0698935i
\(364\) 0 0
\(365\) 2.82458 4.89232i 0.147845 0.256076i
\(366\) 0 0
\(367\) −17.1596 −0.895725 −0.447862 0.894102i \(-0.647815\pi\)
−0.447862 + 0.894102i \(0.647815\pi\)
\(368\) 0 0
\(369\) 0.311038 + 0.236127i 0.0161920 + 0.0122923i
\(370\) 0 0
\(371\) −22.6388 + 19.2017i −1.17535 + 0.996901i
\(372\) 0 0
\(373\) −1.68029 −0.0870022 −0.0435011 0.999053i \(-0.513851\pi\)
−0.0435011 + 0.999053i \(0.513851\pi\)
\(374\) 0 0
\(375\) −0.464847 + 7.38420i −0.0240046 + 0.381319i
\(376\) 0 0
\(377\) 24.8838i 1.28158i
\(378\) 0 0
\(379\) 16.3442i 0.839543i −0.907630 0.419771i \(-0.862110\pi\)
0.907630 0.419771i \(-0.137890\pi\)
\(380\) 0 0
\(381\) 0.288382 4.58103i 0.0147743 0.234693i
\(382\) 0 0
\(383\) 16.9832 0.867802 0.433901 0.900961i \(-0.357137\pi\)
0.433901 + 0.900961i \(0.357137\pi\)
\(384\) 0 0
\(385\) 5.22845 + 1.87166i 0.266467 + 0.0953887i
\(386\) 0 0
\(387\) −20.8706 + 8.77141i −1.06091 + 0.445876i
\(388\) 0 0
\(389\) 38.9596 1.97533 0.987666 0.156575i \(-0.0500452\pi\)
0.987666 + 0.156575i \(0.0500452\pi\)
\(390\) 0 0
\(391\) −8.97960 + 15.5531i −0.454118 + 0.786555i
\(392\) 0 0
\(393\) 1.49266 + 0.0939651i 0.0752947 + 0.00473991i
\(394\) 0 0
\(395\) 0.749760 1.29862i 0.0377245 0.0653408i
\(396\) 0 0
\(397\) 8.84820 5.10851i 0.444078 0.256389i −0.261248 0.965272i \(-0.584134\pi\)
0.705326 + 0.708883i \(0.250801\pi\)
\(398\) 0 0
\(399\) −3.96780 33.7675i −0.198639 1.69049i
\(400\) 0 0
\(401\) −3.73966 −0.186750 −0.0933750 0.995631i \(-0.529766\pi\)
−0.0933750 + 0.995631i \(0.529766\pi\)
\(402\) 0 0
\(403\) 13.2546i 0.660259i
\(404\) 0 0
\(405\) 0.975133 3.79558i 0.0484547 0.188604i
\(406\) 0 0
\(407\) −8.89204 + 5.13382i −0.440762 + 0.254474i
\(408\) 0 0
\(409\) 1.47660 0.852515i 0.0730131 0.0421541i −0.463049 0.886333i \(-0.653245\pi\)
0.536062 + 0.844179i \(0.319911\pi\)
\(410\) 0 0
\(411\) −11.8642 0.746870i −0.585218 0.0368404i
\(412\) 0 0
\(413\) 5.86879 + 32.2816i 0.288784 + 1.58847i
\(414\) 0 0
\(415\) −2.78076 + 1.60547i −0.136502 + 0.0788094i
\(416\) 0 0
\(417\) 8.17387 12.3017i 0.400276 0.602416i
\(418\) 0 0
\(419\) 8.00198 13.8598i 0.390922 0.677097i −0.601649 0.798761i \(-0.705489\pi\)
0.992571 + 0.121663i \(0.0388228\pi\)
\(420\) 0 0
\(421\) −15.7342 27.2524i −0.766837 1.32820i −0.939270 0.343179i \(-0.888496\pi\)
0.172433 0.985021i \(-0.444837\pi\)
\(422\) 0 0
\(423\) −15.5761 + 20.5176i −0.757336 + 0.997602i
\(424\) 0 0
\(425\) −23.6740 13.6682i −1.14836 0.663006i
\(426\) 0 0
\(427\) 15.1333 + 17.8421i 0.732350 + 0.863441i
\(428\) 0 0
\(429\) −23.0303 + 34.6606i −1.11191 + 1.67343i
\(430\) 0 0
\(431\) −4.78381 2.76193i −0.230428 0.133038i 0.380342 0.924846i \(-0.375806\pi\)
−0.610769 + 0.791809i \(0.709140\pi\)
\(432\) 0 0
\(433\) 7.56302i 0.363456i 0.983349 + 0.181728i \(0.0581690\pi\)
−0.983349 + 0.181728i \(0.941831\pi\)
\(434\) 0 0
\(435\) −3.37271 + 1.67407i −0.161709 + 0.0802656i
\(436\) 0 0
\(437\) 20.3060 11.7237i 0.971369 0.560820i
\(438\) 0 0
\(439\) 9.50453 16.4623i 0.453627 0.785704i −0.544981 0.838448i \(-0.683463\pi\)
0.998608 + 0.0527438i \(0.0167967\pi\)
\(440\) 0 0
\(441\) 14.4298 + 15.2572i 0.687131 + 0.726533i
\(442\) 0 0
\(443\) 2.50830 + 1.44817i 0.119173 + 0.0688046i 0.558402 0.829571i \(-0.311415\pi\)
−0.439229 + 0.898375i \(0.644748\pi\)
\(444\) 0 0
\(445\) 3.33346 + 5.77373i 0.158021 + 0.273701i
\(446\) 0 0
\(447\) 18.3053 + 1.15235i 0.865813 + 0.0545042i
\(448\) 0 0
\(449\) 31.1794 1.47145 0.735724 0.677281i \(-0.236842\pi\)
0.735724 + 0.677281i \(0.236842\pi\)
\(450\) 0 0
\(451\) −0.313744 + 0.543421i −0.0147736 + 0.0255887i
\(452\) 0 0
\(453\) 0.911025 14.4719i 0.0428037 0.679947i
\(454\) 0 0
\(455\) −4.37890 + 3.71408i −0.205286 + 0.174119i
\(456\) 0 0
\(457\) 4.51412 7.81868i 0.211162 0.365743i −0.740917 0.671597i \(-0.765609\pi\)
0.952078 + 0.305854i \(0.0989420\pi\)
\(458\) 0 0
\(459\) 22.3508 + 19.2970i 1.04325 + 0.900708i
\(460\) 0 0
\(461\) 1.19412 0.689428i 0.0556159 0.0321099i −0.471934 0.881634i \(-0.656444\pi\)
0.527550 + 0.849524i \(0.323111\pi\)
\(462\) 0 0
\(463\) 2.94275 + 1.69900i 0.136761 + 0.0789592i 0.566820 0.823842i \(-0.308174\pi\)
−0.430058 + 0.902801i \(0.641507\pi\)
\(464\) 0 0
\(465\) 1.79651 0.891711i 0.0833110 0.0413521i
\(466\) 0 0
\(467\) 8.37470 + 14.5054i 0.387535 + 0.671230i 0.992117 0.125312i \(-0.0399933\pi\)
−0.604582 + 0.796543i \(0.706660\pi\)
\(468\) 0 0
\(469\) −2.43859 + 0.443334i −0.112603 + 0.0204713i
\(470\) 0 0
\(471\) −24.9073 + 12.3629i −1.14767 + 0.569655i
\(472\) 0 0
\(473\) −18.1885 31.5034i −0.836308 1.44853i
\(474\) 0 0
\(475\) 17.8451 + 30.9086i 0.818789 + 1.41818i
\(476\) 0 0
\(477\) −20.3528 + 26.8097i −0.931889 + 1.22753i
\(478\) 0 0
\(479\) −4.68011 −0.213840 −0.106920 0.994268i \(-0.534099\pi\)
−0.106920 + 0.994268i \(0.534099\pi\)
\(480\) 0 0
\(481\) 10.6162i 0.484057i
\(482\) 0 0
\(483\) −5.72799 + 13.3014i −0.260633 + 0.605233i
\(484\) 0 0
\(485\) 0.713674 + 1.23612i 0.0324063 + 0.0561293i
\(486\) 0 0
\(487\) −14.9661 8.64071i −0.678181 0.391548i 0.120988 0.992654i \(-0.461394\pi\)
−0.799169 + 0.601106i \(0.794727\pi\)
\(488\) 0 0
\(489\) 11.7415 5.82800i 0.530969 0.263551i
\(490\) 0 0
\(491\) 15.7916 + 9.11730i 0.712666 + 0.411458i 0.812047 0.583591i \(-0.198353\pi\)
−0.0993812 + 0.995049i \(0.531686\pi\)
\(492\) 0 0
\(493\) 28.3718i 1.27780i
\(494\) 0 0
\(495\) 6.24721 + 0.789672i 0.280791 + 0.0354931i
\(496\) 0 0
\(497\) −5.59391 + 15.6265i −0.250921 + 0.700943i
\(498\) 0 0
\(499\) 31.6591i 1.41725i −0.705583 0.708627i \(-0.749315\pi\)
0.705583 0.708627i \(-0.250685\pi\)
\(500\) 0 0
\(501\) 3.33906 5.02529i 0.149178 0.224514i
\(502\) 0 0
\(503\) 27.7607 1.23779 0.618894 0.785474i \(-0.287581\pi\)
0.618894 + 0.785474i \(0.287581\pi\)
\(504\) 0 0
\(505\) −7.33933 −0.326596
\(506\) 0 0
\(507\) −9.11893 18.3717i −0.404986 0.815914i
\(508\) 0 0
\(509\) 24.5474i 1.08805i −0.839070 0.544023i \(-0.816900\pi\)
0.839070 0.544023i \(-0.183100\pi\)
\(510\) 0 0
\(511\) 22.2032 + 26.1776i 0.982211 + 1.15803i
\(512\) 0 0
\(513\) −12.6745 36.4092i −0.559594 1.60750i
\(514\) 0 0
\(515\) 1.43294i 0.0631429i
\(516\) 0 0
\(517\) −35.8468 20.6962i −1.57654 0.910217i
\(518\) 0 0
\(519\) −11.1449 7.40522i −0.489205 0.325053i
\(520\) 0 0
\(521\) 10.9064 + 6.29680i 0.477817 + 0.275868i 0.719506 0.694486i \(-0.244368\pi\)
−0.241689 + 0.970354i \(0.577701\pi\)
\(522\) 0 0
\(523\) 11.2363 + 19.4619i 0.491330 + 0.851009i 0.999950 0.00998216i \(-0.00317747\pi\)
−0.508620 + 0.860991i \(0.669844\pi\)
\(524\) 0 0
\(525\) −20.2465 8.71881i −0.883631 0.380520i
\(526\) 0 0
\(527\) 15.1125i 0.658312i
\(528\) 0 0
\(529\) 13.0126 0.565764
\(530\) 0 0
\(531\) 14.4146 + 34.2979i 0.625539 + 1.48840i
\(532\) 0 0
\(533\) −0.324395 0.561869i −0.0140511 0.0243372i
\(534\) 0 0
\(535\) −2.54103 4.40119i −0.109858 0.190280i
\(536\) 0 0
\(537\) 30.6461 + 20.3629i 1.32248 + 0.878722i
\(538\) 0 0
\(539\) −21.4145 + 26.0776i −0.922389 + 1.12324i
\(540\) 0 0
\(541\) −7.43945 12.8855i −0.319847 0.553991i 0.660609 0.750730i \(-0.270298\pi\)
−0.980456 + 0.196739i \(0.936965\pi\)
\(542\) 0 0
\(543\) −0.611708 + 9.71712i −0.0262509 + 0.417002i
\(544\) 0 0
\(545\) −6.90481 3.98649i −0.295770 0.170763i
\(546\) 0 0
\(547\) −37.5042 + 21.6531i −1.60356 + 0.925818i −0.612797 + 0.790240i \(0.709956\pi\)
−0.990767 + 0.135578i \(0.956711\pi\)
\(548\) 0 0
\(549\) 21.1293 + 16.0405i 0.901778 + 0.684591i
\(550\) 0 0
\(551\) −18.5210 + 32.0793i −0.789021 + 1.36662i
\(552\) 0 0
\(553\) 5.89365 + 6.94861i 0.250623 + 0.295485i
\(554\) 0 0
\(555\) −1.43890 + 0.714211i −0.0610779 + 0.0303165i
\(556\) 0 0
\(557\) 9.44755 16.3636i 0.400305 0.693349i −0.593457 0.804866i \(-0.702237\pi\)
0.993763 + 0.111516i \(0.0355707\pi\)
\(558\) 0 0
\(559\) 37.6118 1.59081
\(560\) 0 0
\(561\) −26.2585 + 39.5190i −1.10863 + 1.66849i
\(562\) 0 0
\(563\) 9.61497 + 16.6536i 0.405223 + 0.701866i 0.994347 0.106176i \(-0.0338607\pi\)
−0.589125 + 0.808042i \(0.700527\pi\)
\(564\) 0 0
\(565\) 1.66525 + 0.961432i 0.0700575 + 0.0404477i
\(566\) 0 0
\(567\) 19.7165 + 13.3514i 0.828016 + 0.560705i
\(568\) 0 0
\(569\) 3.33650 5.77899i 0.139874 0.242268i −0.787575 0.616219i \(-0.788664\pi\)
0.927449 + 0.373951i \(0.121997\pi\)
\(570\) 0 0
\(571\) −11.3391 + 6.54665i −0.474528 + 0.273969i −0.718133 0.695906i \(-0.755003\pi\)
0.243605 + 0.969874i \(0.421670\pi\)
\(572\) 0 0
\(573\) −18.1285 12.0455i −0.757327 0.503207i
\(574\) 0 0
\(575\) 15.2023i 0.633978i
\(576\) 0 0
\(577\) −7.59957 4.38761i −0.316374 0.182659i 0.333401 0.942785i \(-0.391804\pi\)
−0.649775 + 0.760126i \(0.725137\pi\)
\(578\) 0 0
\(579\) −16.2230 32.6839i −0.674203 1.35830i
\(580\) 0 0
\(581\) −3.48979 19.1958i −0.144781 0.796375i
\(582\) 0 0
\(583\) −46.8398 27.0430i −1.93991 1.12001i
\(584\) 0 0
\(585\) −3.93673 + 5.18566i −0.162764 + 0.214401i
\(586\) 0 0
\(587\) −1.22575 2.12306i −0.0505920 0.0876279i 0.839620 0.543174i \(-0.182777\pi\)
−0.890212 + 0.455546i \(0.849444\pi\)
\(588\) 0 0
\(589\) 9.86539 17.0874i 0.406496 0.704072i
\(590\) 0 0
\(591\) 36.5986 + 2.30394i 1.50546 + 0.0947712i
\(592\) 0 0
\(593\) −7.67653 + 4.43205i −0.315237 + 0.182002i −0.649268 0.760560i \(-0.724925\pi\)
0.334030 + 0.942562i \(0.391591\pi\)
\(594\) 0 0
\(595\) −4.99270 + 4.23469i −0.204681 + 0.173605i
\(596\) 0 0
\(597\) −11.2542 + 16.9376i −0.460603 + 0.693209i
\(598\) 0 0
\(599\) −41.8781 + 24.1783i −1.71109 + 0.987899i −0.777998 + 0.628267i \(0.783764\pi\)
−0.933094 + 0.359632i \(0.882902\pi\)
\(600\) 0 0
\(601\) −31.4198 + 18.1402i −1.28164 + 0.739955i −0.977148 0.212560i \(-0.931820\pi\)
−0.304492 + 0.952515i \(0.598487\pi\)
\(602\) 0 0
\(603\) −2.59090 + 1.08889i −0.105510 + 0.0443431i
\(604\) 0 0
\(605\) 5.32840i 0.216630i
\(606\) 0 0
\(607\) 32.9894 1.33900 0.669499 0.742813i \(-0.266509\pi\)
0.669499 + 0.742813i \(0.266509\pi\)
\(608\) 0 0
\(609\) −2.66999 22.7227i −0.108194 0.920768i
\(610\) 0 0
\(611\) 37.0637 21.3987i 1.49944 0.865701i
\(612\) 0 0
\(613\) −4.91100 + 8.50611i −0.198354 + 0.343558i −0.947995 0.318286i \(-0.896893\pi\)
0.749641 + 0.661844i \(0.230226\pi\)
\(614\) 0 0
\(615\) −0.0543308 + 0.0817679i −0.00219083 + 0.00329720i
\(616\) 0 0
\(617\) 3.68396 6.38080i 0.148311 0.256881i −0.782293 0.622911i \(-0.785950\pi\)
0.930603 + 0.366030i \(0.119283\pi\)
\(618\) 0 0
\(619\) −15.1718 −0.609805 −0.304902 0.952384i \(-0.598624\pi\)
−0.304902 + 0.952384i \(0.598624\pi\)
\(620\) 0 0
\(621\) −3.07883 + 16.1301i −0.123549 + 0.647280i
\(622\) 0 0
\(623\) −39.8565 + 7.24590i −1.59682 + 0.290301i
\(624\) 0 0
\(625\) 22.1920 0.887680
\(626\) 0 0
\(627\) 55.4876 27.5418i 2.21596 1.09991i
\(628\) 0 0
\(629\) 12.1043i 0.482629i
\(630\) 0 0
\(631\) 6.33987i 0.252386i 0.992006 + 0.126193i \(0.0402759\pi\)
−0.992006 + 0.126193i \(0.959724\pi\)
\(632\) 0 0
\(633\) 13.0534 + 8.67335i 0.518826 + 0.344735i
\(634\) 0 0
\(635\) 1.15392 0.0457919
\(636\) 0 0
\(637\) −12.2798 32.6565i −0.486542 1.29390i
\(638\) 0 0
\(639\) −2.36012 + 18.6713i −0.0933650 + 0.738624i
\(640\) 0 0
\(641\) 7.91338 0.312560 0.156280 0.987713i \(-0.450050\pi\)
0.156280 + 0.987713i \(0.450050\pi\)
\(642\) 0 0
\(643\) 8.71529 15.0953i 0.343697 0.595301i −0.641419 0.767191i \(-0.721654\pi\)
0.985116 + 0.171890i \(0.0549872\pi\)
\(644\) 0 0
\(645\) −2.53036 5.09784i −0.0996327 0.200727i
\(646\) 0 0
\(647\) −0.396991 + 0.687609i −0.0156073 + 0.0270327i −0.873724 0.486423i \(-0.838302\pi\)
0.858116 + 0.513455i \(0.171635\pi\)
\(648\) 0 0
\(649\) −51.7713 + 29.8902i −2.03220 + 1.17329i
\(650\) 0 0
\(651\) 1.42220 + 12.1034i 0.0557403 + 0.474371i
\(652\) 0 0
\(653\) 12.3455 0.483117 0.241559 0.970386i \(-0.422341\pi\)
0.241559 + 0.970386i \(0.422341\pi\)
\(654\) 0 0
\(655\) 0.375988i 0.0146911i
\(656\) 0 0
\(657\) 31.0005 + 23.5342i 1.20944 + 0.918157i
\(658\) 0 0
\(659\) 0.112430 0.0649117i 0.00437966 0.00252860i −0.497809 0.867287i \(-0.665862\pi\)
0.502188 + 0.864758i \(0.332528\pi\)
\(660\) 0 0
\(661\) −4.63535 + 2.67622i −0.180294 + 0.104093i −0.587431 0.809274i \(-0.699861\pi\)
0.407137 + 0.913367i \(0.366527\pi\)
\(662\) 0 0
\(663\) −21.8114 43.9427i −0.847083 1.70659i
\(664\) 0 0
\(665\) 8.40950 1.52885i 0.326106 0.0592861i
\(666\) 0 0
\(667\) 13.6642 7.88904i 0.529080 0.305465i
\(668\) 0 0
\(669\) 10.3839 + 20.9202i 0.401466 + 0.808822i
\(670\) 0 0
\(671\) −21.3132 + 36.9155i −0.822787 + 1.42511i
\(672\) 0 0
\(673\) −10.1452 17.5720i −0.391069 0.677351i 0.601522 0.798856i \(-0.294561\pi\)
−0.992591 + 0.121505i \(0.961228\pi\)
\(674\) 0 0
\(675\) −24.5523 4.68641i −0.945020 0.180380i
\(676\) 0 0
\(677\) 31.5452 + 18.2126i 1.21238 + 0.699967i 0.963277 0.268510i \(-0.0865312\pi\)
0.249102 + 0.968477i \(0.419865\pi\)
\(678\) 0 0
\(679\) −8.53303 + 1.55130i −0.327468 + 0.0595335i
\(680\) 0 0
\(681\) 41.6109 + 2.61947i 1.59453 + 0.100378i
\(682\) 0 0
\(683\) −14.6439 8.45468i −0.560334 0.323509i 0.192945 0.981210i \(-0.438196\pi\)
−0.753280 + 0.657700i \(0.771529\pi\)
\(684\) 0 0
\(685\) 2.98849i 0.114184i
\(686\) 0 0
\(687\) −1.53254 + 24.3448i −0.0584701 + 0.928813i
\(688\) 0 0
\(689\) 48.4299 27.9610i 1.84503 1.06523i
\(690\) 0 0
\(691\) 8.43736 14.6139i 0.320972 0.555940i −0.659717 0.751514i \(-0.729324\pi\)
0.980689 + 0.195574i \(0.0626571\pi\)
\(692\) 0 0
\(693\) −17.3111 + 34.1214i −0.657593 + 1.29617i
\(694\) 0 0
\(695\) 3.21556 + 1.85650i 0.121973 + 0.0704211i
\(696\) 0 0
\(697\) −0.369866 0.640626i −0.0140097 0.0242655i
\(698\) 0 0
\(699\) −1.70807 3.44121i −0.0646053 0.130159i
\(700\) 0 0
\(701\) 40.8133 1.54150 0.770748 0.637140i \(-0.219883\pi\)
0.770748 + 0.637140i \(0.219883\pi\)
\(702\) 0 0
\(703\) −7.90162 + 13.6860i −0.298015 + 0.516178i
\(704\) 0 0
\(705\) −5.39383 3.58394i −0.203143 0.134979i
\(706\) 0 0
\(707\) 15.0301 41.9863i 0.565266 1.57906i
\(708\) 0 0
\(709\) −21.3529 + 36.9843i −0.801925 + 1.38898i 0.116422 + 0.993200i \(0.462858\pi\)
−0.918347 + 0.395776i \(0.870476\pi\)
\(710\) 0 0
\(711\) 8.22881 + 6.24695i 0.308604 + 0.234279i
\(712\) 0 0
\(713\) −7.27838 + 4.20217i −0.272577 + 0.157373i
\(714\) 0 0
\(715\) −9.05999 5.23079i −0.338824 0.195620i
\(716\) 0 0
\(717\) −17.4911 11.6220i −0.653218 0.434032i
\(718\) 0 0
\(719\) 9.82946 + 17.0251i 0.366577 + 0.634930i 0.989028 0.147729i \(-0.0471963\pi\)
−0.622451 + 0.782659i \(0.713863\pi\)
\(720\) 0 0
\(721\) 8.19746 + 2.93450i 0.305289 + 0.109286i
\(722\) 0 0
\(723\) −0.508290 + 8.07432i −0.0189035 + 0.300287i
\(724\) 0 0
\(725\) 12.0082 + 20.7988i 0.445974 + 0.772450i
\(726\) 0 0
\(727\) 17.8591 + 30.9329i 0.662358 + 1.14724i 0.979994 + 0.199026i \(0.0637777\pi\)
−0.317636 + 0.948213i \(0.602889\pi\)
\(728\) 0 0
\(729\) 25.1018 + 9.94489i 0.929695 + 0.368329i
\(730\) 0 0
\(731\) 42.8840 1.58612
\(732\) 0 0
\(733\) 35.4533i 1.30950i 0.755847 + 0.654749i \(0.227225\pi\)
−0.755847 + 0.654749i \(0.772775\pi\)
\(734\) 0 0
\(735\) −3.60008 + 3.86136i −0.132791 + 0.142428i
\(736\) 0 0
\(737\) −2.25794 3.91086i −0.0831722 0.144058i
\(738\) 0 0
\(739\) 18.6506 + 10.7679i 0.686072 + 0.396104i 0.802139 0.597137i \(-0.203695\pi\)
−0.116067 + 0.993241i \(0.537029\pi\)
\(740\) 0 0
\(741\) −4.02407 + 63.9233i −0.147828 + 2.34828i
\(742\) 0 0
\(743\) 17.1882 + 9.92361i 0.630574 + 0.364062i 0.780974 0.624563i \(-0.214723\pi\)
−0.150400 + 0.988625i \(0.548056\pi\)
\(744\) 0 0
\(745\) 4.61096i 0.168932i
\(746\) 0 0
\(747\) −8.57140 20.3948i −0.313611 0.746205i
\(748\) 0 0
\(749\) 30.3817 5.52339i 1.11012 0.201820i
\(750\) 0 0
\(751\) 34.1548i 1.24633i 0.782092 + 0.623163i \(0.214153\pi\)
−0.782092 + 0.623163i \(0.785847\pi\)
\(752\) 0 0
\(753\) 18.1336 + 1.14153i 0.660824 + 0.0415998i
\(754\) 0 0
\(755\) 3.64534 0.132667
\(756\) 0 0
\(757\) −20.3294 −0.738885 −0.369442 0.929254i \(-0.620451\pi\)
−0.369442 + 0.929254i \(0.620451\pi\)
\(758\) 0 0
\(759\) −26.3342 1.65778i −0.955872 0.0601736i
\(760\) 0 0
\(761\) 36.7989i 1.33396i −0.745075 0.666980i \(-0.767587\pi\)
0.745075 0.666980i \(-0.232413\pi\)
\(762\) 0 0
\(763\) 36.9459 31.3367i 1.33753 1.13446i
\(764\) 0 0
\(765\) −4.48855 + 5.91254i −0.162284 + 0.213768i
\(766\) 0 0
\(767\) 61.8097i 2.23182i
\(768\) 0 0
\(769\) 34.6942 + 20.0307i 1.25111 + 0.722326i 0.971329 0.237739i \(-0.0764063\pi\)
0.279777 + 0.960065i \(0.409740\pi\)
\(770\) 0 0
\(771\) −0.557439 + 8.85505i −0.0200757 + 0.318907i
\(772\) 0 0
\(773\) −27.0859 15.6381i −0.974213 0.562462i −0.0736952 0.997281i \(-0.523479\pi\)
−0.900518 + 0.434818i \(0.856813\pi\)
\(774\) 0 0
\(775\) −6.39629 11.0787i −0.229762 0.397959i
\(776\) 0 0
\(777\) −1.13910 9.69418i −0.0408650 0.347777i
\(778\) 0 0
\(779\) 0.965787i 0.0346029i
\(780\) 0 0
\(781\) −30.2403 −1.08208
\(782\) 0 0
\(783\) −8.52887 24.5003i −0.304797 0.875568i
\(784\) 0 0
\(785\) −3.49522 6.05390i −0.124750 0.216073i
\(786\) 0 0
\(787\) −20.3830 35.3043i −0.726574 1.25846i −0.958323 0.285687i \(-0.907778\pi\)
0.231749 0.972776i \(-0.425555\pi\)
\(788\) 0 0
\(789\) −2.07791 + 33.0080i −0.0739754 + 1.17512i
\(790\) 0 0
\(791\) −8.91033 + 7.55753i −0.316815 + 0.268715i
\(792\) 0 0
\(793\) −22.0367 38.1687i −0.782546 1.35541i
\(794\) 0 0
\(795\) −7.04793 4.68301i −0.249964 0.166089i
\(796\) 0 0
\(797\) 10.6301 + 6.13732i 0.376539 + 0.217395i 0.676311 0.736616i \(-0.263577\pi\)
−0.299772 + 0.954011i \(0.596911\pi\)
\(798\) 0 0
\(799\) 42.2590 24.3982i 1.49502 0.863148i
\(800\) 0 0
\(801\) −42.3460 + 17.7969i −1.49622 + 0.628824i
\(802\) 0 0
\(803\) −31.2702 + 54.1616i −1.10350 + 1.91132i
\(804\) 0 0
\(805\) −3.42774 1.22705i −0.120812 0.0432478i
\(806\) 0 0
\(807\) −10.0361 6.66852i −0.353289 0.234743i
\(808\) 0 0
\(809\) −14.5729 + 25.2410i −0.512356 + 0.887427i 0.487541 + 0.873100i \(0.337894\pi\)
−0.999897 + 0.0143273i \(0.995439\pi\)
\(810\) 0 0
\(811\) −19.9170 −0.699379 −0.349690 0.936866i \(-0.613713\pi\)
−0.349690 + 0.936866i \(0.613713\pi\)
\(812\) 0 0
\(813\) 2.15641 + 4.34447i 0.0756287 + 0.152367i
\(814\) 0 0
\(815\) 1.64768 + 2.85386i 0.0577156 + 0.0999664i
\(816\) 0 0
\(817\) −48.4878 27.9944i −1.69637 0.979402i
\(818\) 0 0
\(819\) −21.6038 33.1406i −0.754897 1.15803i
\(820\) 0 0
\(821\) −13.3309 + 23.0897i −0.465250 + 0.805837i −0.999213 0.0396708i \(-0.987369\pi\)
0.533962 + 0.845508i \(0.320702\pi\)
\(822\) 0 0
\(823\) −27.5281 + 15.8934i −0.959570 + 0.554008i −0.896041 0.443972i \(-0.853569\pi\)
−0.0635296 + 0.997980i \(0.520236\pi\)
\(824\) 0 0
\(825\) 2.52337 40.0844i 0.0878525 1.39556i
\(826\) 0 0
\(827\) 43.7367i 1.52087i −0.649413 0.760436i \(-0.724985\pi\)
0.649413 0.760436i \(-0.275015\pi\)
\(828\) 0 0
\(829\) −6.03642 3.48513i −0.209653 0.121043i 0.391497 0.920179i \(-0.371957\pi\)
−0.601150 + 0.799136i \(0.705291\pi\)
\(830\) 0 0
\(831\) −24.7213 1.55624i −0.857572 0.0539855i
\(832\) 0 0
\(833\) −14.0010 37.2340i −0.485107 1.29008i
\(834\) 0 0
\(835\) 1.31357 + 0.758390i 0.0454580 + 0.0262452i
\(836\) 0 0
\(837\) 4.54299 + 13.0503i 0.157029 + 0.451084i
\(838\) 0 0
\(839\) −26.6379 46.1382i −0.919643 1.59287i −0.799958 0.600056i \(-0.795145\pi\)
−0.119685 0.992812i \(-0.538189\pi\)
\(840\) 0 0
\(841\) 2.03696 3.52812i 0.0702400 0.121659i
\(842\) 0 0
\(843\) 14.4522 + 29.1164i 0.497759 + 1.00282i
\(844\) 0 0
\(845\) 4.46537 2.57808i 0.153613 0.0886887i
\(846\) 0 0
\(847\) −30.4823 10.9120i −1.04739 0.374940i
\(848\) 0 0
\(849\) −14.9951 30.2103i −0.514632 1.03681i
\(850\) 0 0
\(851\) 5.82957 3.36570i 0.199835 0.115375i
\(852\) 0 0
\(853\) 47.1872 27.2435i 1.61566 0.932801i 0.627632 0.778510i \(-0.284024\pi\)
0.988025 0.154291i \(-0.0493093\pi\)
\(854\) 0 0
\(855\) 8.93477 3.75506i 0.305563 0.128420i
\(856\) 0 0
\(857\) 26.7099i 0.912394i 0.889879 + 0.456197i \(0.150789\pi\)
−0.889879 + 0.456197i \(0.849211\pi\)
\(858\) 0 0
\(859\) 49.4926 1.68867 0.844333 0.535819i \(-0.179997\pi\)
0.844333 + 0.535819i \(0.179997\pi\)
\(860\) 0 0
\(861\) −0.356509 0.478263i −0.0121498 0.0162992i
\(862\) 0 0
\(863\) 20.7843 11.9998i 0.707506 0.408479i −0.102631 0.994719i \(-0.532726\pi\)
0.810137 + 0.586241i \(0.199393\pi\)
\(864\) 0 0
\(865\) 1.68192 2.91317i 0.0571870 0.0990509i
\(866\) 0 0
\(867\) −11.7774 23.7276i −0.399982 0.805833i
\(868\) 0 0
\(869\) −8.30041 + 14.3767i −0.281572 + 0.487697i
\(870\) 0 0
\(871\) 4.66917 0.158209
\(872\) 0 0
\(873\) −9.06601 + 3.81022i −0.306838 + 0.128956i
\(874\) 0 0
\(875\) 3.80910 10.6406i 0.128771 0.359719i
\(876\) 0 0
\(877\) 6.48573 0.219008 0.109504 0.993986i \(-0.465074\pi\)
0.109504 + 0.993986i \(0.465074\pi\)
\(878\) 0 0
\(879\) −14.6257 9.71806i −0.493313 0.327782i
\(880\) 0 0
\(881\) 4.29737i 0.144782i 0.997376 + 0.0723910i \(0.0230630\pi\)
−0.997376 + 0.0723910i \(0.976937\pi\)
\(882\) 0 0
\(883\) 17.8931i 0.602150i −0.953600 0.301075i \(-0.902654\pi\)
0.953600 0.301075i \(-0.0973455\pi\)
\(884\) 0 0
\(885\) −8.37758 + 4.15828i −0.281609 + 0.139779i
\(886\) 0 0
\(887\) −6.42110 −0.215599 −0.107800 0.994173i \(-0.534381\pi\)
−0.107800 + 0.994173i \(0.534381\pi\)
\(888\) 0 0
\(889\) −2.36310 + 6.60127i −0.0792558 + 0.221399i
\(890\) 0 0
\(891\) −10.7954 + 42.0199i −0.361661 + 1.40772i
\(892\) 0 0
\(893\) −63.7082 −2.13191
\(894\) 0 0
\(895\) −4.62494 + 8.01064i −0.154595 + 0.267766i
\(896\) 0 0
\(897\) 15.0985 22.7233i 0.504125 0.758708i
\(898\) 0 0
\(899\) 6.63856 11.4983i 0.221408 0.383491i
\(900\) 0 0
\(901\) 55.2184 31.8803i 1.83959 1.06209i
\(902\) 0 0
\(903\) 34.3452 4.03569i 1.14294 0.134299i
\(904\) 0 0
\(905\) −2.44766 −0.0813629
\(906\) 0 0
\(907\) 11.9139i 0.395593i 0.980243 + 0.197797i \(0.0633786\pi\)
−0.980243 + 0.197797i \(0.936621\pi\)
\(908\) 0 0
\(909\) 6.34135 50.1673i 0.210329 1.66394i
\(910\) 0 0
\(911\) 38.6598 22.3203i 1.28086 0.739504i 0.303853 0.952719i \(-0.401727\pi\)
0.977005 + 0.213215i \(0.0683936\pi\)
\(912\) 0 0
\(913\) 30.7851 17.7738i 1.01884 0.588226i
\(914\) 0 0
\(915\) −3.69078 + 5.55463i −0.122014 + 0.183631i
\(916\) 0 0
\(917\) −2.15092 0.769980i −0.0710297 0.0254270i
\(918\) 0 0
\(919\) −28.4378 + 16.4185i −0.938075 + 0.541598i −0.889356 0.457215i \(-0.848847\pi\)
−0.0487187 + 0.998813i \(0.515514\pi\)
\(920\) 0 0
\(921\) 16.3884 + 1.03167i 0.540016 + 0.0339948i
\(922\) 0 0
\(923\) 15.6334 27.0779i 0.514581 0.891281i
\(924\) 0 0
\(925\) 5.12307 + 8.87342i 0.168446 + 0.291756i
\(926\) 0 0
\(927\) 9.79472 + 1.23809i 0.321701 + 0.0406643i
\(928\) 0 0
\(929\) 13.0150 + 7.51419i 0.427007 + 0.246533i 0.698071 0.716029i \(-0.254042\pi\)
−0.271064 + 0.962561i \(0.587375\pi\)
\(930\) 0 0
\(931\) −8.47559 + 51.2394i −0.277776 + 1.67930i
\(932\) 0 0
\(933\) 0.724092 + 1.45881i 0.0237057 + 0.0477593i
\(934\) 0 0
\(935\) −10.3299 5.96399i −0.337825 0.195043i
\(936\) 0 0
\(937\) 14.0428i 0.458758i 0.973337 + 0.229379i \(0.0736695\pi\)
−0.973337 + 0.229379i \(0.926330\pi\)
\(938\) 0 0
\(939\) 19.4144 + 12.9000i 0.633566 + 0.420974i
\(940\) 0 0
\(941\) −29.8936 + 17.2591i −0.974505 + 0.562631i −0.900607 0.434635i \(-0.856877\pi\)
−0.0738984 + 0.997266i \(0.523544\pi\)
\(942\) 0 0
\(943\) 0.205689 0.356264i 0.00669815 0.0116015i
\(944\) 0 0
\(945\) −3.03841 + 5.15769i −0.0988395 + 0.167780i
\(946\) 0 0
\(947\) 6.51834 + 3.76336i 0.211817 + 0.122293i 0.602156 0.798379i \(-0.294309\pi\)
−0.390338 + 0.920672i \(0.627642\pi\)
\(948\) 0 0
\(949\) −32.3317 56.0002i −1.04953 1.81784i
\(950\) 0 0
\(951\) −4.20642 + 6.33067i −0.136403 + 0.205286i
\(952\) 0 0
\(953\) 44.3406 1.43633 0.718166 0.695871i \(-0.244982\pi\)
0.718166 + 0.695871i \(0.244982\pi\)
\(954\) 0 0
\(955\) 2.73585 4.73863i 0.0885299 0.153338i
\(956\) 0 0
\(957\) 37.3384 18.5332i 1.20698 0.599095i
\(958\) 0 0
\(959\) 17.0963 + 6.12009i 0.552070 + 0.197628i
\(960\) 0 0
\(961\) 11.9639 20.7221i 0.385932 0.668455i
\(962\) 0 0
\(963\) 32.2794 13.5662i 1.04019 0.437165i
\(964\) 0 0
\(965\) 7.94407 4.58651i 0.255729 0.147645i
\(966\) 0 0
\(967\) −42.3694 24.4620i −1.36251 0.786644i −0.372551 0.928012i \(-0.621517\pi\)
−0.989957 + 0.141367i \(0.954850\pi\)
\(968\) 0 0
\(969\) −4.58813 + 72.8835i −0.147392 + 2.34136i
\(970\) 0 0
\(971\) −2.57411 4.45849i −0.0826072 0.143080i 0.821762 0.569831i \(-0.192991\pi\)
−0.904369 + 0.426751i \(0.859658\pi\)
\(972\) 0 0
\(973\) −17.2056 + 14.5934i −0.551587 + 0.467843i
\(974\) 0 0
\(975\) 34.5880 + 22.9820i 1.10770 + 0.736015i
\(976\) 0 0
\(977\) −18.6343 32.2756i −0.596165 1.03259i −0.993381 0.114863i \(-0.963357\pi\)
0.397217 0.917725i \(-0.369976\pi\)
\(978\) 0 0
\(979\) −36.9040 63.9195i −1.17946 2.04288i
\(980\) 0 0
\(981\) 33.2152 43.7528i 1.06048 1.39692i
\(982\) 0 0
\(983\) 9.58746 0.305793 0.152896 0.988242i \(-0.451140\pi\)
0.152896 + 0.988242i \(0.451140\pi\)
\(984\) 0 0
\(985\) 9.21886i 0.293737i
\(986\) 0 0
\(987\) 31.5487 23.5171i 1.00421 0.748559i
\(988\) 0 0
\(989\) 11.9243 + 20.6534i 0.379169 + 0.656741i
\(990\) 0 0
\(991\) −9.50543 5.48797i −0.301950 0.174331i 0.341369 0.939930i \(-0.389110\pi\)
−0.643319 + 0.765599i \(0.722443\pi\)
\(992\) 0 0
\(993\) 6.09431 + 4.04937i 0.193397 + 0.128503i
\(994\) 0 0
\(995\) −4.42734 2.55613i −0.140356 0.0810346i
\(996\) 0 0
\(997\) 22.0337i 0.697814i 0.937157 + 0.348907i \(0.113447\pi\)
−0.937157 + 0.348907i \(0.886553\pi\)
\(998\) 0 0
\(999\) −3.63868 10.4526i −0.115123 0.330704i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.bf.i.31.1 32
3.2 odd 2 3024.2.bf.i.1711.9 32
4.3 odd 2 inner 1008.2.bf.i.31.16 yes 32
7.5 odd 6 1008.2.cz.i.607.5 yes 32
9.2 odd 6 3024.2.cz.i.2719.8 32
9.7 even 3 1008.2.cz.i.367.12 yes 32
12.11 even 2 3024.2.bf.i.1711.10 32
21.5 even 6 3024.2.cz.i.1279.7 32
28.19 even 6 1008.2.cz.i.607.12 yes 32
36.7 odd 6 1008.2.cz.i.367.5 yes 32
36.11 even 6 3024.2.cz.i.2719.7 32
63.47 even 6 3024.2.bf.i.2287.7 32
63.61 odd 6 inner 1008.2.bf.i.943.16 yes 32
84.47 odd 6 3024.2.cz.i.1279.8 32
252.47 odd 6 3024.2.bf.i.2287.8 32
252.187 even 6 inner 1008.2.bf.i.943.1 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.i.31.1 32 1.1 even 1 trivial
1008.2.bf.i.31.16 yes 32 4.3 odd 2 inner
1008.2.bf.i.943.1 yes 32 252.187 even 6 inner
1008.2.bf.i.943.16 yes 32 63.61 odd 6 inner
1008.2.cz.i.367.5 yes 32 36.7 odd 6
1008.2.cz.i.367.12 yes 32 9.7 even 3
1008.2.cz.i.607.5 yes 32 7.5 odd 6
1008.2.cz.i.607.12 yes 32 28.19 even 6
3024.2.bf.i.1711.9 32 3.2 odd 2
3024.2.bf.i.1711.10 32 12.11 even 2
3024.2.bf.i.2287.7 32 63.47 even 6
3024.2.bf.i.2287.8 32 252.47 odd 6
3024.2.cz.i.1279.7 32 21.5 even 6
3024.2.cz.i.1279.8 32 84.47 odd 6
3024.2.cz.i.2719.7 32 36.11 even 6
3024.2.cz.i.2719.8 32 9.2 odd 6