Properties

Label 1008.2.bf.i.31.10
Level $1008$
Weight $2$
Character 1008.31
Analytic conductor $8.049$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(31,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 2, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.31"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.10
Character \(\chi\) \(=\) 1008.31
Dual form 1008.2.bf.i.943.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.624780 + 1.61544i) q^{3} +2.39618i q^{5} +(-2.35781 + 1.20030i) q^{7} +(-2.21930 + 2.01859i) q^{9} +1.17822i q^{11} +(3.94643 + 2.27847i) q^{13} +(-3.87088 + 1.49708i) q^{15} +(-3.59971 - 2.07829i) q^{17} +(-0.422526 - 0.731837i) q^{19} +(-3.41213 - 3.05898i) q^{21} -3.01797i q^{23} -0.741665 q^{25} +(-4.64749 - 2.32398i) q^{27} +(1.38403 + 2.39720i) q^{29} +(-3.47638 - 6.02126i) q^{31} +(-1.90334 + 0.736128i) q^{33} +(-2.87613 - 5.64973i) q^{35} +(4.62049 + 8.00292i) q^{37} +(-1.21509 + 7.79877i) q^{39} +(-2.48982 - 1.43750i) q^{41} +(-7.19863 + 4.15613i) q^{43} +(-4.83690 - 5.31784i) q^{45} +(-5.38111 + 9.32036i) q^{47} +(4.11855 - 5.66017i) q^{49} +(1.10834 - 7.11359i) q^{51} +(4.88791 - 8.46611i) q^{53} -2.82322 q^{55} +(0.918254 - 1.13980i) q^{57} +(-2.78034 - 4.81569i) q^{59} +(-0.597080 - 0.344724i) q^{61} +(2.80978 - 7.42328i) q^{63} +(-5.45962 + 9.45635i) q^{65} +(3.56340 - 2.05733i) q^{67} +(4.87535 - 1.88556i) q^{69} +9.65062i q^{71} +(6.02026 + 3.47580i) q^{73} +(-0.463377 - 1.19812i) q^{75} +(-1.41422 - 2.77802i) q^{77} +(11.7100 + 6.76075i) q^{79} +(0.850594 - 8.95971i) q^{81} +(-2.52663 - 4.37625i) q^{83} +(4.97996 - 8.62554i) q^{85} +(-3.00783 + 3.73354i) q^{87} +(-6.06236 + 3.50011i) q^{89} +(-12.0398 - 0.635304i) q^{91} +(7.55502 - 9.37784i) q^{93} +(1.75361 - 1.01245i) q^{95} +(-0.316523 + 0.182744i) q^{97} +(-2.37834 - 2.61482i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{9} - 6 q^{13} - 18 q^{17} - 8 q^{21} - 32 q^{25} - 12 q^{29} + 30 q^{33} + 2 q^{37} + 36 q^{41} + 30 q^{45} + 2 q^{49} - 12 q^{53} - 46 q^{57} + 42 q^{61} + 18 q^{65} - 42 q^{69} - 66 q^{77}+ \cdots - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.624780 + 1.61544i 0.360717 + 0.932675i
\(4\) 0 0
\(5\) 2.39618i 1.07160i 0.844344 + 0.535801i \(0.179990\pi\)
−0.844344 + 0.535801i \(0.820010\pi\)
\(6\) 0 0
\(7\) −2.35781 + 1.20030i −0.891169 + 0.453671i
\(8\) 0 0
\(9\) −2.21930 + 2.01859i −0.739767 + 0.672863i
\(10\) 0 0
\(11\) 1.17822i 0.355247i 0.984099 + 0.177623i \(0.0568409\pi\)
−0.984099 + 0.177623i \(0.943159\pi\)
\(12\) 0 0
\(13\) 3.94643 + 2.27847i 1.09454 + 0.631935i 0.934782 0.355221i \(-0.115594\pi\)
0.159761 + 0.987156i \(0.448928\pi\)
\(14\) 0 0
\(15\) −3.87088 + 1.49708i −0.999458 + 0.386545i
\(16\) 0 0
\(17\) −3.59971 2.07829i −0.873057 0.504060i −0.00469432 0.999989i \(-0.501494\pi\)
−0.868363 + 0.495929i \(0.834828\pi\)
\(18\) 0 0
\(19\) −0.422526 0.731837i −0.0969342 0.167895i 0.813480 0.581593i \(-0.197570\pi\)
−0.910414 + 0.413698i \(0.864237\pi\)
\(20\) 0 0
\(21\) −3.41213 3.05898i −0.744588 0.667525i
\(22\) 0 0
\(23\) 3.01797i 0.629289i −0.949210 0.314645i \(-0.898115\pi\)
0.949210 0.314645i \(-0.101885\pi\)
\(24\) 0 0
\(25\) −0.741665 −0.148333
\(26\) 0 0
\(27\) −4.64749 2.32398i −0.894409 0.447250i
\(28\) 0 0
\(29\) 1.38403 + 2.39720i 0.257007 + 0.445150i 0.965439 0.260630i \(-0.0839303\pi\)
−0.708432 + 0.705780i \(0.750597\pi\)
\(30\) 0 0
\(31\) −3.47638 6.02126i −0.624375 1.08145i −0.988661 0.150163i \(-0.952020\pi\)
0.364286 0.931287i \(-0.381313\pi\)
\(32\) 0 0
\(33\) −1.90334 + 0.736128i −0.331330 + 0.128143i
\(34\) 0 0
\(35\) −2.87613 5.64973i −0.486156 0.954979i
\(36\) 0 0
\(37\) 4.62049 + 8.00292i 0.759603 + 1.31567i 0.943053 + 0.332643i \(0.107940\pi\)
−0.183450 + 0.983029i \(0.558726\pi\)
\(38\) 0 0
\(39\) −1.21509 + 7.79877i −0.194570 + 1.24880i
\(40\) 0 0
\(41\) −2.48982 1.43750i −0.388844 0.224499i 0.292815 0.956169i \(-0.405408\pi\)
−0.681659 + 0.731670i \(0.738741\pi\)
\(42\) 0 0
\(43\) −7.19863 + 4.15613i −1.09778 + 0.633804i −0.935637 0.352963i \(-0.885174\pi\)
−0.162144 + 0.986767i \(0.551841\pi\)
\(44\) 0 0
\(45\) −4.83690 5.31784i −0.721042 0.792737i
\(46\) 0 0
\(47\) −5.38111 + 9.32036i −0.784916 + 1.35951i 0.144133 + 0.989558i \(0.453961\pi\)
−0.929049 + 0.369956i \(0.879373\pi\)
\(48\) 0 0
\(49\) 4.11855 5.66017i 0.588365 0.808596i
\(50\) 0 0
\(51\) 1.10834 7.11359i 0.155198 0.996102i
\(52\) 0 0
\(53\) 4.88791 8.46611i 0.671406 1.16291i −0.306099 0.952000i \(-0.599024\pi\)
0.977505 0.210910i \(-0.0676428\pi\)
\(54\) 0 0
\(55\) −2.82322 −0.380683
\(56\) 0 0
\(57\) 0.918254 1.13980i 0.121626 0.150971i
\(58\) 0 0
\(59\) −2.78034 4.81569i −0.361969 0.626949i 0.626316 0.779570i \(-0.284562\pi\)
−0.988285 + 0.152621i \(0.951229\pi\)
\(60\) 0 0
\(61\) −0.597080 0.344724i −0.0764482 0.0441374i 0.461289 0.887250i \(-0.347387\pi\)
−0.537737 + 0.843113i \(0.680721\pi\)
\(62\) 0 0
\(63\) 2.80978 7.42328i 0.353999 0.935246i
\(64\) 0 0
\(65\) −5.45962 + 9.45635i −0.677183 + 1.17292i
\(66\) 0 0
\(67\) 3.56340 2.05733i 0.435339 0.251343i −0.266280 0.963896i \(-0.585794\pi\)
0.701618 + 0.712553i \(0.252461\pi\)
\(68\) 0 0
\(69\) 4.87535 1.88556i 0.586923 0.226995i
\(70\) 0 0
\(71\) 9.65062i 1.14532i 0.819794 + 0.572659i \(0.194088\pi\)
−0.819794 + 0.572659i \(0.805912\pi\)
\(72\) 0 0
\(73\) 6.02026 + 3.47580i 0.704618 + 0.406811i 0.809065 0.587719i \(-0.199974\pi\)
−0.104447 + 0.994530i \(0.533307\pi\)
\(74\) 0 0
\(75\) −0.463377 1.19812i −0.0535062 0.138347i
\(76\) 0 0
\(77\) −1.41422 2.77802i −0.161165 0.316585i
\(78\) 0 0
\(79\) 11.7100 + 6.76075i 1.31747 + 0.760643i 0.983321 0.181876i \(-0.0582170\pi\)
0.334151 + 0.942519i \(0.391550\pi\)
\(80\) 0 0
\(81\) 0.850594 8.95971i 0.0945104 0.995524i
\(82\) 0 0
\(83\) −2.52663 4.37625i −0.277333 0.480356i 0.693388 0.720565i \(-0.256117\pi\)
−0.970721 + 0.240209i \(0.922784\pi\)
\(84\) 0 0
\(85\) 4.97996 8.62554i 0.540152 0.935571i
\(86\) 0 0
\(87\) −3.00783 + 3.73354i −0.322473 + 0.400277i
\(88\) 0 0
\(89\) −6.06236 + 3.50011i −0.642609 + 0.371010i −0.785619 0.618711i \(-0.787655\pi\)
0.143010 + 0.989721i \(0.454322\pi\)
\(90\) 0 0
\(91\) −12.0398 0.635304i −1.26211 0.0665979i
\(92\) 0 0
\(93\) 7.55502 9.37784i 0.783419 0.972437i
\(94\) 0 0
\(95\) 1.75361 1.01245i 0.179917 0.103875i
\(96\) 0 0
\(97\) −0.316523 + 0.182744i −0.0321380 + 0.0185549i −0.515983 0.856599i \(-0.672573\pi\)
0.483845 + 0.875154i \(0.339240\pi\)
\(98\) 0 0
\(99\) −2.37834 2.61482i −0.239032 0.262800i
\(100\) 0 0
\(101\) 19.0574i 1.89628i 0.317855 + 0.948139i \(0.397037\pi\)
−0.317855 + 0.948139i \(0.602963\pi\)
\(102\) 0 0
\(103\) 3.79017 0.373456 0.186728 0.982412i \(-0.440212\pi\)
0.186728 + 0.982412i \(0.440212\pi\)
\(104\) 0 0
\(105\) 7.32986 8.17607i 0.715321 0.797902i
\(106\) 0 0
\(107\) −11.6936 + 6.75131i −1.13046 + 0.652673i −0.944051 0.329798i \(-0.893019\pi\)
−0.186412 + 0.982472i \(0.559686\pi\)
\(108\) 0 0
\(109\) 8.13901 14.0972i 0.779576 1.35027i −0.152610 0.988286i \(-0.548768\pi\)
0.932186 0.361979i \(-0.117899\pi\)
\(110\) 0 0
\(111\) −10.0415 + 12.4642i −0.953093 + 1.18305i
\(112\) 0 0
\(113\) −9.03477 + 15.6487i −0.849920 + 1.47210i 0.0313588 + 0.999508i \(0.490017\pi\)
−0.881279 + 0.472597i \(0.843317\pi\)
\(114\) 0 0
\(115\) 7.23158 0.674348
\(116\) 0 0
\(117\) −13.3576 + 2.90961i −1.23491 + 0.268993i
\(118\) 0 0
\(119\) 10.9820 + 0.579487i 1.00672 + 0.0531215i
\(120\) 0 0
\(121\) 9.61180 0.873800
\(122\) 0 0
\(123\) 0.766604 4.92027i 0.0691224 0.443646i
\(124\) 0 0
\(125\) 10.2037i 0.912649i
\(126\) 0 0
\(127\) 12.2396i 1.08609i 0.839703 + 0.543046i \(0.182729\pi\)
−0.839703 + 0.543046i \(0.817271\pi\)
\(128\) 0 0
\(129\) −11.2115 9.03230i −0.987122 0.795250i
\(130\) 0 0
\(131\) −9.39696 −0.821016 −0.410508 0.911857i \(-0.634649\pi\)
−0.410508 + 0.911857i \(0.634649\pi\)
\(132\) 0 0
\(133\) 1.87466 + 1.21837i 0.162554 + 0.105646i
\(134\) 0 0
\(135\) 5.56866 11.1362i 0.479274 0.958452i
\(136\) 0 0
\(137\) −8.51962 −0.727880 −0.363940 0.931422i \(-0.618569\pi\)
−0.363940 + 0.931422i \(0.618569\pi\)
\(138\) 0 0
\(139\) −0.147974 + 0.256298i −0.0125510 + 0.0217389i −0.872233 0.489091i \(-0.837329\pi\)
0.859682 + 0.510830i \(0.170662\pi\)
\(140\) 0 0
\(141\) −18.4185 2.86970i −1.55112 0.241672i
\(142\) 0 0
\(143\) −2.68454 + 4.64976i −0.224493 + 0.388833i
\(144\) 0 0
\(145\) −5.74412 + 3.31637i −0.477024 + 0.275410i
\(146\) 0 0
\(147\) 11.7169 + 3.11692i 0.966390 + 0.257079i
\(148\) 0 0
\(149\) −2.59649 −0.212713 −0.106356 0.994328i \(-0.533918\pi\)
−0.106356 + 0.994328i \(0.533918\pi\)
\(150\) 0 0
\(151\) 3.97811i 0.323734i −0.986813 0.161867i \(-0.948248\pi\)
0.986813 0.161867i \(-0.0517516\pi\)
\(152\) 0 0
\(153\) 12.1841 2.65398i 0.985022 0.214561i
\(154\) 0 0
\(155\) 14.4280 8.33001i 1.15889 0.669083i
\(156\) 0 0
\(157\) −7.91181 + 4.56789i −0.631432 + 0.364557i −0.781306 0.624148i \(-0.785446\pi\)
0.149875 + 0.988705i \(0.452113\pi\)
\(158\) 0 0
\(159\) 16.7304 + 2.60668i 1.32680 + 0.206723i
\(160\) 0 0
\(161\) 3.62247 + 7.11579i 0.285490 + 0.560803i
\(162\) 0 0
\(163\) 12.5316 7.23513i 0.981551 0.566699i 0.0788132 0.996889i \(-0.474887\pi\)
0.902738 + 0.430190i \(0.141554\pi\)
\(164\) 0 0
\(165\) −1.76389 4.56075i −0.137319 0.355054i
\(166\) 0 0
\(167\) 10.8613 18.8123i 0.840471 1.45574i −0.0490255 0.998798i \(-0.515612\pi\)
0.889497 0.456941i \(-0.151055\pi\)
\(168\) 0 0
\(169\) 3.88288 + 6.72534i 0.298683 + 0.517334i
\(170\) 0 0
\(171\) 2.41499 + 0.771259i 0.184679 + 0.0589797i
\(172\) 0 0
\(173\) 7.12752 + 4.11508i 0.541895 + 0.312863i 0.745847 0.666118i \(-0.232045\pi\)
−0.203951 + 0.978981i \(0.565378\pi\)
\(174\) 0 0
\(175\) 1.74871 0.890221i 0.132190 0.0672944i
\(176\) 0 0
\(177\) 6.04236 7.50022i 0.454172 0.563751i
\(178\) 0 0
\(179\) 10.8750 + 6.27871i 0.812838 + 0.469292i 0.847941 0.530091i \(-0.177842\pi\)
−0.0351022 + 0.999384i \(0.511176\pi\)
\(180\) 0 0
\(181\) 18.4056i 1.36808i 0.729446 + 0.684039i \(0.239778\pi\)
−0.729446 + 0.684039i \(0.760222\pi\)
\(182\) 0 0
\(183\) 0.183838 1.17992i 0.0135897 0.0872225i
\(184\) 0 0
\(185\) −19.1764 + 11.0715i −1.40988 + 0.813993i
\(186\) 0 0
\(187\) 2.44868 4.24125i 0.179066 0.310151i
\(188\) 0 0
\(189\) 13.7474 0.0988847i 0.999974 0.00719280i
\(190\) 0 0
\(191\) 14.4283 + 8.33016i 1.04399 + 0.602750i 0.920962 0.389653i \(-0.127405\pi\)
0.123031 + 0.992403i \(0.460738\pi\)
\(192\) 0 0
\(193\) 1.17140 + 2.02893i 0.0843195 + 0.146046i 0.905101 0.425197i \(-0.139795\pi\)
−0.820782 + 0.571242i \(0.806462\pi\)
\(194\) 0 0
\(195\) −18.6872 2.91157i −1.33822 0.208502i
\(196\) 0 0
\(197\) 12.9457 0.922345 0.461172 0.887311i \(-0.347429\pi\)
0.461172 + 0.887311i \(0.347429\pi\)
\(198\) 0 0
\(199\) 5.08704 8.81102i 0.360611 0.624597i −0.627451 0.778656i \(-0.715902\pi\)
0.988062 + 0.154060i \(0.0492349\pi\)
\(200\) 0 0
\(201\) 5.54984 + 4.47109i 0.391455 + 0.315366i
\(202\) 0 0
\(203\) −6.14064 3.99091i −0.430988 0.280107i
\(204\) 0 0
\(205\) 3.44450 5.96604i 0.240574 0.416686i
\(206\) 0 0
\(207\) 6.09203 + 6.69777i 0.423426 + 0.465527i
\(208\) 0 0
\(209\) 0.862265 0.497829i 0.0596441 0.0344355i
\(210\) 0 0
\(211\) 2.61024 + 1.50702i 0.179696 + 0.103748i 0.587150 0.809478i \(-0.300250\pi\)
−0.407454 + 0.913226i \(0.633583\pi\)
\(212\) 0 0
\(213\) −15.5900 + 6.02951i −1.06821 + 0.413135i
\(214\) 0 0
\(215\) −9.95883 17.2492i −0.679187 1.17639i
\(216\) 0 0
\(217\) 15.4240 + 10.0243i 1.04705 + 0.680494i
\(218\) 0 0
\(219\) −1.85361 + 11.8970i −0.125256 + 0.803923i
\(220\) 0 0
\(221\) −9.47066 16.4037i −0.637066 1.10343i
\(222\) 0 0
\(223\) 1.46794 + 2.54255i 0.0983005 + 0.170262i 0.910981 0.412448i \(-0.135326\pi\)
−0.812681 + 0.582709i \(0.801993\pi\)
\(224\) 0 0
\(225\) 1.64598 1.49712i 0.109732 0.0998078i
\(226\) 0 0
\(227\) 17.8584 1.18530 0.592652 0.805459i \(-0.298081\pi\)
0.592652 + 0.805459i \(0.298081\pi\)
\(228\) 0 0
\(229\) 15.8125i 1.04492i −0.852663 0.522461i \(-0.825014\pi\)
0.852663 0.522461i \(-0.174986\pi\)
\(230\) 0 0
\(231\) 3.60415 4.02024i 0.237136 0.264512i
\(232\) 0 0
\(233\) −2.60579 4.51336i −0.170711 0.295680i 0.767958 0.640501i \(-0.221273\pi\)
−0.938669 + 0.344820i \(0.887940\pi\)
\(234\) 0 0
\(235\) −22.3332 12.8941i −1.45686 0.841118i
\(236\) 0 0
\(237\) −3.60545 + 23.1407i −0.234199 + 1.50315i
\(238\) 0 0
\(239\) 22.7367 + 13.1271i 1.47072 + 0.849118i 0.999459 0.0328775i \(-0.0104671\pi\)
0.471257 + 0.881996i \(0.343800\pi\)
\(240\) 0 0
\(241\) 11.3008i 0.727946i −0.931409 0.363973i \(-0.881420\pi\)
0.931409 0.363973i \(-0.118580\pi\)
\(242\) 0 0
\(243\) 15.0053 4.22376i 0.962592 0.270955i
\(244\) 0 0
\(245\) 13.5628 + 9.86878i 0.866494 + 0.630493i
\(246\) 0 0
\(247\) 3.85086i 0.245024i
\(248\) 0 0
\(249\) 5.49098 6.81581i 0.347977 0.431934i
\(250\) 0 0
\(251\) −22.5628 −1.42415 −0.712077 0.702102i \(-0.752245\pi\)
−0.712077 + 0.702102i \(0.752245\pi\)
\(252\) 0 0
\(253\) 3.55583 0.223553
\(254\) 0 0
\(255\) 17.0454 + 2.65577i 1.06743 + 0.166311i
\(256\) 0 0
\(257\) 9.27951i 0.578840i 0.957202 + 0.289420i \(0.0934624\pi\)
−0.957202 + 0.289420i \(0.906538\pi\)
\(258\) 0 0
\(259\) −20.5002 13.3234i −1.27382 0.827876i
\(260\) 0 0
\(261\) −7.91054 2.52634i −0.489650 0.156376i
\(262\) 0 0
\(263\) 14.3562i 0.885243i 0.896708 + 0.442622i \(0.145952\pi\)
−0.896708 + 0.442622i \(0.854048\pi\)
\(264\) 0 0
\(265\) 20.2863 + 11.7123i 1.24618 + 0.719481i
\(266\) 0 0
\(267\) −9.44185 7.60659i −0.577832 0.465516i
\(268\) 0 0
\(269\) −17.6839 10.2098i −1.07821 0.622503i −0.147795 0.989018i \(-0.547218\pi\)
−0.930412 + 0.366515i \(0.880551\pi\)
\(270\) 0 0
\(271\) 8.40830 + 14.5636i 0.510768 + 0.884676i 0.999922 + 0.0124785i \(0.00397212\pi\)
−0.489154 + 0.872197i \(0.662695\pi\)
\(272\) 0 0
\(273\) −6.49592 19.8465i −0.393151 1.20117i
\(274\) 0 0
\(275\) 0.873844i 0.0526948i
\(276\) 0 0
\(277\) −30.7831 −1.84958 −0.924790 0.380479i \(-0.875759\pi\)
−0.924790 + 0.380479i \(0.875759\pi\)
\(278\) 0 0
\(279\) 19.8696 + 6.34561i 1.18956 + 0.379902i
\(280\) 0 0
\(281\) −9.98418 17.2931i −0.595606 1.03162i −0.993461 0.114172i \(-0.963579\pi\)
0.397855 0.917448i \(-0.369755\pi\)
\(282\) 0 0
\(283\) 15.4638 + 26.7841i 0.919226 + 1.59215i 0.800593 + 0.599209i \(0.204518\pi\)
0.118634 + 0.992938i \(0.462149\pi\)
\(284\) 0 0
\(285\) 2.73117 + 2.20030i 0.161781 + 0.130334i
\(286\) 0 0
\(287\) 7.59595 + 0.400815i 0.448375 + 0.0236594i
\(288\) 0 0
\(289\) 0.138597 + 0.240056i 0.00815275 + 0.0141210i
\(290\) 0 0
\(291\) −0.492970 0.397149i −0.0288984 0.0232813i
\(292\) 0 0
\(293\) 9.76019 + 5.63505i 0.570196 + 0.329203i 0.757228 0.653151i \(-0.226553\pi\)
−0.187031 + 0.982354i \(0.559887\pi\)
\(294\) 0 0
\(295\) 11.5392 6.66218i 0.671840 0.387887i
\(296\) 0 0
\(297\) 2.73816 5.47576i 0.158884 0.317736i
\(298\) 0 0
\(299\) 6.87635 11.9102i 0.397670 0.688784i
\(300\) 0 0
\(301\) 11.9844 18.4399i 0.690770 1.06286i
\(302\) 0 0
\(303\) −30.7860 + 11.9067i −1.76861 + 0.684019i
\(304\) 0 0
\(305\) 0.826020 1.43071i 0.0472978 0.0819222i
\(306\) 0 0
\(307\) 26.7888 1.52892 0.764459 0.644673i \(-0.223006\pi\)
0.764459 + 0.644673i \(0.223006\pi\)
\(308\) 0 0
\(309\) 2.36802 + 6.12280i 0.134712 + 0.348314i
\(310\) 0 0
\(311\) −6.92838 12.0003i −0.392872 0.680475i 0.599955 0.800034i \(-0.295185\pi\)
−0.992827 + 0.119559i \(0.961852\pi\)
\(312\) 0 0
\(313\) 27.2951 + 15.7588i 1.54281 + 0.890741i 0.998660 + 0.0517522i \(0.0164806\pi\)
0.544149 + 0.838989i \(0.316853\pi\)
\(314\) 0 0
\(315\) 17.7875 + 6.73273i 1.00221 + 0.379346i
\(316\) 0 0
\(317\) 2.85383 4.94298i 0.160287 0.277626i −0.774684 0.632348i \(-0.782091\pi\)
0.934972 + 0.354722i \(0.115425\pi\)
\(318\) 0 0
\(319\) −2.82443 + 1.63069i −0.158138 + 0.0913009i
\(320\) 0 0
\(321\) −18.2123 14.6723i −1.01651 0.818925i
\(322\) 0 0
\(323\) 3.51253i 0.195442i
\(324\) 0 0
\(325\) −2.92693 1.68986i −0.162357 0.0937367i
\(326\) 0 0
\(327\) 27.8583 + 4.34047i 1.54057 + 0.240028i
\(328\) 0 0
\(329\) 1.50041 28.4346i 0.0827202 1.56765i
\(330\) 0 0
\(331\) 5.53172 + 3.19374i 0.304051 + 0.175544i 0.644261 0.764806i \(-0.277165\pi\)
−0.340211 + 0.940349i \(0.610498\pi\)
\(332\) 0 0
\(333\) −26.4089 8.43402i −1.44720 0.462181i
\(334\) 0 0
\(335\) 4.92973 + 8.53854i 0.269340 + 0.466510i
\(336\) 0 0
\(337\) −3.37499 + 5.84566i −0.183848 + 0.318433i −0.943188 0.332261i \(-0.892189\pi\)
0.759340 + 0.650694i \(0.225522\pi\)
\(338\) 0 0
\(339\) −30.9243 4.81817i −1.67958 0.261687i
\(340\) 0 0
\(341\) 7.09437 4.09593i 0.384181 0.221807i
\(342\) 0 0
\(343\) −2.91686 + 18.2891i −0.157496 + 0.987520i
\(344\) 0 0
\(345\) 4.51814 + 11.6822i 0.243249 + 0.628948i
\(346\) 0 0
\(347\) 28.4215 16.4092i 1.52575 0.880891i 0.526214 0.850352i \(-0.323611\pi\)
0.999534 0.0305390i \(-0.00972238\pi\)
\(348\) 0 0
\(349\) −0.798343 + 0.460924i −0.0427343 + 0.0246727i −0.521215 0.853425i \(-0.674521\pi\)
0.478481 + 0.878098i \(0.341188\pi\)
\(350\) 0 0
\(351\) −13.0459 19.7606i −0.696337 1.05474i
\(352\) 0 0
\(353\) 25.7242i 1.36916i −0.728937 0.684581i \(-0.759985\pi\)
0.728937 0.684581i \(-0.240015\pi\)
\(354\) 0 0
\(355\) −23.1246 −1.22733
\(356\) 0 0
\(357\) 5.92521 + 18.1028i 0.313595 + 0.958104i
\(358\) 0 0
\(359\) −22.2113 + 12.8237i −1.17227 + 0.676810i −0.954213 0.299126i \(-0.903305\pi\)
−0.218056 + 0.975936i \(0.569971\pi\)
\(360\) 0 0
\(361\) 9.14294 15.8360i 0.481208 0.833476i
\(362\) 0 0
\(363\) 6.00526 + 15.5273i 0.315194 + 0.814972i
\(364\) 0 0
\(365\) −8.32863 + 14.4256i −0.435940 + 0.755071i
\(366\) 0 0
\(367\) 1.43115 0.0747053 0.0373527 0.999302i \(-0.488108\pi\)
0.0373527 + 0.999302i \(0.488108\pi\)
\(368\) 0 0
\(369\) 8.42737 1.83568i 0.438711 0.0955617i
\(370\) 0 0
\(371\) −1.36289 + 25.8285i −0.0707577 + 1.34095i
\(372\) 0 0
\(373\) 9.20332 0.476530 0.238265 0.971200i \(-0.423421\pi\)
0.238265 + 0.971200i \(0.423421\pi\)
\(374\) 0 0
\(375\) −16.4835 + 6.37508i −0.851205 + 0.329208i
\(376\) 0 0
\(377\) 12.6139i 0.649647i
\(378\) 0 0
\(379\) 18.1804i 0.933863i −0.884293 0.466932i \(-0.845359\pi\)
0.884293 0.466932i \(-0.154641\pi\)
\(380\) 0 0
\(381\) −19.7724 + 7.64708i −1.01297 + 0.391772i
\(382\) 0 0
\(383\) −33.7806 −1.72611 −0.863055 0.505110i \(-0.831452\pi\)
−0.863055 + 0.505110i \(0.831452\pi\)
\(384\) 0 0
\(385\) 6.65663 3.38872i 0.339253 0.172705i
\(386\) 0 0
\(387\) 7.58641 23.7548i 0.385639 1.20752i
\(388\) 0 0
\(389\) 16.1526 0.818968 0.409484 0.912317i \(-0.365709\pi\)
0.409484 + 0.912317i \(0.365709\pi\)
\(390\) 0 0
\(391\) −6.27221 + 10.8638i −0.317199 + 0.549406i
\(392\) 0 0
\(393\) −5.87103 15.1802i −0.296154 0.765742i
\(394\) 0 0
\(395\) −16.1999 + 28.0591i −0.815108 + 1.41181i
\(396\) 0 0
\(397\) −10.2662 + 5.92719i −0.515246 + 0.297477i −0.734987 0.678081i \(-0.762812\pi\)
0.219742 + 0.975558i \(0.429479\pi\)
\(398\) 0 0
\(399\) −0.796962 + 3.78962i −0.0398980 + 0.189718i
\(400\) 0 0
\(401\) 19.7416 0.985850 0.492925 0.870072i \(-0.335928\pi\)
0.492925 + 0.870072i \(0.335928\pi\)
\(402\) 0 0
\(403\) 31.6833i 1.57826i
\(404\) 0 0
\(405\) 21.4691 + 2.03817i 1.06681 + 0.101278i
\(406\) 0 0
\(407\) −9.42920 + 5.44395i −0.467388 + 0.269847i
\(408\) 0 0
\(409\) −32.3307 + 18.6662i −1.59865 + 0.922982i −0.606905 + 0.794774i \(0.707589\pi\)
−0.991747 + 0.128208i \(0.959077\pi\)
\(410\) 0 0
\(411\) −5.32288 13.7629i −0.262558 0.678876i
\(412\) 0 0
\(413\) 12.3358 + 8.01724i 0.607005 + 0.394503i
\(414\) 0 0
\(415\) 10.4863 6.05425i 0.514750 0.297191i
\(416\) 0 0
\(417\) −0.506485 0.0789130i −0.0248027 0.00386439i
\(418\) 0 0
\(419\) 14.2178 24.6259i 0.694583 1.20305i −0.275738 0.961233i \(-0.588922\pi\)
0.970321 0.241820i \(-0.0777445\pi\)
\(420\) 0 0
\(421\) −4.05583 7.02490i −0.197669 0.342373i 0.750103 0.661321i \(-0.230004\pi\)
−0.947772 + 0.318948i \(0.896670\pi\)
\(422\) 0 0
\(423\) −6.87167 31.5469i −0.334112 1.53387i
\(424\) 0 0
\(425\) 2.66978 + 1.54140i 0.129503 + 0.0747687i
\(426\) 0 0
\(427\) 1.82157 + 0.0961190i 0.0881522 + 0.00465152i
\(428\) 0 0
\(429\) −9.18866 1.43164i −0.443633 0.0691203i
\(430\) 0 0
\(431\) −18.8674 10.8931i −0.908809 0.524701i −0.0287609 0.999586i \(-0.509156\pi\)
−0.880048 + 0.474885i \(0.842489\pi\)
\(432\) 0 0
\(433\) 12.3731i 0.594612i −0.954782 0.297306i \(-0.903912\pi\)
0.954782 0.297306i \(-0.0960881\pi\)
\(434\) 0 0
\(435\) −8.94622 7.20729i −0.428938 0.345563i
\(436\) 0 0
\(437\) −2.20866 + 1.27517i −0.105654 + 0.0609996i
\(438\) 0 0
\(439\) −18.6443 + 32.2929i −0.889845 + 1.54126i −0.0497864 + 0.998760i \(0.515854\pi\)
−0.840058 + 0.542496i \(0.817479\pi\)
\(440\) 0 0
\(441\) 2.28525 + 20.8753i 0.108821 + 0.994061i
\(442\) 0 0
\(443\) 0.922931 + 0.532854i 0.0438498 + 0.0253167i 0.521765 0.853089i \(-0.325274\pi\)
−0.477915 + 0.878406i \(0.658607\pi\)
\(444\) 0 0
\(445\) −8.38687 14.5265i −0.397576 0.688622i
\(446\) 0 0
\(447\) −1.62223 4.19448i −0.0767290 0.198392i
\(448\) 0 0
\(449\) −0.713776 −0.0336852 −0.0168426 0.999858i \(-0.505361\pi\)
−0.0168426 + 0.999858i \(0.505361\pi\)
\(450\) 0 0
\(451\) 1.69369 2.93355i 0.0797526 0.138136i
\(452\) 0 0
\(453\) 6.42640 2.48544i 0.301939 0.116776i
\(454\) 0 0
\(455\) 1.52230 28.8495i 0.0713665 1.35248i
\(456\) 0 0
\(457\) −11.7455 + 20.3439i −0.549433 + 0.951647i 0.448880 + 0.893592i \(0.351823\pi\)
−0.998313 + 0.0580546i \(0.981510\pi\)
\(458\) 0 0
\(459\) 11.8997 + 18.0245i 0.555430 + 0.841310i
\(460\) 0 0
\(461\) −2.62177 + 1.51368i −0.122108 + 0.0704991i −0.559810 0.828621i \(-0.689126\pi\)
0.437702 + 0.899120i \(0.355793\pi\)
\(462\) 0 0
\(463\) −2.99321 1.72813i −0.139106 0.0803129i 0.428832 0.903384i \(-0.358925\pi\)
−0.567938 + 0.823071i \(0.692259\pi\)
\(464\) 0 0
\(465\) 22.4710 + 18.1032i 1.04207 + 0.839514i
\(466\) 0 0
\(467\) −8.61849 14.9277i −0.398816 0.690770i 0.594764 0.803900i \(-0.297245\pi\)
−0.993580 + 0.113131i \(0.963912\pi\)
\(468\) 0 0
\(469\) −5.93241 + 9.12796i −0.273933 + 0.421490i
\(470\) 0 0
\(471\) −12.3223 9.92715i −0.567781 0.457419i
\(472\) 0 0
\(473\) −4.89684 8.48157i −0.225157 0.389983i
\(474\) 0 0
\(475\) 0.313373 + 0.542778i 0.0143785 + 0.0249043i
\(476\) 0 0
\(477\) 6.24186 + 28.6555i 0.285795 + 1.31205i
\(478\) 0 0
\(479\) −22.6565 −1.03520 −0.517601 0.855622i \(-0.673175\pi\)
−0.517601 + 0.855622i \(0.673175\pi\)
\(480\) 0 0
\(481\) 42.1106i 1.92008i
\(482\) 0 0
\(483\) −9.23190 + 10.2977i −0.420066 + 0.468561i
\(484\) 0 0
\(485\) −0.437888 0.758444i −0.0198835 0.0344392i
\(486\) 0 0
\(487\) 4.91789 + 2.83934i 0.222851 + 0.128663i 0.607270 0.794496i \(-0.292265\pi\)
−0.384419 + 0.923159i \(0.625598\pi\)
\(488\) 0 0
\(489\) 19.5174 + 15.7237i 0.882608 + 0.711051i
\(490\) 0 0
\(491\) −24.6500 14.2317i −1.11244 0.642266i −0.172978 0.984926i \(-0.555339\pi\)
−0.939460 + 0.342659i \(0.888672\pi\)
\(492\) 0 0
\(493\) 11.5056i 0.518188i
\(494\) 0 0
\(495\) 6.26558 5.69893i 0.281617 0.256148i
\(496\) 0 0
\(497\) −11.5837 22.7543i −0.519598 1.02067i
\(498\) 0 0
\(499\) 5.52749i 0.247444i −0.992317 0.123722i \(-0.960517\pi\)
0.992317 0.123722i \(-0.0394831\pi\)
\(500\) 0 0
\(501\) 37.1761 + 5.79223i 1.66090 + 0.258778i
\(502\) 0 0
\(503\) 24.3282 1.08474 0.542371 0.840139i \(-0.317527\pi\)
0.542371 + 0.840139i \(0.317527\pi\)
\(504\) 0 0
\(505\) −45.6648 −2.03206
\(506\) 0 0
\(507\) −8.43845 + 10.4744i −0.374765 + 0.465185i
\(508\) 0 0
\(509\) 15.9895i 0.708722i −0.935109 0.354361i \(-0.884698\pi\)
0.935109 0.354361i \(-0.115302\pi\)
\(510\) 0 0
\(511\) −18.3666 0.969152i −0.812492 0.0428728i
\(512\) 0 0
\(513\) 0.262913 + 4.38314i 0.0116079 + 0.193521i
\(514\) 0 0
\(515\) 9.08192i 0.400197i
\(516\) 0 0
\(517\) −10.9814 6.34013i −0.482963 0.278839i
\(518\) 0 0
\(519\) −2.19453 + 14.0851i −0.0963294 + 0.618268i
\(520\) 0 0
\(521\) 1.47503 + 0.851611i 0.0646224 + 0.0373098i 0.531963 0.846768i \(-0.321455\pi\)
−0.467341 + 0.884077i \(0.654788\pi\)
\(522\) 0 0
\(523\) 15.7605 + 27.2979i 0.689157 + 1.19366i 0.972111 + 0.234522i \(0.0753524\pi\)
−0.282954 + 0.959134i \(0.591314\pi\)
\(524\) 0 0
\(525\) 2.53066 + 2.26874i 0.110447 + 0.0990159i
\(526\) 0 0
\(527\) 28.8997i 1.25889i
\(528\) 0 0
\(529\) 13.8919 0.603995
\(530\) 0 0
\(531\) 15.8913 + 5.07510i 0.689624 + 0.220240i
\(532\) 0 0
\(533\) −6.55059 11.3460i −0.283738 0.491448i
\(534\) 0 0
\(535\) −16.1773 28.0199i −0.699407 1.21141i
\(536\) 0 0
\(537\) −3.34838 + 21.4908i −0.144493 + 0.927396i
\(538\) 0 0
\(539\) 6.66892 + 4.85256i 0.287251 + 0.209015i
\(540\) 0 0
\(541\) −16.7934 29.0870i −0.722004 1.25055i −0.960195 0.279329i \(-0.909888\pi\)
0.238192 0.971218i \(-0.423445\pi\)
\(542\) 0 0
\(543\) −29.7332 + 11.4994i −1.27597 + 0.493488i
\(544\) 0 0
\(545\) 33.7794 + 19.5025i 1.44695 + 0.835396i
\(546\) 0 0
\(547\) 2.50860 1.44834i 0.107260 0.0619266i −0.445410 0.895327i \(-0.646942\pi\)
0.552670 + 0.833400i \(0.313609\pi\)
\(548\) 0 0
\(549\) 2.02096 0.440212i 0.0862523 0.0187878i
\(550\) 0 0
\(551\) 1.16957 2.02576i 0.0498256 0.0863004i
\(552\) 0 0
\(553\) −35.7248 1.88509i −1.51917 0.0801622i
\(554\) 0 0
\(555\) −29.8664 24.0611i −1.26776 1.02134i
\(556\) 0 0
\(557\) −0.143138 + 0.247922i −0.00606494 + 0.0105048i −0.869042 0.494738i \(-0.835264\pi\)
0.862977 + 0.505243i \(0.168597\pi\)
\(558\) 0 0
\(559\) −37.8785 −1.60209
\(560\) 0 0
\(561\) 8.38137 + 1.30586i 0.353862 + 0.0551335i
\(562\) 0 0
\(563\) −1.15309 1.99720i −0.0485968 0.0841721i 0.840704 0.541495i \(-0.182142\pi\)
−0.889301 + 0.457323i \(0.848808\pi\)
\(564\) 0 0
\(565\) −37.4970 21.6489i −1.57751 0.910777i
\(566\) 0 0
\(567\) 8.74882 + 22.1463i 0.367416 + 0.930057i
\(568\) 0 0
\(569\) −4.19911 + 7.27307i −0.176036 + 0.304903i −0.940519 0.339740i \(-0.889661\pi\)
0.764483 + 0.644643i \(0.222994\pi\)
\(570\) 0 0
\(571\) −25.6800 + 14.8264i −1.07467 + 0.620464i −0.929455 0.368936i \(-0.879722\pi\)
−0.145220 + 0.989399i \(0.546389\pi\)
\(572\) 0 0
\(573\) −4.44240 + 28.5125i −0.185584 + 1.19113i
\(574\) 0 0
\(575\) 2.23832i 0.0933443i
\(576\) 0 0
\(577\) −15.9006 9.18021i −0.661950 0.382177i 0.131070 0.991373i \(-0.458159\pi\)
−0.793020 + 0.609196i \(0.791492\pi\)
\(578\) 0 0
\(579\) −2.54575 + 3.15997i −0.105798 + 0.131324i
\(580\) 0 0
\(581\) 11.2101 + 7.28565i 0.465074 + 0.302260i
\(582\) 0 0
\(583\) 9.97494 + 5.75903i 0.413120 + 0.238515i
\(584\) 0 0
\(585\) −6.97193 32.0072i −0.288254 1.32334i
\(586\) 0 0
\(587\) 20.9740 + 36.3280i 0.865689 + 1.49942i 0.866362 + 0.499417i \(0.166453\pi\)
−0.000672696 1.00000i \(0.500214\pi\)
\(588\) 0 0
\(589\) −2.93772 + 5.08828i −0.121047 + 0.209659i
\(590\) 0 0
\(591\) 8.08822 + 20.9131i 0.332705 + 0.860248i
\(592\) 0 0
\(593\) −32.7972 + 18.9355i −1.34682 + 0.777587i −0.987798 0.155742i \(-0.950223\pi\)
−0.359023 + 0.933329i \(0.616890\pi\)
\(594\) 0 0
\(595\) −1.38855 + 26.3148i −0.0569252 + 1.07880i
\(596\) 0 0
\(597\) 17.4120 + 2.71288i 0.712624 + 0.111031i
\(598\) 0 0
\(599\) 15.3685 8.87302i 0.627941 0.362542i −0.152013 0.988378i \(-0.548576\pi\)
0.779954 + 0.625837i \(0.215242\pi\)
\(600\) 0 0
\(601\) −3.17935 + 1.83560i −0.129689 + 0.0748757i −0.563441 0.826156i \(-0.690523\pi\)
0.433752 + 0.901032i \(0.357189\pi\)
\(602\) 0 0
\(603\) −3.75536 + 11.7589i −0.152930 + 0.478859i
\(604\) 0 0
\(605\) 23.0316i 0.936367i
\(606\) 0 0
\(607\) 4.22770 0.171597 0.0857985 0.996313i \(-0.472656\pi\)
0.0857985 + 0.996313i \(0.472656\pi\)
\(608\) 0 0
\(609\) 2.61053 12.4133i 0.105784 0.503011i
\(610\) 0 0
\(611\) −42.4724 + 24.5214i −1.71825 + 0.992031i
\(612\) 0 0
\(613\) 10.8479 18.7891i 0.438141 0.758883i −0.559405 0.828895i \(-0.688970\pi\)
0.997546 + 0.0700114i \(0.0223036\pi\)
\(614\) 0 0
\(615\) 11.7898 + 1.83692i 0.475412 + 0.0740718i
\(616\) 0 0
\(617\) 15.3743 26.6291i 0.618946 1.07205i −0.370732 0.928740i \(-0.620893\pi\)
0.989678 0.143307i \(-0.0457735\pi\)
\(618\) 0 0
\(619\) −18.1998 −0.731513 −0.365757 0.930711i \(-0.619190\pi\)
−0.365757 + 0.930711i \(0.619190\pi\)
\(620\) 0 0
\(621\) −7.01368 + 14.0260i −0.281449 + 0.562842i
\(622\) 0 0
\(623\) 10.0927 15.5293i 0.404356 0.622166i
\(624\) 0 0
\(625\) −28.1583 −1.12633
\(626\) 0 0
\(627\) 1.34294 + 1.08190i 0.0536318 + 0.0432071i
\(628\) 0 0
\(629\) 38.4109i 1.53154i
\(630\) 0 0
\(631\) 33.2928i 1.32537i −0.748900 0.662683i \(-0.769418\pi\)
0.748900 0.662683i \(-0.230582\pi\)
\(632\) 0 0
\(633\) −0.803683 + 5.15825i −0.0319435 + 0.205022i
\(634\) 0 0
\(635\) −29.3284 −1.16386
\(636\) 0 0
\(637\) 29.1501 12.9535i 1.15497 0.513235i
\(638\) 0 0
\(639\) −19.4806 21.4176i −0.770642 0.847268i
\(640\) 0 0
\(641\) −9.69328 −0.382862 −0.191431 0.981506i \(-0.561313\pi\)
−0.191431 + 0.981506i \(0.561313\pi\)
\(642\) 0 0
\(643\) 14.4563 25.0391i 0.570101 0.987444i −0.426454 0.904509i \(-0.640237\pi\)
0.996555 0.0829345i \(-0.0264292\pi\)
\(644\) 0 0
\(645\) 21.6430 26.8649i 0.852192 1.05780i
\(646\) 0 0
\(647\) −2.50961 + 4.34678i −0.0986631 + 0.170889i −0.911132 0.412116i \(-0.864790\pi\)
0.812468 + 0.583005i \(0.198123\pi\)
\(648\) 0 0
\(649\) 5.67394 3.27585i 0.222721 0.128588i
\(650\) 0 0
\(651\) −6.55708 + 31.1795i −0.256992 + 1.22202i
\(652\) 0 0
\(653\) 40.9622 1.60298 0.801488 0.598011i \(-0.204042\pi\)
0.801488 + 0.598011i \(0.204042\pi\)
\(654\) 0 0
\(655\) 22.5168i 0.879804i
\(656\) 0 0
\(657\) −20.3770 + 4.43859i −0.794981 + 0.173166i
\(658\) 0 0
\(659\) 22.1113 12.7660i 0.861335 0.497292i −0.00312417 0.999995i \(-0.500994\pi\)
0.864459 + 0.502703i \(0.167661\pi\)
\(660\) 0 0
\(661\) −22.7131 + 13.1134i −0.883437 + 0.510052i −0.871790 0.489880i \(-0.837041\pi\)
−0.0116467 + 0.999932i \(0.503707\pi\)
\(662\) 0 0
\(663\) 20.5821 25.5480i 0.799342 0.992201i
\(664\) 0 0
\(665\) −2.91944 + 4.49202i −0.113211 + 0.174193i
\(666\) 0 0
\(667\) 7.23468 4.17694i 0.280128 0.161732i
\(668\) 0 0
\(669\) −3.19020 + 3.95990i −0.123340 + 0.153099i
\(670\) 0 0
\(671\) 0.406161 0.703491i 0.0156797 0.0271580i
\(672\) 0 0
\(673\) 22.4846 + 38.9445i 0.866719 + 1.50120i 0.865331 + 0.501202i \(0.167108\pi\)
0.00138802 + 0.999999i \(0.499558\pi\)
\(674\) 0 0
\(675\) 3.44688 + 1.72361i 0.132670 + 0.0663419i
\(676\) 0 0
\(677\) −3.98363 2.29995i −0.153103 0.0883943i 0.421491 0.906833i \(-0.361507\pi\)
−0.574595 + 0.818438i \(0.694840\pi\)
\(678\) 0 0
\(679\) 0.526952 0.810799i 0.0202226 0.0311156i
\(680\) 0 0
\(681\) 11.1576 + 28.8492i 0.427559 + 1.10550i
\(682\) 0 0
\(683\) 32.7196 + 18.8906i 1.25198 + 0.722830i 0.971502 0.237030i \(-0.0761741\pi\)
0.280477 + 0.959861i \(0.409507\pi\)
\(684\) 0 0
\(685\) 20.4145i 0.779998i
\(686\) 0 0
\(687\) 25.5442 9.87935i 0.974572 0.376921i
\(688\) 0 0
\(689\) 38.5796 22.2739i 1.46977 0.848570i
\(690\) 0 0
\(691\) −19.6202 + 33.9832i −0.746388 + 1.29278i 0.203155 + 0.979147i \(0.434880\pi\)
−0.949543 + 0.313636i \(0.898453\pi\)
\(692\) 0 0
\(693\) 8.74626 + 3.31054i 0.332243 + 0.125757i
\(694\) 0 0
\(695\) −0.614135 0.354571i −0.0232955 0.0134496i
\(696\) 0 0
\(697\) 5.97508 + 10.3491i 0.226322 + 0.392001i
\(698\) 0 0
\(699\) 5.66303 7.02936i 0.214195 0.265875i
\(700\) 0 0
\(701\) 39.7725 1.50219 0.751093 0.660197i \(-0.229527\pi\)
0.751093 + 0.660197i \(0.229527\pi\)
\(702\) 0 0
\(703\) 3.90455 6.76289i 0.147263 0.255067i
\(704\) 0 0
\(705\) 6.87631 44.1340i 0.258977 1.66218i
\(706\) 0 0
\(707\) −22.8746 44.9337i −0.860287 1.68990i
\(708\) 0 0
\(709\) 2.01597 3.49177i 0.0757115 0.131136i −0.825684 0.564133i \(-0.809211\pi\)
0.901395 + 0.432997i \(0.142544\pi\)
\(710\) 0 0
\(711\) −39.6351 + 8.63346i −1.48643 + 0.323780i
\(712\) 0 0
\(713\) −18.1720 + 10.4916i −0.680545 + 0.392913i
\(714\) 0 0
\(715\) −11.1417 6.43264i −0.416674 0.240567i
\(716\) 0 0
\(717\) −7.00054 + 44.9314i −0.261440 + 1.67799i
\(718\) 0 0
\(719\) −9.84247 17.0477i −0.367062 0.635771i 0.622043 0.782983i \(-0.286303\pi\)
−0.989105 + 0.147213i \(0.952970\pi\)
\(720\) 0 0
\(721\) −8.93650 + 4.54935i −0.332813 + 0.169426i
\(722\) 0 0
\(723\) 18.2557 7.06049i 0.678937 0.262582i
\(724\) 0 0
\(725\) −1.02648 1.77792i −0.0381226 0.0660303i
\(726\) 0 0
\(727\) −17.1082 29.6323i −0.634508 1.09900i −0.986619 0.163042i \(-0.947869\pi\)
0.352111 0.935958i \(-0.385464\pi\)
\(728\) 0 0
\(729\) 16.1983 + 21.6013i 0.599936 + 0.800048i
\(730\) 0 0
\(731\) 34.5506 1.27790
\(732\) 0 0
\(733\) 28.5601i 1.05489i −0.849589 0.527446i \(-0.823150\pi\)
0.849589 0.527446i \(-0.176850\pi\)
\(734\) 0 0
\(735\) −7.46870 + 28.0757i −0.275487 + 1.03559i
\(736\) 0 0
\(737\) 2.42399 + 4.19847i 0.0892887 + 0.154653i
\(738\) 0 0
\(739\) −4.57876 2.64355i −0.168432 0.0972444i 0.413414 0.910543i \(-0.364336\pi\)
−0.581846 + 0.813299i \(0.697670\pi\)
\(740\) 0 0
\(741\) 6.22084 2.40594i 0.228528 0.0883843i
\(742\) 0 0
\(743\) −5.79804 3.34750i −0.212709 0.122808i 0.389861 0.920874i \(-0.372523\pi\)
−0.602570 + 0.798066i \(0.705857\pi\)
\(744\) 0 0
\(745\) 6.22165i 0.227944i
\(746\) 0 0
\(747\) 14.4412 + 4.61199i 0.528376 + 0.168744i
\(748\) 0 0
\(749\) 19.4677 29.9542i 0.711335 1.09450i
\(750\) 0 0
\(751\) 19.3960i 0.707771i 0.935289 + 0.353885i \(0.115140\pi\)
−0.935289 + 0.353885i \(0.884860\pi\)
\(752\) 0 0
\(753\) −14.0968 36.4489i −0.513716 1.32827i
\(754\) 0 0
\(755\) 9.53226 0.346914
\(756\) 0 0
\(757\) −8.20907 −0.298364 −0.149182 0.988810i \(-0.547664\pi\)
−0.149182 + 0.988810i \(0.547664\pi\)
\(758\) 0 0
\(759\) 2.22161 + 5.74423i 0.0806392 + 0.208502i
\(760\) 0 0
\(761\) 27.1871i 0.985530i −0.870162 0.492765i \(-0.835986\pi\)
0.870162 0.492765i \(-0.164014\pi\)
\(762\) 0 0
\(763\) −2.26939 + 43.0078i −0.0821575 + 1.55699i
\(764\) 0 0
\(765\) 6.35940 + 29.1951i 0.229924 + 1.05555i
\(766\) 0 0
\(767\) 25.3397i 0.914963i
\(768\) 0 0
\(769\) 2.37389 + 1.37057i 0.0856047 + 0.0494239i 0.542191 0.840255i \(-0.317595\pi\)
−0.456587 + 0.889679i \(0.650928\pi\)
\(770\) 0 0
\(771\) −14.9905 + 5.79765i −0.539870 + 0.208797i
\(772\) 0 0
\(773\) −16.2012 9.35376i −0.582716 0.336431i 0.179496 0.983759i \(-0.442553\pi\)
−0.762212 + 0.647327i \(0.775887\pi\)
\(774\) 0 0
\(775\) 2.57831 + 4.46576i 0.0926155 + 0.160415i
\(776\) 0 0
\(777\) 8.71509 41.4410i 0.312652 1.48669i
\(778\) 0 0
\(779\) 2.42952i 0.0870466i
\(780\) 0 0
\(781\) −11.3705 −0.406870
\(782\) 0 0
\(783\) −0.861197 14.3574i −0.0307767 0.513092i
\(784\) 0 0
\(785\) −10.9455 18.9581i −0.390661 0.676644i
\(786\) 0 0
\(787\) 1.95043 + 3.37825i 0.0695254 + 0.120421i 0.898692 0.438579i \(-0.144518\pi\)
−0.829167 + 0.559001i \(0.811185\pi\)
\(788\) 0 0
\(789\) −23.1917 + 8.96948i −0.825645 + 0.319322i
\(790\) 0 0
\(791\) 2.51915 47.7411i 0.0895708 1.69748i
\(792\) 0 0
\(793\) −1.57089 2.72086i −0.0557839 0.0966206i
\(794\) 0 0
\(795\) −6.24607 + 40.0889i −0.221525 + 1.42181i
\(796\) 0 0
\(797\) 17.8952 + 10.3318i 0.633881 + 0.365971i 0.782253 0.622960i \(-0.214070\pi\)
−0.148373 + 0.988932i \(0.547404\pi\)
\(798\) 0 0
\(799\) 38.7409 22.3671i 1.37055 0.791289i
\(800\) 0 0
\(801\) 6.38893 20.0052i 0.225742 0.706849i
\(802\) 0 0
\(803\) −4.09525 + 7.09319i −0.144518 + 0.250313i
\(804\) 0 0
\(805\) −17.0507 + 8.68008i −0.600958 + 0.305932i
\(806\) 0 0
\(807\) 5.44480 34.9462i 0.191666 1.23016i
\(808\) 0 0
\(809\) 3.30713 5.72812i 0.116273 0.201390i −0.802015 0.597304i \(-0.796239\pi\)
0.918288 + 0.395914i \(0.129572\pi\)
\(810\) 0 0
\(811\) −9.08700 −0.319088 −0.159544 0.987191i \(-0.551002\pi\)
−0.159544 + 0.987191i \(0.551002\pi\)
\(812\) 0 0
\(813\) −18.2733 + 22.6822i −0.640873 + 0.795498i
\(814\) 0 0
\(815\) 17.3366 + 30.0280i 0.607276 + 1.05183i
\(816\) 0 0
\(817\) 6.08322 + 3.51215i 0.212825 + 0.122875i
\(818\) 0 0
\(819\) 28.0023 22.8935i 0.978481 0.799963i
\(820\) 0 0
\(821\) 23.9414 41.4676i 0.835559 1.44723i −0.0580153 0.998316i \(-0.518477\pi\)
0.893574 0.448915i \(-0.148189\pi\)
\(822\) 0 0
\(823\) 40.0989 23.1511i 1.39776 0.806997i 0.403602 0.914935i \(-0.367758\pi\)
0.994158 + 0.107938i \(0.0344248\pi\)
\(824\) 0 0
\(825\) 1.41164 0.545960i 0.0491471 0.0190079i
\(826\) 0 0
\(827\) 50.1143i 1.74265i 0.490711 + 0.871323i \(0.336737\pi\)
−0.490711 + 0.871323i \(0.663263\pi\)
\(828\) 0 0
\(829\) 3.20662 + 1.85134i 0.111371 + 0.0642998i 0.554651 0.832083i \(-0.312852\pi\)
−0.443280 + 0.896383i \(0.646185\pi\)
\(830\) 0 0
\(831\) −19.2327 49.7283i −0.667174 1.72506i
\(832\) 0 0
\(833\) −26.5891 + 11.8154i −0.921257 + 0.409379i
\(834\) 0 0
\(835\) 45.0776 + 26.0256i 1.55997 + 0.900652i
\(836\) 0 0
\(837\) 2.16314 + 36.0627i 0.0747691 + 1.24651i
\(838\) 0 0
\(839\) 3.48328 + 6.03321i 0.120256 + 0.208290i 0.919869 0.392227i \(-0.128295\pi\)
−0.799613 + 0.600516i \(0.794962\pi\)
\(840\) 0 0
\(841\) 10.6689 18.4792i 0.367895 0.637212i
\(842\) 0 0
\(843\) 21.6981 26.9332i 0.747322 0.927630i
\(844\) 0 0
\(845\) −16.1151 + 9.30406i −0.554376 + 0.320069i
\(846\) 0 0
\(847\) −22.6628 + 11.5371i −0.778703 + 0.396418i
\(848\) 0 0
\(849\) −33.6066 + 41.7150i −1.15338 + 1.43165i
\(850\) 0 0
\(851\) 24.1525 13.9445i 0.827938 0.478010i
\(852\) 0 0
\(853\) −11.9559 + 6.90273i −0.409361 + 0.236345i −0.690515 0.723318i \(-0.742616\pi\)
0.281154 + 0.959663i \(0.409283\pi\)
\(854\) 0 0
\(855\) −1.84807 + 5.78675i −0.0632028 + 0.197903i
\(856\) 0 0
\(857\) 25.5523i 0.872848i −0.899741 0.436424i \(-0.856245\pi\)
0.899741 0.436424i \(-0.143755\pi\)
\(858\) 0 0
\(859\) 54.4580 1.85808 0.929042 0.369974i \(-0.120633\pi\)
0.929042 + 0.369974i \(0.120633\pi\)
\(860\) 0 0
\(861\) 4.09830 + 12.5212i 0.139670 + 0.426722i
\(862\) 0 0
\(863\) −31.3899 + 18.1230i −1.06852 + 0.616913i −0.927778 0.373133i \(-0.878283\pi\)
−0.140746 + 0.990046i \(0.544950\pi\)
\(864\) 0 0
\(865\) −9.86045 + 17.0788i −0.335265 + 0.580697i
\(866\) 0 0
\(867\) −0.301205 + 0.373877i −0.0102295 + 0.0126975i
\(868\) 0 0
\(869\) −7.96564 + 13.7969i −0.270216 + 0.468028i
\(870\) 0 0
\(871\) 18.7503 0.635329
\(872\) 0 0
\(873\) 0.333573 1.04449i 0.0112897 0.0353508i
\(874\) 0 0
\(875\) −12.2475 24.0585i −0.414043 0.813325i
\(876\) 0 0
\(877\) 31.2121 1.05396 0.526979 0.849878i \(-0.323325\pi\)
0.526979 + 0.849878i \(0.323325\pi\)
\(878\) 0 0
\(879\) −3.00512 + 19.2877i −0.101360 + 0.650557i
\(880\) 0 0
\(881\) 37.1488i 1.25157i −0.779994 0.625787i \(-0.784778\pi\)
0.779994 0.625787i \(-0.215222\pi\)
\(882\) 0 0
\(883\) 42.8063i 1.44055i −0.693690 0.720274i \(-0.744016\pi\)
0.693690 0.720274i \(-0.255984\pi\)
\(884\) 0 0
\(885\) 17.9718 + 14.4786i 0.604117 + 0.486692i
\(886\) 0 0
\(887\) 42.7659 1.43594 0.717970 0.696074i \(-0.245072\pi\)
0.717970 + 0.696074i \(0.245072\pi\)
\(888\) 0 0
\(889\) −14.6913 28.8588i −0.492729 0.967892i
\(890\) 0 0
\(891\) 10.5565 + 1.00219i 0.353656 + 0.0335745i
\(892\) 0 0
\(893\) 9.09465 0.304341
\(894\) 0 0
\(895\) −15.0449 + 26.0585i −0.502895 + 0.871040i
\(896\) 0 0
\(897\) 23.5364 + 3.66710i 0.785858 + 0.122441i
\(898\) 0 0
\(899\) 9.62279 16.6672i 0.320938 0.555881i
\(900\) 0 0
\(901\) −35.1901 + 20.3170i −1.17235 + 0.676858i
\(902\) 0 0
\(903\) 37.2762 + 7.83923i 1.24047 + 0.260873i
\(904\) 0 0
\(905\) −44.1031 −1.46604
\(906\) 0 0
\(907\) 3.47172i 0.115277i −0.998338 0.0576383i \(-0.981643\pi\)
0.998338 0.0576383i \(-0.0183570\pi\)
\(908\) 0 0
\(909\) −38.4690 42.2940i −1.27594 1.40280i
\(910\) 0 0
\(911\) −30.2806 + 17.4825i −1.00324 + 0.579222i −0.909206 0.416347i \(-0.863310\pi\)
−0.0940362 + 0.995569i \(0.529977\pi\)
\(912\) 0 0
\(913\) 5.15618 2.97692i 0.170645 0.0985217i
\(914\) 0 0
\(915\) 2.82731 + 0.440509i 0.0934679 + 0.0145628i
\(916\) 0 0
\(917\) 22.1563 11.2792i 0.731664 0.372472i
\(918\) 0 0
\(919\) 37.8817 21.8710i 1.24960 0.721459i 0.278573 0.960415i \(-0.410139\pi\)
0.971030 + 0.238956i \(0.0768052\pi\)
\(920\) 0 0
\(921\) 16.7371 + 43.2757i 0.551506 + 1.42598i
\(922\) 0 0
\(923\) −21.9887 + 38.0855i −0.723766 + 1.25360i
\(924\) 0 0
\(925\) −3.42685 5.93548i −0.112674 0.195157i
\(926\) 0 0
\(927\) −8.41153 + 7.65079i −0.276271 + 0.251285i
\(928\) 0 0
\(929\) 17.0091 + 9.82023i 0.558051 + 0.322191i 0.752363 0.658749i \(-0.228914\pi\)
−0.194312 + 0.980940i \(0.562247\pi\)
\(930\) 0 0
\(931\) −5.88252 0.622539i −0.192792 0.0204029i
\(932\) 0 0
\(933\) 15.0571 18.6899i 0.492947 0.611881i
\(934\) 0 0
\(935\) 10.1628 + 5.86748i 0.332358 + 0.191887i
\(936\) 0 0
\(937\) 15.8778i 0.518705i 0.965783 + 0.259353i \(0.0835092\pi\)
−0.965783 + 0.259353i \(0.916491\pi\)
\(938\) 0 0
\(939\) −8.40404 + 53.9394i −0.274255 + 1.76024i
\(940\) 0 0
\(941\) 25.4073 14.6689i 0.828253 0.478192i −0.0250008 0.999687i \(-0.507959\pi\)
0.853254 + 0.521495i \(0.174626\pi\)
\(942\) 0 0
\(943\) −4.33831 + 7.51418i −0.141275 + 0.244695i
\(944\) 0 0
\(945\) 0.236945 + 32.9411i 0.00770783 + 1.07158i
\(946\) 0 0
\(947\) 5.97633 + 3.45044i 0.194205 + 0.112124i 0.593949 0.804502i \(-0.297568\pi\)
−0.399745 + 0.916627i \(0.630901\pi\)
\(948\) 0 0
\(949\) 15.8390 + 27.4340i 0.514156 + 0.890545i
\(950\) 0 0
\(951\) 9.76812 + 1.52192i 0.316753 + 0.0493518i
\(952\) 0 0
\(953\) −45.3915 −1.47037 −0.735187 0.677864i \(-0.762906\pi\)
−0.735187 + 0.677864i \(0.762906\pi\)
\(954\) 0 0
\(955\) −19.9606 + 34.5727i −0.645908 + 1.11875i
\(956\) 0 0
\(957\) −4.39893 3.54388i −0.142197 0.114558i
\(958\) 0 0
\(959\) 20.0877 10.2261i 0.648664 0.330218i
\(960\) 0 0
\(961\) −8.67037 + 15.0175i −0.279689 + 0.484436i
\(962\) 0 0
\(963\) 12.3235 38.5878i 0.397120 1.24347i
\(964\) 0 0
\(965\) −4.86168 + 2.80689i −0.156503 + 0.0903570i
\(966\) 0 0
\(967\) 32.6050 + 18.8245i 1.04851 + 0.605356i 0.922231 0.386639i \(-0.126364\pi\)
0.126276 + 0.991995i \(0.459697\pi\)
\(968\) 0 0
\(969\) −5.67429 + 2.19456i −0.182284 + 0.0704994i
\(970\) 0 0
\(971\) −18.9496 32.8218i −0.608123 1.05330i −0.991550 0.129729i \(-0.958589\pi\)
0.383426 0.923571i \(-0.374744\pi\)
\(972\) 0 0
\(973\) 0.0412593 0.781915i 0.00132271 0.0250670i
\(974\) 0 0
\(975\) 0.901189 5.78407i 0.0288612 0.185239i
\(976\) 0 0
\(977\) 9.44571 + 16.3604i 0.302195 + 0.523417i 0.976633 0.214915i \(-0.0689473\pi\)
−0.674438 + 0.738332i \(0.735614\pi\)
\(978\) 0 0
\(979\) −4.12389 7.14279i −0.131800 0.228285i
\(980\) 0 0
\(981\) 10.3935 + 47.7152i 0.331839 + 1.52343i
\(982\) 0 0
\(983\) 15.9300 0.508088 0.254044 0.967193i \(-0.418239\pi\)
0.254044 + 0.967193i \(0.418239\pi\)
\(984\) 0 0
\(985\) 31.0202i 0.988387i
\(986\) 0 0
\(987\) 46.8719 15.3415i 1.49195 0.488327i
\(988\) 0 0
\(989\) 12.5431 + 21.7252i 0.398846 + 0.690822i
\(990\) 0 0
\(991\) −49.5436 28.6040i −1.57380 0.908636i −0.995696 0.0926749i \(-0.970458\pi\)
−0.578107 0.815961i \(-0.696208\pi\)
\(992\) 0 0
\(993\) −1.70319 + 10.9315i −0.0540492 + 0.346902i
\(994\) 0 0
\(995\) 21.1128 + 12.1895i 0.669319 + 0.386432i
\(996\) 0 0
\(997\) 14.9085i 0.472157i 0.971734 + 0.236079i \(0.0758623\pi\)
−0.971734 + 0.236079i \(0.924138\pi\)
\(998\) 0 0
\(999\) −2.87505 47.9314i −0.0909627 1.51648i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.bf.i.31.10 yes 32
3.2 odd 2 3024.2.bf.i.1711.3 32
4.3 odd 2 inner 1008.2.bf.i.31.7 32
7.5 odd 6 1008.2.cz.i.607.16 yes 32
9.2 odd 6 3024.2.cz.i.2719.13 32
9.7 even 3 1008.2.cz.i.367.1 yes 32
12.11 even 2 3024.2.bf.i.1711.4 32
21.5 even 6 3024.2.cz.i.1279.13 32
28.19 even 6 1008.2.cz.i.607.1 yes 32
36.7 odd 6 1008.2.cz.i.367.16 yes 32
36.11 even 6 3024.2.cz.i.2719.14 32
63.47 even 6 3024.2.bf.i.2287.13 32
63.61 odd 6 inner 1008.2.bf.i.943.7 yes 32
84.47 odd 6 3024.2.cz.i.1279.14 32
252.47 odd 6 3024.2.bf.i.2287.14 32
252.187 even 6 inner 1008.2.bf.i.943.10 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.bf.i.31.7 32 4.3 odd 2 inner
1008.2.bf.i.31.10 yes 32 1.1 even 1 trivial
1008.2.bf.i.943.7 yes 32 63.61 odd 6 inner
1008.2.bf.i.943.10 yes 32 252.187 even 6 inner
1008.2.cz.i.367.1 yes 32 9.7 even 3
1008.2.cz.i.367.16 yes 32 36.7 odd 6
1008.2.cz.i.607.1 yes 32 28.19 even 6
1008.2.cz.i.607.16 yes 32 7.5 odd 6
3024.2.bf.i.1711.3 32 3.2 odd 2
3024.2.bf.i.1711.4 32 12.11 even 2
3024.2.bf.i.2287.13 32 63.47 even 6
3024.2.bf.i.2287.14 32 252.47 odd 6
3024.2.cz.i.1279.13 32 21.5 even 6
3024.2.cz.i.1279.14 32 84.47 odd 6
3024.2.cz.i.2719.13 32 9.2 odd 6
3024.2.cz.i.2719.14 32 36.11 even 6