L(s) = 1 | + (0.624 + 1.61i)3-s + 2.39i·5-s + (−2.35 + 1.20i)7-s + (−2.21 + 2.01i)9-s + 1.17i·11-s + (3.94 + 2.27i)13-s + (−3.87 + 1.49i)15-s + (−3.59 − 2.07i)17-s + (−0.422 − 0.731i)19-s + (−3.41 − 3.05i)21-s − 3.01i·23-s − 0.741·25-s + (−4.64 − 2.32i)27-s + (1.38 + 2.39i)29-s + (−3.47 − 6.02i)31-s + ⋯ |
L(s) = 1 | + (0.360 + 0.932i)3-s + 1.07i·5-s + (−0.891 + 0.453i)7-s + (−0.739 + 0.672i)9-s + 0.355i·11-s + (1.09 + 0.631i)13-s + (−0.999 + 0.386i)15-s + (−0.873 − 0.504i)17-s + (−0.0969 − 0.167i)19-s + (−0.744 − 0.667i)21-s − 0.629i·23-s − 0.148·25-s + (−0.894 − 0.447i)27-s + (0.257 + 0.445i)29-s + (−0.624 − 1.08i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0605i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.998 - 0.0605i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.203655242\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.203655242\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.624 - 1.61i)T \) |
| 7 | \( 1 + (2.35 - 1.20i)T \) |
good | 5 | \( 1 - 2.39iT - 5T^{2} \) |
| 11 | \( 1 - 1.17iT - 11T^{2} \) |
| 13 | \( 1 + (-3.94 - 2.27i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (3.59 + 2.07i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.422 + 0.731i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 3.01iT - 23T^{2} \) |
| 29 | \( 1 + (-1.38 - 2.39i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (3.47 + 6.02i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-4.62 - 8.00i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.48 + 1.43i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (7.19 - 4.15i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (5.38 - 9.32i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.88 + 8.46i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (2.78 + 4.81i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.597 + 0.344i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.56 + 2.05i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 9.65iT - 71T^{2} \) |
| 73 | \( 1 + (-6.02 - 3.47i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-11.7 - 6.76i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (2.52 + 4.37i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (6.06 - 3.50i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (0.316 - 0.182i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.24989951602348602494482972445, −9.590663860627831820006639887177, −8.910152293422615057889907803597, −8.048708914770660472681023540080, −6.67761587345932015672540653537, −6.39267250398193382161384988544, −5.06546701492422534302021734775, −4.01169498841227954852820354258, −3.14223354930308785209933888803, −2.32554751800006882538777614386,
0.51577510290476992184581099476, 1.66762527660223016379626883657, 3.17540470977092875595138574142, 4.00016419358895590320290876735, 5.42449944604947786990018172735, 6.21155034084264211873745511496, 7.00485940969888044829062434751, 8.033496917463712889090253823208, 8.702066059208637902309051623796, 9.228595020546766215700204107277