Properties

Label 10002.2.a.h
Level $10002$
Weight $2$
Character orbit 10002.a
Self dual yes
Analytic conductor $79.866$
Dimension $28$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [10002,2,Mod(1,10002)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("10002.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(10002, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 10002 = 2 \cdot 3 \cdot 1667 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 10002.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,-28,-28,28,3,28,5,-28,28,-3,13,-28,-4,-5,-3,28,15,-28,-24, 3,-5,-13,31,28,25,4,-28,5,-9,3,-29,-28,-13,-15,27,28,6,24,4,-3,4,5,-6, 13,3,-31,60,-28,-11,-25,-15,-4,11,28,2,-5,24,9,32,-3,-37,29,5,28,14,13, 12,15,-31,-27,66,-28,0,-6,-25,-24,0,-4,12,3,28,-4,95,-5,9,6,9,-13,16,-3, -54,31,29,-60,87,28,-27,11,13,25] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.8663721017\)
Dimension: \(28\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 28 q - 28 q^{2} - 28 q^{3} + 28 q^{4} + 3 q^{5} + 28 q^{6} + 5 q^{7} - 28 q^{8} + 28 q^{9} - 3 q^{10} + 13 q^{11} - 28 q^{12} - 4 q^{13} - 5 q^{14} - 3 q^{15} + 28 q^{16} + 15 q^{17} - 28 q^{18} - 24 q^{19}+ \cdots + 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(1667\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

Twists of this newform have not been computed.