Properties

Label 10002.2
Level 10002
Weight 2
Dimension 694723
Nonzero newspaces 12
Sturm bound 11115552

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 10002 = 2 \cdot 3 \cdot 1667 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(11115552\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(10002))\).

Total New Old
Modular forms 2785552 694723 2090829
Cusp forms 2772225 694723 2077502
Eisenstein series 13327 0 13327

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(10002))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
10002.2.a \(\chi_{10002}(1, \cdot)\) 10002.2.a.a 1 1
10002.2.a.b 1
10002.2.a.c 1
10002.2.a.d 1
10002.2.a.e 1
10002.2.a.f 3
10002.2.a.g 19
10002.2.a.h 28
10002.2.a.i 29
10002.2.a.j 32
10002.2.a.k 38
10002.2.a.l 38
10002.2.a.m 40
10002.2.a.n 47
10002.2.d \(\chi_{10002}(10001, \cdot)\) n/a 556 1
10002.2.e \(\chi_{10002}(1843, \cdot)\) n/a 1668 6
10002.2.f \(\chi_{10002}(3047, \cdot)\) n/a 3336 6
10002.2.i \(\chi_{10002}(415, \cdot)\) n/a 4448 16
10002.2.j \(\chi_{10002}(263, \cdot)\) n/a 8896 16
10002.2.m \(\chi_{10002}(13, \cdot)\) n/a 11676 42
10002.2.o \(\chi_{10002}(179, \cdot)\) n/a 23352 42
10002.2.q \(\chi_{10002}(307, \cdot)\) n/a 26688 96
10002.2.t \(\chi_{10002}(59, \cdot)\) n/a 53376 96
10002.2.u \(\chi_{10002}(19, \cdot)\) n/a 186816 672
10002.2.w \(\chi_{10002}(5, \cdot)\) n/a 373632 672

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(10002))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(10002)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1667))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3334))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5001))\)\(^{\oplus 2}\)