Defining parameters
| Level: | \( N \) | \(=\) | \( 10002 = 2 \cdot 3 \cdot 1667 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 10002.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 14 \) | ||
| Sturm bound: | \(3336\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(10002))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1672 | 279 | 1393 |
| Cusp forms | 1665 | 279 | 1386 |
| Eisenstein series | 7 | 0 | 7 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(1667\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(190\) | \(39\) | \(151\) | \(190\) | \(39\) | \(151\) | \(0\) | \(0\) | \(0\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(227\) | \(30\) | \(197\) | \(226\) | \(30\) | \(196\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(208\) | \(38\) | \(170\) | \(207\) | \(38\) | \(169\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(210\) | \(32\) | \(178\) | \(209\) | \(32\) | \(177\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(199\) | \(40\) | \(159\) | \(198\) | \(40\) | \(158\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(220\) | \(30\) | \(190\) | \(219\) | \(30\) | \(189\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(200\) | \(23\) | \(177\) | \(199\) | \(23\) | \(176\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(218\) | \(47\) | \(171\) | \(217\) | \(47\) | \(170\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(820\) | \(124\) | \(696\) | \(817\) | \(124\) | \(693\) | \(3\) | \(0\) | \(3\) | |||||
| Minus space | \(-\) | \(852\) | \(155\) | \(697\) | \(848\) | \(155\) | \(693\) | \(4\) | \(0\) | \(4\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(10002))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 1667 | |||||||
| 10002.2.a.a | $1$ | $79.866$ | \(\Q\) | None | \(-1\) | \(-1\) | \(-2\) | \(-2\) | $+$ | $+$ | $-$ | \(q-q^{2}-q^{3}+q^{4}-2q^{5}+q^{6}-2q^{7}+\cdots\) | |
| 10002.2.a.b | $1$ | $79.866$ | \(\Q\) | None | \(-1\) | \(-1\) | \(0\) | \(4\) | $+$ | $+$ | $-$ | \(q-q^{2}-q^{3}+q^{4}+q^{6}+4q^{7}-q^{8}+\cdots\) | |
| 10002.2.a.c | $1$ | $79.866$ | \(\Q\) | None | \(-1\) | \(-1\) | \(2\) | \(4\) | $+$ | $+$ | $+$ | \(q-q^{2}-q^{3}+q^{4}+2q^{5}+q^{6}+4q^{7}+\cdots\) | |
| 10002.2.a.d | $1$ | $79.866$ | \(\Q\) | None | \(1\) | \(-1\) | \(-2\) | \(-2\) | $-$ | $+$ | $-$ | \(q+q^{2}-q^{3}+q^{4}-2q^{5}-q^{6}-2q^{7}+\cdots\) | |
| 10002.2.a.e | $1$ | $79.866$ | \(\Q\) | None | \(1\) | \(1\) | \(2\) | \(-2\) | $-$ | $-$ | $+$ | \(q+q^{2}+q^{3}+q^{4}+2q^{5}+q^{6}-2q^{7}+\cdots\) | |
| 10002.2.a.f | $3$ | $79.866$ | 3.3.148.1 | None | \(3\) | \(3\) | \(-6\) | \(-4\) | $-$ | $-$ | $+$ | ||
| 10002.2.a.g | $19$ | $79.866$ | \(\mathbb{Q}[x]/(x^{19} - \cdots)\) | None | \(19\) | \(19\) | \(-5\) | \(-13\) | $-$ | $-$ | $+$ | ||
| 10002.2.a.h | $28$ | $79.866$ | None | \(-28\) | \(-28\) | \(3\) | \(5\) | $+$ | $+$ | $-$ | |||
| 10002.2.a.i | $29$ | $79.866$ | None | \(29\) | \(-29\) | \(-10\) | \(-5\) | $-$ | $+$ | $-$ | |||
| 10002.2.a.j | $32$ | $79.866$ | None | \(-32\) | \(32\) | \(0\) | \(-26\) | $+$ | $-$ | $-$ | |||
| 10002.2.a.k | $38$ | $79.866$ | None | \(-38\) | \(-38\) | \(-3\) | \(-12\) | $+$ | $+$ | $+$ | |||
| 10002.2.a.l | $38$ | $79.866$ | None | \(-38\) | \(38\) | \(2\) | \(25\) | $+$ | $-$ | $+$ | |||
| 10002.2.a.m | $40$ | $79.866$ | None | \(40\) | \(-40\) | \(14\) | \(8\) | $-$ | $+$ | $+$ | |||
| 10002.2.a.n | $47$ | $79.866$ | None | \(47\) | \(47\) | \(11\) | \(24\) | $-$ | $-$ | $-$ | |||
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(10002))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(10002)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(1667))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3334))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5001))\)\(^{\oplus 2}\)