Properties

Label 10002.2.a
Level $10002$
Weight $2$
Character orbit 10002.a
Rep. character $\chi_{10002}(1,\cdot)$
Character field $\Q$
Dimension $279$
Newform subspaces $14$
Sturm bound $3336$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 10002 = 2 \cdot 3 \cdot 1667 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 10002.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 14 \)
Sturm bound: \(3336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(10002))\).

Total New Old
Modular forms 1672 279 1393
Cusp forms 1665 279 1386
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(1667\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(190\)\(39\)\(151\)\(190\)\(39\)\(151\)\(0\)\(0\)\(0\)
\(+\)\(+\)\(-\)\(-\)\(227\)\(30\)\(197\)\(226\)\(30\)\(196\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(208\)\(38\)\(170\)\(207\)\(38\)\(169\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(210\)\(32\)\(178\)\(209\)\(32\)\(177\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(199\)\(40\)\(159\)\(198\)\(40\)\(158\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(220\)\(30\)\(190\)\(219\)\(30\)\(189\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(200\)\(23\)\(177\)\(199\)\(23\)\(176\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(218\)\(47\)\(171\)\(217\)\(47\)\(170\)\(1\)\(0\)\(1\)
Plus space\(+\)\(820\)\(124\)\(696\)\(817\)\(124\)\(693\)\(3\)\(0\)\(3\)
Minus space\(-\)\(852\)\(155\)\(697\)\(848\)\(155\)\(693\)\(4\)\(0\)\(4\)

Trace form

\( 279 q + q^{2} + q^{3} + 279 q^{4} + 6 q^{5} - q^{6} + 4 q^{7} + q^{8} + 279 q^{9} + 2 q^{10} + 12 q^{11} + q^{12} + 14 q^{13} + 8 q^{14} + 2 q^{15} + 279 q^{16} + 10 q^{17} + q^{18} + 12 q^{19} + 6 q^{20}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(10002))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 1667
10002.2.a.a 10002.a 1.a $1$ $79.866$ \(\Q\) None 10002.2.a.a \(-1\) \(-1\) \(-2\) \(-2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}-2q^{5}+q^{6}-2q^{7}+\cdots\)
10002.2.a.b 10002.a 1.a $1$ $79.866$ \(\Q\) None 10002.2.a.b \(-1\) \(-1\) \(0\) \(4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+q^{6}+4q^{7}-q^{8}+\cdots\)
10002.2.a.c 10002.a 1.a $1$ $79.866$ \(\Q\) None 10002.2.a.c \(-1\) \(-1\) \(2\) \(4\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{3}+q^{4}+2q^{5}+q^{6}+4q^{7}+\cdots\)
10002.2.a.d 10002.a 1.a $1$ $79.866$ \(\Q\) None 10002.2.a.d \(1\) \(-1\) \(-2\) \(-2\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{3}+q^{4}-2q^{5}-q^{6}-2q^{7}+\cdots\)
10002.2.a.e 10002.a 1.a $1$ $79.866$ \(\Q\) None 10002.2.a.e \(1\) \(1\) \(2\) \(-2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}+q^{4}+2q^{5}+q^{6}-2q^{7}+\cdots\)
10002.2.a.f 10002.a 1.a $3$ $79.866$ 3.3.148.1 None 10002.2.a.f \(3\) \(3\) \(-6\) \(-4\) $-$ $-$ $+$ $\mathrm{SU}(2)$
10002.2.a.g 10002.a 1.a $19$ $79.866$ \(\mathbb{Q}[x]/(x^{19} - \cdots)\) None 10002.2.a.g \(19\) \(19\) \(-5\) \(-13\) $-$ $-$ $+$ $\mathrm{SU}(2)$
10002.2.a.h 10002.a 1.a $28$ $79.866$ None 10002.2.a.h \(-28\) \(-28\) \(3\) \(5\) $+$ $+$ $-$ $\mathrm{SU}(2)$
10002.2.a.i 10002.a 1.a $29$ $79.866$ None 10002.2.a.i \(29\) \(-29\) \(-10\) \(-5\) $-$ $+$ $-$ $\mathrm{SU}(2)$
10002.2.a.j 10002.a 1.a $32$ $79.866$ None 10002.2.a.j \(-32\) \(32\) \(0\) \(-26\) $+$ $-$ $-$ $\mathrm{SU}(2)$
10002.2.a.k 10002.a 1.a $38$ $79.866$ None 10002.2.a.k \(-38\) \(-38\) \(-3\) \(-12\) $+$ $+$ $+$ $\mathrm{SU}(2)$
10002.2.a.l 10002.a 1.a $38$ $79.866$ None 10002.2.a.l \(-38\) \(38\) \(2\) \(25\) $+$ $-$ $+$ $\mathrm{SU}(2)$
10002.2.a.m 10002.a 1.a $40$ $79.866$ None 10002.2.a.m \(40\) \(-40\) \(14\) \(8\) $-$ $+$ $+$ $\mathrm{SU}(2)$
10002.2.a.n 10002.a 1.a $47$ $79.866$ None 10002.2.a.n \(47\) \(47\) \(11\) \(24\) $-$ $-$ $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(10002))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(10002)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(1667))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3334))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5001))\)\(^{\oplus 2}\)