Properties

Label 100.9.f.c.57.3
Level $100$
Weight $9$
Character 100.57
Analytic conductor $40.738$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [100,9,Mod(57,100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("100.57"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(100, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 100.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.7378610061\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 8 x^{10} + 1412 x^{9} + 550393 x^{8} - 1456736 x^{7} + 2420672 x^{6} + \cdots + 547748010000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{6}\cdot 5^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 57.3
Root \(-0.905864 + 0.905864i\) of defining polynomial
Character \(\chi\) \(=\) 100.57
Dual form 100.9.f.c.93.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-11.9100 + 11.9100i) q^{3} +(-2673.78 - 2673.78i) q^{7} +6277.30i q^{9} -8327.31 q^{11} +(1552.39 - 1552.39i) q^{13} +(39830.2 + 39830.2i) q^{17} -111305. i q^{19} +63689.3 q^{21} +(142842. - 142842. i) q^{23} +(-152904. - 152904. i) q^{27} +945318. i q^{29} -674325. q^{31} +(99178.3 - 99178.3i) q^{33} +(1.18332e6 + 1.18332e6i) q^{37} +36977.9i q^{39} +3.81303e6 q^{41} +(3.55470e6 - 3.55470e6i) q^{43} +(3.09808e6 + 3.09808e6i) q^{47} +8.53335e6i q^{49} -948755. q^{51} +(3.90661e6 - 3.90661e6i) q^{53} +(1.32564e6 + 1.32564e6i) q^{57} +2.24160e7i q^{59} -5.70972e6 q^{61} +(1.67841e7 - 1.67841e7i) q^{63} +(1.68179e7 + 1.68179e7i) q^{67} +3.40250e6i q^{69} +3.93208e7 q^{71} +(3.75805e7 - 3.75805e7i) q^{73} +(2.22654e7 + 2.22654e7i) q^{77} +2.25314e7i q^{79} -3.75432e7 q^{81} +(-9.55460e6 + 9.55460e6i) q^{83} +(-1.12587e7 - 1.12587e7i) q^{87} +9.37891e7i q^{89} -8.30148e6 q^{91} +(8.03121e6 - 8.03121e6i) q^{93} +(-1.82973e7 - 1.82973e7i) q^{97} -5.22731e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 420 q^{11} - 921168 q^{21} + 3833112 q^{31} + 3587532 q^{41} + 46092564 q^{51} + 31354704 q^{61} - 29589384 q^{71} + 104018868 q^{81} + 433229088 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −11.9100 + 11.9100i −0.147037 + 0.147037i −0.776793 0.629756i \(-0.783155\pi\)
0.629756 + 0.776793i \(0.283155\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2673.78 2673.78i −1.11361 1.11361i −0.992659 0.120950i \(-0.961406\pi\)
−0.120950 0.992659i \(-0.538594\pi\)
\(8\) 0 0
\(9\) 6277.30i 0.956760i
\(10\) 0 0
\(11\) −8327.31 −0.568767 −0.284383 0.958711i \(-0.591789\pi\)
−0.284383 + 0.958711i \(0.591789\pi\)
\(12\) 0 0
\(13\) 1552.39 1552.39i 0.0543535 0.0543535i −0.679408 0.733761i \(-0.737763\pi\)
0.733761 + 0.679408i \(0.237763\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 39830.2 + 39830.2i 0.476888 + 0.476888i 0.904135 0.427247i \(-0.140517\pi\)
−0.427247 + 0.904135i \(0.640517\pi\)
\(18\) 0 0
\(19\) 111305.i 0.854083i −0.904232 0.427042i \(-0.859556\pi\)
0.904232 0.427042i \(-0.140444\pi\)
\(20\) 0 0
\(21\) 63689.3 0.327484
\(22\) 0 0
\(23\) 142842. 142842.i 0.510441 0.510441i −0.404221 0.914661i \(-0.632457\pi\)
0.914661 + 0.404221i \(0.132457\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −152904. 152904.i −0.287716 0.287716i
\(28\) 0 0
\(29\) 945318.i 1.33655i 0.743913 + 0.668276i \(0.232968\pi\)
−0.743913 + 0.668276i \(0.767032\pi\)
\(30\) 0 0
\(31\) −674325. −0.730167 −0.365084 0.930975i \(-0.618960\pi\)
−0.365084 + 0.930975i \(0.618960\pi\)
\(32\) 0 0
\(33\) 99178.3 99178.3i 0.0836298 0.0836298i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.18332e6 + 1.18332e6i 0.631384 + 0.631384i 0.948415 0.317031i \(-0.102686\pi\)
−0.317031 + 0.948415i \(0.602686\pi\)
\(38\) 0 0
\(39\) 36977.9i 0.0159840i
\(40\) 0 0
\(41\) 3.81303e6 1.34938 0.674690 0.738101i \(-0.264277\pi\)
0.674690 + 0.738101i \(0.264277\pi\)
\(42\) 0 0
\(43\) 3.55470e6 3.55470e6i 1.03975 1.03975i 0.0405753 0.999176i \(-0.487081\pi\)
0.999176 0.0405753i \(-0.0129191\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.09808e6 + 3.09808e6i 0.634894 + 0.634894i 0.949291 0.314397i \(-0.101802\pi\)
−0.314397 + 0.949291i \(0.601802\pi\)
\(48\) 0 0
\(49\) 8.53335e6i 1.48025i
\(50\) 0 0
\(51\) −948755. −0.140240
\(52\) 0 0
\(53\) 3.90661e6 3.90661e6i 0.495104 0.495104i −0.414806 0.909910i \(-0.636150\pi\)
0.909910 + 0.414806i \(0.136150\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.32564e6 + 1.32564e6i 0.125582 + 0.125582i
\(58\) 0 0
\(59\) 2.24160e7i 1.84991i 0.380077 + 0.924955i \(0.375897\pi\)
−0.380077 + 0.924955i \(0.624103\pi\)
\(60\) 0 0
\(61\) −5.70972e6 −0.412378 −0.206189 0.978512i \(-0.566106\pi\)
−0.206189 + 0.978512i \(0.566106\pi\)
\(62\) 0 0
\(63\) 1.67841e7 1.67841e7i 1.06546 1.06546i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 1.68179e7 + 1.68179e7i 0.834590 + 0.834590i 0.988141 0.153551i \(-0.0490709\pi\)
−0.153551 + 0.988141i \(0.549071\pi\)
\(68\) 0 0
\(69\) 3.40250e6i 0.150107i
\(70\) 0 0
\(71\) 3.93208e7 1.54735 0.773675 0.633582i \(-0.218416\pi\)
0.773675 + 0.633582i \(0.218416\pi\)
\(72\) 0 0
\(73\) 3.75805e7 3.75805e7i 1.32334 1.32334i 0.412281 0.911057i \(-0.364732\pi\)
0.911057 0.412281i \(-0.135268\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.22654e7 + 2.22654e7i 0.633384 + 0.633384i
\(78\) 0 0
\(79\) 2.25314e7i 0.578470i 0.957258 + 0.289235i \(0.0934009\pi\)
−0.957258 + 0.289235i \(0.906599\pi\)
\(80\) 0 0
\(81\) −3.75432e7 −0.872150
\(82\) 0 0
\(83\) −9.55460e6 + 9.55460e6i −0.201326 + 0.201326i −0.800568 0.599242i \(-0.795469\pi\)
0.599242 + 0.800568i \(0.295469\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −1.12587e7 1.12587e7i −0.196523 0.196523i
\(88\) 0 0
\(89\) 9.37891e7i 1.49483i 0.664356 + 0.747416i \(0.268706\pi\)
−0.664356 + 0.747416i \(0.731294\pi\)
\(90\) 0 0
\(91\) −8.30148e6 −0.121057
\(92\) 0 0
\(93\) 8.03121e6 8.03121e6i 0.107362 0.107362i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.82973e7 1.82973e7i −0.206681 0.206681i 0.596174 0.802855i \(-0.296687\pi\)
−0.802855 + 0.596174i \(0.796687\pi\)
\(98\) 0 0
\(99\) 5.22731e7i 0.544173i
\(100\) 0 0
\(101\) 9.10075e7 0.874565 0.437282 0.899324i \(-0.355941\pi\)
0.437282 + 0.899324i \(0.355941\pi\)
\(102\) 0 0
\(103\) 1.07471e7 1.07471e7i 0.0954863 0.0954863i −0.657750 0.753236i \(-0.728492\pi\)
0.753236 + 0.657750i \(0.228492\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.19976e7 + 1.19976e7i 0.0915289 + 0.0915289i 0.751389 0.659860i \(-0.229384\pi\)
−0.659860 + 0.751389i \(0.729384\pi\)
\(108\) 0 0
\(109\) 1.78253e8i 1.26279i −0.775461 0.631395i \(-0.782483\pi\)
0.775461 0.631395i \(-0.217517\pi\)
\(110\) 0 0
\(111\) −2.81866e7 −0.185674
\(112\) 0 0
\(113\) −1.83187e8 + 1.83187e8i −1.12352 + 1.12352i −0.132310 + 0.991208i \(0.542239\pi\)
−0.991208 + 0.132310i \(0.957761\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 9.74482e6 + 9.74482e6i 0.0520032 + 0.0520032i
\(118\) 0 0
\(119\) 2.12994e8i 1.06213i
\(120\) 0 0
\(121\) −1.45015e8 −0.676505
\(122\) 0 0
\(123\) −4.54132e7 + 4.54132e7i −0.198409 + 0.198409i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −2.74492e8 2.74492e8i −1.05515 1.05515i −0.998388 0.0567647i \(-0.981922\pi\)
−0.0567647 0.998388i \(-0.518078\pi\)
\(128\) 0 0
\(129\) 8.46731e7i 0.305764i
\(130\) 0 0
\(131\) −1.67350e8 −0.568250 −0.284125 0.958787i \(-0.591703\pi\)
−0.284125 + 0.958787i \(0.591703\pi\)
\(132\) 0 0
\(133\) −2.97604e8 + 2.97604e8i −0.951115 + 0.951115i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.36681e8 2.36681e8i −0.671863 0.671863i 0.286282 0.958145i \(-0.407581\pi\)
−0.958145 + 0.286282i \(0.907581\pi\)
\(138\) 0 0
\(139\) 3.00902e8i 0.806058i −0.915187 0.403029i \(-0.867957\pi\)
0.915187 0.403029i \(-0.132043\pi\)
\(140\) 0 0
\(141\) −7.37963e7 −0.186706
\(142\) 0 0
\(143\) −1.29272e7 + 1.29272e7i −0.0309144 + 0.0309144i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1.01632e8 1.01632e8i −0.217652 0.217652i
\(148\) 0 0
\(149\) 9.18968e8i 1.86447i −0.361855 0.932234i \(-0.617857\pi\)
0.361855 0.932234i \(-0.382143\pi\)
\(150\) 0 0
\(151\) 5.36821e8 1.03258 0.516288 0.856415i \(-0.327314\pi\)
0.516288 + 0.856415i \(0.327314\pi\)
\(152\) 0 0
\(153\) −2.50026e8 + 2.50026e8i −0.456267 + 0.456267i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 6.75635e8 + 6.75635e8i 1.11202 + 1.11202i 0.992877 + 0.119146i \(0.0380157\pi\)
0.119146 + 0.992877i \(0.461984\pi\)
\(158\) 0 0
\(159\) 9.30555e7i 0.145597i
\(160\) 0 0
\(161\) −7.63856e8 −1.13686
\(162\) 0 0
\(163\) −3.55120e8 + 3.55120e8i −0.503066 + 0.503066i −0.912389 0.409323i \(-0.865765\pi\)
0.409323 + 0.912389i \(0.365765\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.94057e8 3.94057e8i −0.506633 0.506633i 0.406859 0.913491i \(-0.366624\pi\)
−0.913491 + 0.406859i \(0.866624\pi\)
\(168\) 0 0
\(169\) 8.10911e8i 0.994091i
\(170\) 0 0
\(171\) 6.98695e8 0.817153
\(172\) 0 0
\(173\) 8.01956e8 8.01956e8i 0.895295 0.895295i −0.0997201 0.995016i \(-0.531795\pi\)
0.995016 + 0.0997201i \(0.0317947\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2.66975e8 2.66975e8i −0.272005 0.272005i
\(178\) 0 0
\(179\) 7.56517e8i 0.736896i 0.929648 + 0.368448i \(0.120111\pi\)
−0.929648 + 0.368448i \(0.879889\pi\)
\(180\) 0 0
\(181\) −3.34842e8 −0.311980 −0.155990 0.987759i \(-0.549857\pi\)
−0.155990 + 0.987759i \(0.549857\pi\)
\(182\) 0 0
\(183\) 6.80028e7 6.80028e7i 0.0606348 0.0606348i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −3.31678e8 3.31678e8i −0.271238 0.271238i
\(188\) 0 0
\(189\) 8.17663e8i 0.640807i
\(190\) 0 0
\(191\) 6.37860e8 0.479283 0.239642 0.970861i \(-0.422970\pi\)
0.239642 + 0.970861i \(0.422970\pi\)
\(192\) 0 0
\(193\) 3.42784e8 3.42784e8i 0.247054 0.247054i −0.572707 0.819760i \(-0.694107\pi\)
0.819760 + 0.572707i \(0.194107\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.08357e9 + 2.08357e9i 1.38338 + 1.38338i 0.838532 + 0.544852i \(0.183414\pi\)
0.544852 + 0.838532i \(0.316586\pi\)
\(198\) 0 0
\(199\) 2.08289e8i 0.132817i 0.997793 + 0.0664087i \(0.0211541\pi\)
−0.997793 + 0.0664087i \(0.978846\pi\)
\(200\) 0 0
\(201\) −4.00603e8 −0.245431
\(202\) 0 0
\(203\) 2.52757e9 2.52757e9i 1.48840 1.48840i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 8.96664e8 + 8.96664e8i 0.488369 + 0.488369i
\(208\) 0 0
\(209\) 9.26871e8i 0.485774i
\(210\) 0 0
\(211\) 1.10992e9 0.559967 0.279984 0.960005i \(-0.409671\pi\)
0.279984 + 0.960005i \(0.409671\pi\)
\(212\) 0 0
\(213\) −4.68311e8 + 4.68311e8i −0.227518 + 0.227518i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.80299e9 + 1.80299e9i 0.813121 + 0.813121i
\(218\) 0 0
\(219\) 8.95167e8i 0.389159i
\(220\) 0 0
\(221\) 1.23664e8 0.0518410
\(222\) 0 0
\(223\) 3.19309e9 3.19309e9i 1.29120 1.29120i 0.357149 0.934048i \(-0.383749\pi\)
0.934048 0.357149i \(-0.116251\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −3.14431e9 3.14431e9i −1.18419 1.18419i −0.978648 0.205544i \(-0.934104\pi\)
−0.205544 0.978648i \(-0.565896\pi\)
\(228\) 0 0
\(229\) 3.03285e9i 1.10283i 0.834230 + 0.551416i \(0.185912\pi\)
−0.834230 + 0.551416i \(0.814088\pi\)
\(230\) 0 0
\(231\) −5.30361e8 −0.186262
\(232\) 0 0
\(233\) −2.36009e9 + 2.36009e9i −0.800763 + 0.800763i −0.983215 0.182452i \(-0.941597\pi\)
0.182452 + 0.983215i \(0.441597\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −2.68350e8 2.68350e8i −0.0850565 0.0850565i
\(238\) 0 0
\(239\) 1.48671e9i 0.455655i 0.973702 + 0.227827i \(0.0731622\pi\)
−0.973702 + 0.227827i \(0.926838\pi\)
\(240\) 0 0
\(241\) −2.17060e9 −0.643447 −0.321723 0.946834i \(-0.604262\pi\)
−0.321723 + 0.946834i \(0.604262\pi\)
\(242\) 0 0
\(243\) 1.45034e9 1.45034e9i 0.415955 0.415955i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.72789e8 1.72789e8i −0.0464224 0.0464224i
\(248\) 0 0
\(249\) 2.27591e8i 0.0592048i
\(250\) 0 0
\(251\) 5.99212e9 1.50968 0.754841 0.655908i \(-0.227714\pi\)
0.754841 + 0.655908i \(0.227714\pi\)
\(252\) 0 0
\(253\) −1.18949e9 + 1.18949e9i −0.290322 + 0.290322i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.93575e9 + 4.93575e9i 1.13141 + 1.13141i 0.989943 + 0.141469i \(0.0451827\pi\)
0.141469 + 0.989943i \(0.454817\pi\)
\(258\) 0 0
\(259\) 6.32784e9i 1.40623i
\(260\) 0 0
\(261\) −5.93405e9 −1.27876
\(262\) 0 0
\(263\) −3.36075e9 + 3.36075e9i −0.702447 + 0.702447i −0.964935 0.262488i \(-0.915457\pi\)
0.262488 + 0.964935i \(0.415457\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −1.11703e9 1.11703e9i −0.219796 0.219796i
\(268\) 0 0
\(269\) 2.72431e9i 0.520292i −0.965569 0.260146i \(-0.916229\pi\)
0.965569 0.260146i \(-0.0837707\pi\)
\(270\) 0 0
\(271\) 3.22189e9 0.597357 0.298679 0.954354i \(-0.403454\pi\)
0.298679 + 0.954354i \(0.403454\pi\)
\(272\) 0 0
\(273\) 9.88707e7 9.88707e7i 0.0177999 0.0177999i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −3.52326e9 3.52326e9i −0.598448 0.598448i 0.341452 0.939899i \(-0.389081\pi\)
−0.939899 + 0.341452i \(0.889081\pi\)
\(278\) 0 0
\(279\) 4.23294e9i 0.698595i
\(280\) 0 0
\(281\) 8.99035e8 0.144195 0.0720976 0.997398i \(-0.477031\pi\)
0.0720976 + 0.997398i \(0.477031\pi\)
\(282\) 0 0
\(283\) −5.06850e9 + 5.06850e9i −0.790193 + 0.790193i −0.981525 0.191332i \(-0.938719\pi\)
0.191332 + 0.981525i \(0.438719\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.01952e10 1.01952e10i −1.50268 1.50268i
\(288\) 0 0
\(289\) 3.80287e9i 0.545156i
\(290\) 0 0
\(291\) 4.35842e8 0.0607795
\(292\) 0 0
\(293\) −3.80587e9 + 3.80587e9i −0.516397 + 0.516397i −0.916479 0.400082i \(-0.868981\pi\)
0.400082 + 0.916479i \(0.368981\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 1.27328e9 + 1.27328e9i 0.163643 + 0.163643i
\(298\) 0 0
\(299\) 4.43494e8i 0.0554884i
\(300\) 0 0
\(301\) −1.90090e10 −2.31575
\(302\) 0 0
\(303\) −1.08390e9 + 1.08390e9i −0.128593 + 0.128593i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −9.82709e8 9.82709e8i −0.110630 0.110630i 0.649625 0.760255i \(-0.274926\pi\)
−0.760255 + 0.649625i \(0.774926\pi\)
\(308\) 0 0
\(309\) 2.55995e8i 0.0280800i
\(310\) 0 0
\(311\) 7.76262e9 0.829787 0.414894 0.909870i \(-0.363819\pi\)
0.414894 + 0.909870i \(0.363819\pi\)
\(312\) 0 0
\(313\) −6.87570e9 + 6.87570e9i −0.716374 + 0.716374i −0.967861 0.251487i \(-0.919080\pi\)
0.251487 + 0.967861i \(0.419080\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −8.40609e8 8.40609e8i −0.0832448 0.0832448i 0.664258 0.747503i \(-0.268747\pi\)
−0.747503 + 0.664258i \(0.768747\pi\)
\(318\) 0 0
\(319\) 7.87196e9i 0.760186i
\(320\) 0 0
\(321\) −2.85782e8 −0.0269163
\(322\) 0 0
\(323\) 4.43329e9 4.43329e9i 0.407302 0.407302i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2.12300e9 + 2.12300e9i 0.185677 + 0.185677i
\(328\) 0 0
\(329\) 1.65671e10i 1.41405i
\(330\) 0 0
\(331\) 5.50121e9 0.458296 0.229148 0.973392i \(-0.426406\pi\)
0.229148 + 0.973392i \(0.426406\pi\)
\(332\) 0 0
\(333\) −7.42803e9 + 7.42803e9i −0.604084 + 0.604084i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 9.38218e9 + 9.38218e9i 0.727418 + 0.727418i 0.970105 0.242687i \(-0.0780286\pi\)
−0.242687 + 0.970105i \(0.578029\pi\)
\(338\) 0 0
\(339\) 4.36351e9i 0.330398i
\(340\) 0 0
\(341\) 5.61531e9 0.415295
\(342\) 0 0
\(343\) 7.40247e9 7.40247e9i 0.534811 0.534811i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.32838e10 1.32838e10i −0.916232 0.916232i 0.0805208 0.996753i \(-0.474342\pi\)
−0.996753 + 0.0805208i \(0.974342\pi\)
\(348\) 0 0
\(349\) 2.03901e10i 1.37441i 0.726461 + 0.687207i \(0.241164\pi\)
−0.726461 + 0.687207i \(0.758836\pi\)
\(350\) 0 0
\(351\) −4.74734e8 −0.0312768
\(352\) 0 0
\(353\) 6.47303e9 6.47303e9i 0.416878 0.416878i −0.467249 0.884126i \(-0.654755\pi\)
0.884126 + 0.467249i \(0.154755\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 2.53676e9 + 2.53676e9i 0.156173 + 0.156173i
\(358\) 0 0
\(359\) 1.76783e10i 1.06430i 0.846651 + 0.532148i \(0.178615\pi\)
−0.846651 + 0.532148i \(0.821385\pi\)
\(360\) 0 0
\(361\) 4.59477e9 0.270542
\(362\) 0 0
\(363\) 1.72713e9 1.72713e9i 0.0994713 0.0994713i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 4.59142e9 + 4.59142e9i 0.253095 + 0.253095i 0.822238 0.569143i \(-0.192725\pi\)
−0.569143 + 0.822238i \(0.692725\pi\)
\(368\) 0 0
\(369\) 2.39355e10i 1.29103i
\(370\) 0 0
\(371\) −2.08908e10 −1.10271
\(372\) 0 0
\(373\) −3.21331e9 + 3.21331e9i −0.166004 + 0.166004i −0.785220 0.619217i \(-0.787450\pi\)
0.619217 + 0.785220i \(0.287450\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.46750e9 + 1.46750e9i 0.0726463 + 0.0726463i
\(378\) 0 0
\(379\) 1.41224e10i 0.684466i 0.939615 + 0.342233i \(0.111183\pi\)
−0.939615 + 0.342233i \(0.888817\pi\)
\(380\) 0 0
\(381\) 6.53841e9 0.310293
\(382\) 0 0
\(383\) 2.66112e10 2.66112e10i 1.23671 1.23671i 0.275376 0.961337i \(-0.411198\pi\)
0.961337 0.275376i \(-0.0888022\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.23140e10 + 2.23140e10i 0.994793 + 0.994793i
\(388\) 0 0
\(389\) 8.40575e9i 0.367095i −0.983011 0.183547i \(-0.941242\pi\)
0.983011 0.183547i \(-0.0587580\pi\)
\(390\) 0 0
\(391\) 1.13789e10 0.486846
\(392\) 0 0
\(393\) 1.99313e9 1.99313e9i 0.0835538 0.0835538i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 1.44267e10 + 1.44267e10i 0.580773 + 0.580773i 0.935116 0.354343i \(-0.115295\pi\)
−0.354343 + 0.935116i \(0.615295\pi\)
\(398\) 0 0
\(399\) 7.08894e9i 0.279698i
\(400\) 0 0
\(401\) 2.40043e10 0.928349 0.464175 0.885744i \(-0.346351\pi\)
0.464175 + 0.885744i \(0.346351\pi\)
\(402\) 0 0
\(403\) −1.04681e9 + 1.04681e9i −0.0396871 + 0.0396871i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −9.85384e9 9.85384e9i −0.359110 0.359110i
\(408\) 0 0
\(409\) 1.72270e10i 0.615625i 0.951447 + 0.307813i \(0.0995970\pi\)
−0.951447 + 0.307813i \(0.900403\pi\)
\(410\) 0 0
\(411\) 5.63774e9 0.197578
\(412\) 0 0
\(413\) 5.99354e10 5.99354e10i 2.06008 2.06008i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 3.58374e9 + 3.58374e9i 0.118520 + 0.118520i
\(418\) 0 0
\(419\) 1.11113e10i 0.360501i 0.983621 + 0.180251i \(0.0576909\pi\)
−0.983621 + 0.180251i \(0.942309\pi\)
\(420\) 0 0
\(421\) −1.30583e10 −0.415679 −0.207840 0.978163i \(-0.566643\pi\)
−0.207840 + 0.978163i \(0.566643\pi\)
\(422\) 0 0
\(423\) −1.94476e10 + 1.94476e10i −0.607441 + 0.607441i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.52665e10 + 1.52665e10i 0.459228 + 0.459228i
\(428\) 0 0
\(429\) 3.07927e8i 0.00909114i
\(430\) 0 0
\(431\) 1.06253e10 0.307915 0.153958 0.988077i \(-0.450798\pi\)
0.153958 + 0.988077i \(0.450798\pi\)
\(432\) 0 0
\(433\) 3.71745e9 3.71745e9i 0.105753 0.105753i −0.652250 0.758004i \(-0.726175\pi\)
0.758004 + 0.652250i \(0.226175\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.58990e10 1.58990e10i −0.435959 0.435959i
\(438\) 0 0
\(439\) 4.79759e10i 1.29171i 0.763460 + 0.645856i \(0.223499\pi\)
−0.763460 + 0.645856i \(0.776501\pi\)
\(440\) 0 0
\(441\) −5.35664e10 −1.41624
\(442\) 0 0
\(443\) −2.87652e10 + 2.87652e10i −0.746884 + 0.746884i −0.973893 0.227009i \(-0.927105\pi\)
0.227009 + 0.973893i \(0.427105\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 1.09449e10 + 1.09449e10i 0.274146 + 0.274146i
\(448\) 0 0
\(449\) 5.35257e8i 0.0131697i −0.999978 0.00658487i \(-0.997904\pi\)
0.999978 0.00658487i \(-0.00209604\pi\)
\(450\) 0 0
\(451\) −3.17523e10 −0.767483
\(452\) 0 0
\(453\) −6.39354e9 + 6.39354e9i −0.151827 + 0.151827i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.94518e10 3.94518e10i −0.904487 0.904487i 0.0913331 0.995820i \(-0.470887\pi\)
−0.995820 + 0.0913331i \(0.970887\pi\)
\(458\) 0 0
\(459\) 1.21804e10i 0.274417i
\(460\) 0 0
\(461\) 7.52433e10 1.66596 0.832979 0.553304i \(-0.186633\pi\)
0.832979 + 0.553304i \(0.186633\pi\)
\(462\) 0 0
\(463\) −2.51732e9 + 2.51732e9i −0.0547790 + 0.0547790i −0.733966 0.679187i \(-0.762333\pi\)
0.679187 + 0.733966i \(0.262333\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2.24180e10 2.24180e10i −0.471336 0.471336i 0.431011 0.902347i \(-0.358157\pi\)
−0.902347 + 0.431011i \(0.858157\pi\)
\(468\) 0 0
\(469\) 8.99347e10i 1.85881i
\(470\) 0 0
\(471\) −1.60936e10 −0.327017
\(472\) 0 0
\(473\) −2.96011e10 + 2.96011e10i −0.591376 + 0.591376i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2.45230e10 + 2.45230e10i 0.473696 + 0.473696i
\(478\) 0 0
\(479\) 3.13058e10i 0.594679i −0.954772 0.297340i \(-0.903901\pi\)
0.954772 0.297340i \(-0.0960994\pi\)
\(480\) 0 0
\(481\) 3.67394e9 0.0686359
\(482\) 0 0
\(483\) 9.09753e9 9.09753e9i 0.167161 0.167161i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 6.95947e10 + 6.95947e10i 1.23726 + 1.23726i 0.961117 + 0.276142i \(0.0890559\pi\)
0.276142 + 0.961117i \(0.410944\pi\)
\(488\) 0 0
\(489\) 8.45897e9i 0.147939i
\(490\) 0 0
\(491\) 6.69710e10 1.15229 0.576143 0.817349i \(-0.304557\pi\)
0.576143 + 0.817349i \(0.304557\pi\)
\(492\) 0 0
\(493\) −3.76522e10 + 3.76522e10i −0.637386 + 0.637386i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.05135e11 1.05135e11i −1.72314 1.72314i
\(498\) 0 0
\(499\) 7.63925e10i 1.23211i −0.787704 0.616054i \(-0.788730\pi\)
0.787704 0.616054i \(-0.211270\pi\)
\(500\) 0 0
\(501\) 9.38644e9 0.148988
\(502\) 0 0
\(503\) −3.82330e10 + 3.82330e10i −0.597264 + 0.597264i −0.939584 0.342319i \(-0.888787\pi\)
0.342319 + 0.939584i \(0.388787\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −9.65795e9 9.65795e9i −0.146168 0.146168i
\(508\) 0 0
\(509\) 1.48548e10i 0.221307i −0.993859 0.110653i \(-0.964706\pi\)
0.993859 0.110653i \(-0.0352944\pi\)
\(510\) 0 0
\(511\) −2.00963e11 −2.94736
\(512\) 0 0
\(513\) −1.70190e10 + 1.70190e10i −0.245734 + 0.245734i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −2.57987e10 2.57987e10i −0.361106 0.361106i
\(518\) 0 0
\(519\) 1.91026e10i 0.263283i
\(520\) 0 0
\(521\) 1.01864e11 1.38251 0.691255 0.722611i \(-0.257058\pi\)
0.691255 + 0.722611i \(0.257058\pi\)
\(522\) 0 0
\(523\) −8.63327e10 + 8.63327e10i −1.15390 + 1.15390i −0.168138 + 0.985763i \(0.553775\pi\)
−0.985763 + 0.168138i \(0.946225\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.68585e10 2.68585e10i −0.348208 0.348208i
\(528\) 0 0
\(529\) 3.75032e10i 0.478901i
\(530\) 0 0
\(531\) −1.40712e11 −1.76992
\(532\) 0 0
\(533\) 5.91930e9 5.91930e9i 0.0733435 0.0733435i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −9.01012e9 9.01012e9i −0.108351 0.108351i
\(538\) 0 0
\(539\) 7.10598e10i 0.841917i
\(540\) 0 0
\(541\) 3.24389e10 0.378684 0.189342 0.981911i \(-0.439365\pi\)
0.189342 + 0.981911i \(0.439365\pi\)
\(542\) 0 0
\(543\) 3.98797e9 3.98797e9i 0.0458726 0.0458726i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 8.37039e9 + 8.37039e9i 0.0934967 + 0.0934967i 0.752308 0.658811i \(-0.228940\pi\)
−0.658811 + 0.752308i \(0.728940\pi\)
\(548\) 0 0
\(549\) 3.58416e10i 0.394547i
\(550\) 0 0
\(551\) 1.05219e11 1.14153
\(552\) 0 0
\(553\) 6.02440e10 6.02440e10i 0.644189 0.644189i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −7.16497e10 7.16497e10i −0.744378 0.744378i 0.229039 0.973417i \(-0.426442\pi\)
−0.973417 + 0.229039i \(0.926442\pi\)
\(558\) 0 0
\(559\) 1.10366e10i 0.113028i
\(560\) 0 0
\(561\) 7.90058e9 0.0797641
\(562\) 0 0
\(563\) 4.16039e10 4.16039e10i 0.414096 0.414096i −0.469067 0.883163i \(-0.655410\pi\)
0.883163 + 0.469067i \(0.155410\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.00382e11 + 1.00382e11i 0.971234 + 0.971234i
\(568\) 0 0
\(569\) 3.36524e10i 0.321046i −0.987032 0.160523i \(-0.948682\pi\)
0.987032 0.160523i \(-0.0513180\pi\)
\(570\) 0 0
\(571\) 7.08708e9 0.0666688 0.0333344 0.999444i \(-0.489387\pi\)
0.0333344 + 0.999444i \(0.489387\pi\)
\(572\) 0 0
\(573\) −7.59692e9 + 7.59692e9i −0.0704724 + 0.0704724i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 8.43390e10 + 8.43390e10i 0.760896 + 0.760896i 0.976484 0.215589i \(-0.0691670\pi\)
−0.215589 + 0.976484i \(0.569167\pi\)
\(578\) 0 0
\(579\) 8.16512e9i 0.0726521i
\(580\) 0 0
\(581\) 5.10937e10 0.448397
\(582\) 0 0
\(583\) −3.25316e10 + 3.25316e10i −0.281599 + 0.281599i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 5.29404e9 + 5.29404e9i 0.0445897 + 0.0445897i 0.729050 0.684460i \(-0.239962\pi\)
−0.684460 + 0.729050i \(0.739962\pi\)
\(588\) 0 0
\(589\) 7.50557e10i 0.623623i
\(590\) 0 0
\(591\) −4.96306e10 −0.406818
\(592\) 0 0
\(593\) 1.32179e11 1.32179e11i 1.06891 1.06891i 0.0714696 0.997443i \(-0.477231\pi\)
0.997443 0.0714696i \(-0.0227689\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2.48073e9 2.48073e9i −0.0195291 0.0195291i
\(598\) 0 0
\(599\) 1.23084e11i 0.956078i 0.878339 + 0.478039i \(0.158652\pi\)
−0.878339 + 0.478039i \(0.841348\pi\)
\(600\) 0 0
\(601\) −4.88138e10 −0.374149 −0.187075 0.982346i \(-0.559901\pi\)
−0.187075 + 0.982346i \(0.559901\pi\)
\(602\) 0 0
\(603\) −1.05571e11 + 1.05571e11i −0.798503 + 0.798503i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 9.04567e10 + 9.04567e10i 0.666325 + 0.666325i 0.956863 0.290538i \(-0.0938344\pi\)
−0.290538 + 0.956863i \(0.593834\pi\)
\(608\) 0 0
\(609\) 6.02067e10i 0.437699i
\(610\) 0 0
\(611\) 9.61886e9 0.0690174
\(612\) 0 0
\(613\) 4.45608e10 4.45608e10i 0.315581 0.315581i −0.531486 0.847067i \(-0.678366\pi\)
0.847067 + 0.531486i \(0.178366\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.00326e11 1.00326e11i −0.692264 0.692264i 0.270466 0.962730i \(-0.412822\pi\)
−0.962730 + 0.270466i \(0.912822\pi\)
\(618\) 0 0
\(619\) 2.60850e11i 1.77676i 0.459110 + 0.888380i \(0.348169\pi\)
−0.459110 + 0.888380i \(0.651831\pi\)
\(620\) 0 0
\(621\) −4.36824e10 −0.293724
\(622\) 0 0
\(623\) 2.50771e11 2.50771e11i 1.66466 1.66466i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −1.10390e10 1.10390e10i −0.0714268 0.0714268i
\(628\) 0 0
\(629\) 9.42634e10i 0.602199i
\(630\) 0 0
\(631\) 1.66950e11 1.05310 0.526548 0.850145i \(-0.323486\pi\)
0.526548 + 0.850145i \(0.323486\pi\)
\(632\) 0 0
\(633\) −1.32192e10 + 1.32192e10i −0.0823359 + 0.0823359i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.32471e10 + 1.32471e10i 0.0804567 + 0.0804567i
\(638\) 0 0
\(639\) 2.46828e11i 1.48044i
\(640\) 0 0
\(641\) 1.22165e11 0.723626 0.361813 0.932251i \(-0.382158\pi\)
0.361813 + 0.932251i \(0.382158\pi\)
\(642\) 0 0
\(643\) −3.34802e10 + 3.34802e10i −0.195859 + 0.195859i −0.798222 0.602363i \(-0.794226\pi\)
0.602363 + 0.798222i \(0.294226\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.56116e10 + 5.56116e10i 0.317357 + 0.317357i 0.847751 0.530394i \(-0.177956\pi\)
−0.530394 + 0.847751i \(0.677956\pi\)
\(648\) 0 0
\(649\) 1.86665e11i 1.05217i
\(650\) 0 0
\(651\) −4.29473e10 −0.239118
\(652\) 0 0
\(653\) 1.94708e11 1.94708e11i 1.07086 1.07086i 0.0735653 0.997290i \(-0.476562\pi\)
0.997290 0.0735653i \(-0.0234377\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2.35904e11 + 2.35904e11i 1.26612 + 1.26612i
\(658\) 0 0
\(659\) 2.86480e11i 1.51898i −0.650519 0.759490i \(-0.725449\pi\)
0.650519 0.759490i \(-0.274551\pi\)
\(660\) 0 0
\(661\) −2.50082e10 −0.131001 −0.0655007 0.997853i \(-0.520864\pi\)
−0.0655007 + 0.997853i \(0.520864\pi\)
\(662\) 0 0
\(663\) −1.47284e9 + 1.47284e9i −0.00762255 + 0.00762255i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.35031e11 + 1.35031e11i 0.682231 + 0.682231i
\(668\) 0 0
\(669\) 7.60595e10i 0.379707i
\(670\) 0 0
\(671\) 4.75466e10 0.234547
\(672\) 0 0
\(673\) 7.00653e9 7.00653e9i 0.0341541 0.0341541i −0.689823 0.723978i \(-0.742312\pi\)
0.723978 + 0.689823i \(0.242312\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −1.85016e11 1.85016e11i −0.880754 0.880754i 0.112857 0.993611i \(-0.464000\pi\)
−0.993611 + 0.112857i \(0.964000\pi\)
\(678\) 0 0
\(679\) 9.78457e10i 0.460323i
\(680\) 0 0
\(681\) 7.48975e10 0.348240
\(682\) 0 0
\(683\) −1.96203e10 + 1.96203e10i −0.0901617 + 0.0901617i −0.750749 0.660587i \(-0.770307\pi\)
0.660587 + 0.750749i \(0.270307\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −3.61213e10 3.61213e10i −0.162157 0.162157i
\(688\) 0 0
\(689\) 1.21292e10i 0.0538213i
\(690\) 0 0
\(691\) −2.52605e11 −1.10797 −0.553987 0.832525i \(-0.686894\pi\)
−0.553987 + 0.832525i \(0.686894\pi\)
\(692\) 0 0
\(693\) −1.39766e11 + 1.39766e11i −0.605996 + 0.605996i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 1.51874e11 + 1.51874e11i 0.643504 + 0.643504i
\(698\) 0 0
\(699\) 5.62173e10i 0.235484i
\(700\) 0 0
\(701\) −2.19968e10 −0.0910934 −0.0455467 0.998962i \(-0.514503\pi\)
−0.0455467 + 0.998962i \(0.514503\pi\)
\(702\) 0 0
\(703\) 1.31709e11 1.31709e11i 0.539255 0.539255i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.43334e11 2.43334e11i −0.973923 0.973923i
\(708\) 0 0
\(709\) 3.40622e11i 1.34799i 0.738734 + 0.673997i \(0.235424\pi\)
−0.738734 + 0.673997i \(0.764576\pi\)
\(710\) 0 0
\(711\) −1.41437e11 −0.553457
\(712\) 0 0
\(713\) −9.63220e10 + 9.63220e10i −0.372707 + 0.372707i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −1.77068e10 1.77068e10i −0.0669981 0.0669981i
\(718\) 0 0
\(719\) 1.45561e11i 0.544666i −0.962203 0.272333i \(-0.912205\pi\)
0.962203 0.272333i \(-0.0877952\pi\)
\(720\) 0 0
\(721\) −5.74705e10 −0.212669
\(722\) 0 0
\(723\) 2.58519e10 2.58519e10i 0.0946105 0.0946105i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −3.13672e11 3.13672e11i −1.12289 1.12289i −0.991304 0.131590i \(-0.957992\pi\)
−0.131590 0.991304i \(-0.542008\pi\)
\(728\) 0 0
\(729\) 2.11774e11i 0.749829i
\(730\) 0 0
\(731\) 2.83169e11 0.991690
\(732\) 0 0
\(733\) −3.49553e11 + 3.49553e11i −1.21087 + 1.21087i −0.240130 + 0.970741i \(0.577190\pi\)
−0.970741 + 0.240130i \(0.922810\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.40048e11 1.40048e11i −0.474687 0.474687i
\(738\) 0 0
\(739\) 4.52371e11i 1.51676i −0.651813 0.758380i \(-0.725991\pi\)
0.651813 0.758380i \(-0.274009\pi\)
\(740\) 0 0
\(741\) 4.11583e9 0.0136516
\(742\) 0 0
\(743\) 3.80702e10 3.80702e10i 0.124920 0.124920i −0.641883 0.766803i \(-0.721847\pi\)
0.766803 + 0.641883i \(0.221847\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −5.99771e10 5.99771e10i −0.192621 0.192621i
\(748\) 0 0
\(749\) 6.41576e10i 0.203855i
\(750\) 0 0
\(751\) −6.32423e10 −0.198815 −0.0994073 0.995047i \(-0.531695\pi\)
−0.0994073 + 0.995047i \(0.531695\pi\)
\(752\) 0 0
\(753\) −7.13661e10 + 7.13661e10i −0.221979 + 0.221979i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 3.90975e11 + 3.90975e11i 1.19060 + 1.19060i 0.976900 + 0.213699i \(0.0685510\pi\)
0.213699 + 0.976900i \(0.431449\pi\)
\(758\) 0 0
\(759\) 2.83337e10i 0.0853761i
\(760\) 0 0
\(761\) −5.65194e10 −0.168523 −0.0842615 0.996444i \(-0.526853\pi\)
−0.0842615 + 0.996444i \(0.526853\pi\)
\(762\) 0 0
\(763\) −4.76609e11 + 4.76609e11i −1.40625 + 1.40625i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.47984e10 + 3.47984e10i 0.100549 + 0.100549i
\(768\) 0 0
\(769\) 4.65007e11i 1.32970i −0.746976 0.664851i \(-0.768495\pi\)
0.746976 0.664851i \(-0.231505\pi\)
\(770\) 0 0
\(771\) −1.17570e11 −0.332719
\(772\) 0 0
\(773\) −1.29334e11 + 1.29334e11i −0.362238 + 0.362238i −0.864636 0.502398i \(-0.832451\pi\)
0.502398 + 0.864636i \(0.332451\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 7.53646e10 + 7.53646e10i 0.206768 + 0.206768i
\(778\) 0 0
\(779\) 4.24409e11i 1.15248i
\(780\) 0 0
\(781\) −3.27436e11 −0.880081
\(782\) 0 0
\(783\) 1.44543e11 1.44543e11i 0.384548 0.384548i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −2.80027e11 2.80027e11i −0.729964 0.729964i 0.240648 0.970612i \(-0.422640\pi\)
−0.970612 + 0.240648i \(0.922640\pi\)
\(788\) 0 0
\(789\) 8.00531e10i 0.206571i
\(790\) 0 0
\(791\) 9.79600e11 2.50232
\(792\) 0 0
\(793\) −8.86371e9 + 8.86371e9i −0.0224142 + 0.0224142i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.37265e11 1.37265e11i −0.340194 0.340194i 0.516246 0.856440i \(-0.327329\pi\)
−0.856440 + 0.516246i \(0.827329\pi\)
\(798\) 0 0
\(799\) 2.46794e11i 0.605547i
\(800\) 0 0
\(801\) −5.88743e11 −1.43020
\(802\) 0 0
\(803\) −3.12944e11 + 3.12944e11i −0.752670 + 0.752670i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 3.24465e10 + 3.24465e10i 0.0765022 + 0.0765022i
\(808\) 0 0
\(809\) 4.88941e11i 1.14147i 0.821136 + 0.570733i \(0.193341\pi\)
−0.821136 + 0.570733i \(0.806659\pi\)
\(810\) 0 0
\(811\) 4.73407e10 0.109434 0.0547169 0.998502i \(-0.482574\pi\)
0.0547169 + 0.998502i \(0.482574\pi\)
\(812\) 0 0
\(813\) −3.83728e10 + 3.83728e10i −0.0878337 + 0.0878337i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −3.95656e11 3.95656e11i −0.888034 0.888034i
\(818\) 0 0
\(819\) 5.21109e10i 0.115823i
\(820\) 0 0
\(821\) −3.47897e11 −0.765734 −0.382867 0.923803i \(-0.625063\pi\)
−0.382867 + 0.923803i \(0.625063\pi\)
\(822\) 0 0
\(823\) 4.32776e11 4.32776e11i 0.943329 0.943329i −0.0551488 0.998478i \(-0.517563\pi\)
0.998478 + 0.0551488i \(0.0175633\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −4.47219e11 4.47219e11i −0.956090 0.956090i 0.0429859 0.999076i \(-0.486313\pi\)
−0.999076 + 0.0429859i \(0.986313\pi\)
\(828\) 0 0
\(829\) 5.23265e11i 1.10791i −0.832547 0.553954i \(-0.813118\pi\)
0.832547 0.553954i \(-0.186882\pi\)
\(830\) 0 0
\(831\) 8.39242e10 0.175988
\(832\) 0 0
\(833\) −3.39885e11 + 3.39885e11i −0.705913 + 0.705913i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 1.03107e11 + 1.03107e11i 0.210081 + 0.210081i
\(838\) 0 0
\(839\) 6.60921e11i 1.33383i 0.745132 + 0.666917i \(0.232386\pi\)
−0.745132 + 0.666917i \(0.767614\pi\)
\(840\) 0 0
\(841\) −3.93380e11 −0.786373
\(842\) 0 0
\(843\) −1.07075e10 + 1.07075e10i −0.0212021 + 0.0212021i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 3.87737e11 + 3.87737e11i 0.753362 + 0.753362i
\(848\) 0 0
\(849\) 1.20732e11i 0.232375i
\(850\) 0 0
\(851\) 3.38055e11 0.644569
\(852\) 0 0
\(853\) 2.31333e11 2.31333e11i 0.436959 0.436959i −0.454028 0.890987i \(-0.650013\pi\)
0.890987 + 0.454028i \(0.150013\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 5.09154e11 + 5.09154e11i 0.943900 + 0.943900i 0.998508 0.0546083i \(-0.0173910\pi\)
−0.0546083 + 0.998508i \(0.517391\pi\)
\(858\) 0 0
\(859\) 7.88585e10i 0.144836i −0.997374 0.0724179i \(-0.976928\pi\)
0.997374 0.0724179i \(-0.0230715\pi\)
\(860\) 0 0
\(861\) 2.42849e11 0.441900
\(862\) 0 0
\(863\) 3.41621e11 3.41621e11i 0.615887 0.615887i −0.328587 0.944474i \(-0.606572\pi\)
0.944474 + 0.328587i \(0.106572\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 4.52922e10 + 4.52922e10i 0.0801581 + 0.0801581i
\(868\) 0 0
\(869\) 1.87626e11i 0.329014i
\(870\) 0 0
\(871\) 5.22159e10 0.0907257
\(872\) 0 0
\(873\) 1.14858e11 1.14858e11i 0.197744 0.197744i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 6.22499e11 + 6.22499e11i 1.05230 + 1.05230i 0.998555 + 0.0537474i \(0.0171166\pi\)
0.0537474 + 0.998555i \(0.482883\pi\)
\(878\) 0 0
\(879\) 9.06558e10i 0.151859i
\(880\) 0 0
\(881\) −8.38509e9 −0.0139189 −0.00695944 0.999976i \(-0.502215\pi\)
−0.00695944 + 0.999976i \(0.502215\pi\)
\(882\) 0 0
\(883\) 3.87671e11 3.87671e11i 0.637705 0.637705i −0.312284 0.949989i \(-0.601094\pi\)
0.949989 + 0.312284i \(0.101094\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.88560e11 + 2.88560e11i 0.466167 + 0.466167i 0.900670 0.434503i \(-0.143076\pi\)
−0.434503 + 0.900670i \(0.643076\pi\)
\(888\) 0 0
\(889\) 1.46786e12i 2.35005i
\(890\) 0 0
\(891\) 3.12634e11 0.496050
\(892\) 0 0
\(893\) 3.44832e11 3.44832e11i 0.542252 0.542252i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 5.28201e9 + 5.28201e9i 0.00815886 + 0.00815886i
\(898\) 0 0
\(899\) 6.37451e11i 0.975907i
\(900\) 0 0
\(901\) 3.11202e11 0.472219
\(902\) 0 0
\(903\) 2.26397e11 2.26397e11i 0.340502 0.340502i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −8.63081e11 8.63081e11i −1.27533 1.27533i −0.943252 0.332077i \(-0.892251\pi\)
−0.332077 0.943252i \(-0.607749\pi\)
\(908\) 0 0
\(909\) 5.71282e11i 0.836749i
\(910\) 0 0
\(911\) −6.07073e11 −0.881388 −0.440694 0.897657i \(-0.645268\pi\)
−0.440694 + 0.897657i \(0.645268\pi\)
\(912\) 0 0
\(913\) 7.95641e10 7.95641e10i 0.114508 0.114508i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.47455e11 + 4.47455e11i 0.632808 + 0.632808i
\(918\) 0 0
\(919\) 7.53310e11i 1.05612i 0.849208 + 0.528058i \(0.177080\pi\)
−0.849208 + 0.528058i \(0.822920\pi\)
\(920\) 0 0
\(921\) 2.34081e10 0.0325333
\(922\) 0 0
\(923\) 6.10412e10 6.10412e10i 0.0841039 0.0841039i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 6.74626e10 + 6.74626e10i 0.0913574 + 0.0913574i
\(928\) 0 0
\(929\) 1.02252e12i 1.37281i 0.727220 + 0.686405i \(0.240812\pi\)
−0.727220 + 0.686405i \(0.759188\pi\)
\(930\) 0 0
\(931\) 9.49804e11 1.26426
\(932\) 0 0
\(933\) −9.24528e10 + 9.24528e10i −0.122009 + 0.122009i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −8.30632e10 8.30632e10i −0.107758 0.107758i 0.651172 0.758930i \(-0.274278\pi\)
−0.758930 + 0.651172i \(0.774278\pi\)
\(938\) 0 0
\(939\) 1.63779e11i 0.210667i
\(940\) 0 0
\(941\) −1.53102e11 −0.195264 −0.0976318 0.995223i \(-0.531127\pi\)
−0.0976318 + 0.995223i \(0.531127\pi\)
\(942\) 0 0
\(943\) 5.44661e11 5.44661e11i 0.688779 0.688779i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.34420e11 3.34420e11i −0.415807 0.415807i 0.467948 0.883756i \(-0.344993\pi\)
−0.883756 + 0.467948i \(0.844993\pi\)
\(948\) 0 0
\(949\) 1.16679e11i 0.143856i
\(950\) 0 0
\(951\) 2.00233e10 0.0244801
\(952\) 0 0
\(953\) 2.54367e11 2.54367e11i 0.308382 0.308382i −0.535900 0.844282i \(-0.680027\pi\)
0.844282 + 0.535900i \(0.180027\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 9.37551e10 + 9.37551e10i 0.111776 + 0.111776i
\(958\) 0 0
\(959\) 1.26566e12i 1.49639i
\(960\) 0 0
\(961\) −3.98177e11 −0.466856
\(962\) 0 0
\(963\) −7.53124e10 + 7.53124e10i −0.0875712 + 0.0875712i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 8.49174e11 + 8.49174e11i 0.971159 + 0.971159i 0.999596 0.0284361i \(-0.00905273\pi\)
−0.0284361 + 0.999596i \(0.509053\pi\)
\(968\) 0 0
\(969\) 1.05601e11i 0.119777i
\(970\) 0 0
\(971\) −1.46271e12 −1.64544 −0.822720 0.568448i \(-0.807544\pi\)
−0.822720 + 0.568448i \(0.807544\pi\)
\(972\) 0 0
\(973\) −8.04545e11 + 8.04545e11i −0.897633 + 0.897633i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 8.89887e11 + 8.89887e11i 0.976690 + 0.976690i 0.999734 0.0230445i \(-0.00733594\pi\)
−0.0230445 + 0.999734i \(0.507336\pi\)
\(978\) 0 0
\(979\) 7.81011e11i 0.850211i
\(980\) 0 0
\(981\) 1.11895e12 1.20819
\(982\) 0 0
\(983\) 9.53538e11 9.53538e11i 1.02123 1.02123i 0.0214616 0.999770i \(-0.493168\pi\)
0.999770 0.0214616i \(-0.00683196\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 1.97315e11 + 1.97315e11i 0.207917 + 0.207917i
\(988\) 0 0
\(989\) 1.01552e12i 1.06146i
\(990\) 0 0
\(991\) 1.35907e12 1.40912 0.704561 0.709643i \(-0.251144\pi\)
0.704561 + 0.709643i \(0.251144\pi\)
\(992\) 0 0
\(993\) −6.55195e10 + 6.55195e10i −0.0673866 + 0.0673866i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −3.95894e11 3.95894e11i −0.400680 0.400680i 0.477793 0.878473i \(-0.341437\pi\)
−0.878473 + 0.477793i \(0.841437\pi\)
\(998\) 0 0
\(999\) 3.61868e11i 0.363319i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 100.9.f.c.57.3 12
5.2 odd 4 inner 100.9.f.c.93.4 yes 12
5.3 odd 4 inner 100.9.f.c.93.3 yes 12
5.4 even 2 inner 100.9.f.c.57.4 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
100.9.f.c.57.3 12 1.1 even 1 trivial
100.9.f.c.57.4 yes 12 5.4 even 2 inner
100.9.f.c.93.3 yes 12 5.3 odd 4 inner
100.9.f.c.93.4 yes 12 5.2 odd 4 inner