Properties

Label 100.9.f.c.57.2
Level $100$
Weight $9$
Character 100.57
Analytic conductor $40.738$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [100,9,Mod(57,100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("100.57"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(100, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 100 = 2^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 100.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(40.7378610061\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} + 8 x^{10} + 1412 x^{9} + 550393 x^{8} - 1456736 x^{7} + 2420672 x^{6} + \cdots + 547748010000 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{6}\cdot 5^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 57.2
Root \(17.6536 - 17.6536i\) of defining polynomial
Character \(\chi\) \(=\) 100.57
Dual form 100.9.f.c.93.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-67.0124 + 67.0124i) q^{3} +(-1824.09 - 1824.09i) q^{7} -2420.33i q^{9} +14869.3 q^{11} +(16679.4 - 16679.4i) q^{13} +(2066.91 + 2066.91i) q^{17} +216344. i q^{19} +244473. q^{21} +(249231. - 249231. i) q^{23} +(-277476. - 277476. i) q^{27} -8533.70i q^{29} +630373. q^{31} +(-996427. + 996427. i) q^{33} +(-321392. - 321392. i) q^{37} +2.23545e6i q^{39} -3.93448e6 q^{41} +(-3.86409e6 + 3.86409e6i) q^{43} +(-87194.7 - 87194.7i) q^{47} +889788. i q^{49} -277017. q^{51} +(-1.05557e7 + 1.05557e7i) q^{53} +(-1.44977e7 - 1.44977e7i) q^{57} +2.14935e7i q^{59} +2.36025e7 q^{61} +(-4.41489e6 + 4.41489e6i) q^{63} +(738442. + 738442. i) q^{67} +3.34032e7i q^{69} -5.59110e6 q^{71} +(-893363. + 893363. i) q^{73} +(-2.71229e7 - 2.71229e7i) q^{77} +6.96271e7i q^{79} +5.30685e7 q^{81} +(-4.47947e7 + 4.47947e7i) q^{83} +(571864. + 571864. i) q^{87} -8.60305e7i q^{89} -6.08494e7 q^{91} +(-4.22428e7 + 4.22428e7i) q^{93} +(-2.99939e7 - 2.99939e7i) q^{97} -3.59886e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 420 q^{11} - 921168 q^{21} + 3833112 q^{31} + 3587532 q^{41} + 46092564 q^{51} + 31354704 q^{61} - 29589384 q^{71} + 104018868 q^{81} + 433229088 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/100\mathbb{Z}\right)^\times\).

\(n\) \(51\) \(77\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −67.0124 + 67.0124i −0.827314 + 0.827314i −0.987144 0.159831i \(-0.948905\pi\)
0.159831 + 0.987144i \(0.448905\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −1824.09 1824.09i −0.759720 0.759720i 0.216551 0.976271i \(-0.430519\pi\)
−0.976271 + 0.216551i \(0.930519\pi\)
\(8\) 0 0
\(9\) 2420.33i 0.368896i
\(10\) 0 0
\(11\) 14869.3 1.01559 0.507796 0.861477i \(-0.330460\pi\)
0.507796 + 0.861477i \(0.330460\pi\)
\(12\) 0 0
\(13\) 16679.4 16679.4i 0.583992 0.583992i −0.352006 0.935998i \(-0.614500\pi\)
0.935998 + 0.352006i \(0.114500\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2066.91 + 2066.91i 0.0247472 + 0.0247472i 0.719372 0.694625i \(-0.244430\pi\)
−0.694625 + 0.719372i \(0.744430\pi\)
\(18\) 0 0
\(19\) 216344.i 1.66008i 0.557701 + 0.830042i \(0.311684\pi\)
−0.557701 + 0.830042i \(0.688316\pi\)
\(20\) 0 0
\(21\) 244473. 1.25705
\(22\) 0 0
\(23\) 249231. 249231.i 0.890618 0.890618i −0.103963 0.994581i \(-0.533152\pi\)
0.994581 + 0.103963i \(0.0331524\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −277476. 277476.i −0.522121 0.522121i
\(28\) 0 0
\(29\) 8533.70i 0.0120655i −0.999982 0.00603275i \(-0.998080\pi\)
0.999982 0.00603275i \(-0.00192030\pi\)
\(30\) 0 0
\(31\) 630373. 0.682576 0.341288 0.939959i \(-0.389137\pi\)
0.341288 + 0.939959i \(0.389137\pi\)
\(32\) 0 0
\(33\) −996427. + 996427.i −0.840214 + 0.840214i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −321392. 321392.i −0.171486 0.171486i 0.616146 0.787632i \(-0.288693\pi\)
−0.787632 + 0.616146i \(0.788693\pi\)
\(38\) 0 0
\(39\) 2.23545e6i 0.966290i
\(40\) 0 0
\(41\) −3.93448e6 −1.39236 −0.696181 0.717866i \(-0.745119\pi\)
−0.696181 + 0.717866i \(0.745119\pi\)
\(42\) 0 0
\(43\) −3.86409e6 + 3.86409e6i −1.13025 + 1.13025i −0.140110 + 0.990136i \(0.544746\pi\)
−0.990136 + 0.140110i \(0.955254\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −87194.7 87194.7i −0.0178689 0.0178689i 0.698116 0.715985i \(-0.254022\pi\)
−0.715985 + 0.698116i \(0.754022\pi\)
\(48\) 0 0
\(49\) 889788.i 0.154348i
\(50\) 0 0
\(51\) −277017. −0.0409473
\(52\) 0 0
\(53\) −1.05557e7 + 1.05557e7i −1.33777 + 1.33777i −0.439555 + 0.898216i \(0.644864\pi\)
−0.898216 + 0.439555i \(0.855136\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −1.44977e7 1.44977e7i −1.37341 1.37341i
\(58\) 0 0
\(59\) 2.14935e7i 1.77378i 0.461979 + 0.886891i \(0.347139\pi\)
−0.461979 + 0.886891i \(0.652861\pi\)
\(60\) 0 0
\(61\) 2.36025e7 1.70467 0.852334 0.522999i \(-0.175187\pi\)
0.852334 + 0.522999i \(0.175187\pi\)
\(62\) 0 0
\(63\) −4.41489e6 + 4.41489e6i −0.280258 + 0.280258i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 738442. + 738442.i 0.0366452 + 0.0366452i 0.725192 0.688547i \(-0.241751\pi\)
−0.688547 + 0.725192i \(0.741751\pi\)
\(68\) 0 0
\(69\) 3.34032e7i 1.47364i
\(70\) 0 0
\(71\) −5.59110e6 −0.220021 −0.110011 0.993930i \(-0.535088\pi\)
−0.110011 + 0.993930i \(0.535088\pi\)
\(72\) 0 0
\(73\) −893363. + 893363.i −0.0314584 + 0.0314584i −0.722661 0.691203i \(-0.757081\pi\)
0.691203 + 0.722661i \(0.257081\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.71229e7 2.71229e7i −0.771566 0.771566i
\(78\) 0 0
\(79\) 6.96271e7i 1.78760i 0.448467 + 0.893799i \(0.351970\pi\)
−0.448467 + 0.893799i \(0.648030\pi\)
\(80\) 0 0
\(81\) 5.30685e7 1.23281
\(82\) 0 0
\(83\) −4.47947e7 + 4.47947e7i −0.943874 + 0.943874i −0.998507 0.0546330i \(-0.982601\pi\)
0.0546330 + 0.998507i \(0.482601\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 571864. + 571864.i 0.00998196 + 0.00998196i
\(88\) 0 0
\(89\) 8.60305e7i 1.37117i −0.727991 0.685587i \(-0.759546\pi\)
0.727991 0.685587i \(-0.240454\pi\)
\(90\) 0 0
\(91\) −6.08494e7 −0.887341
\(92\) 0 0
\(93\) −4.22428e7 + 4.22428e7i −0.564704 + 0.564704i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −2.99939e7 2.99939e7i −0.338802 0.338802i 0.517114 0.855916i \(-0.327006\pi\)
−0.855916 + 0.517114i \(0.827006\pi\)
\(98\) 0 0
\(99\) 3.59886e7i 0.374648i
\(100\) 0 0
\(101\) −1.35552e8 −1.30262 −0.651312 0.758810i \(-0.725781\pi\)
−0.651312 + 0.758810i \(0.725781\pi\)
\(102\) 0 0
\(103\) 2.16076e7 2.16076e7i 0.191981 0.191981i −0.604571 0.796552i \(-0.706655\pi\)
0.796552 + 0.604571i \(0.206655\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.57285e8 + 1.57285e8i 1.19992 + 1.19992i 0.974190 + 0.225728i \(0.0724759\pi\)
0.225728 + 0.974190i \(0.427524\pi\)
\(108\) 0 0
\(109\) 3.57585e7i 0.253322i −0.991946 0.126661i \(-0.959574\pi\)
0.991946 0.126661i \(-0.0404261\pi\)
\(110\) 0 0
\(111\) 4.30745e7 0.283745
\(112\) 0 0
\(113\) 5.85136e7 5.85136e7i 0.358875 0.358875i −0.504523 0.863398i \(-0.668332\pi\)
0.863398 + 0.504523i \(0.168332\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −4.03696e7 4.03696e7i −0.215433 0.215433i
\(118\) 0 0
\(119\) 7.54044e6i 0.0376018i
\(120\) 0 0
\(121\) 6.73708e6 0.0314290
\(122\) 0 0
\(123\) 2.63659e8 2.63659e8i 1.15192 1.15192i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 1.03379e8 + 1.03379e8i 0.397391 + 0.397391i 0.877312 0.479921i \(-0.159335\pi\)
−0.479921 + 0.877312i \(0.659335\pi\)
\(128\) 0 0
\(129\) 5.17884e8i 1.87014i
\(130\) 0 0
\(131\) 3.14032e8 1.06632 0.533161 0.846014i \(-0.321004\pi\)
0.533161 + 0.846014i \(0.321004\pi\)
\(132\) 0 0
\(133\) 3.94630e8 3.94630e8i 1.26120 1.26120i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.98429e7 + 7.98429e7i 0.226649 + 0.226649i 0.811291 0.584642i \(-0.198765\pi\)
−0.584642 + 0.811291i \(0.698765\pi\)
\(138\) 0 0
\(139\) 1.74531e8i 0.467533i −0.972293 0.233767i \(-0.924895\pi\)
0.972293 0.233767i \(-0.0751052\pi\)
\(140\) 0 0
\(141\) 1.16863e7 0.0295664
\(142\) 0 0
\(143\) 2.48011e8 2.48011e8i 0.593098 0.593098i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −5.96269e7 5.96269e7i −0.127695 0.127695i
\(148\) 0 0
\(149\) 6.75364e8i 1.37023i 0.728436 + 0.685114i \(0.240247\pi\)
−0.728436 + 0.685114i \(0.759753\pi\)
\(150\) 0 0
\(151\) −3.00444e8 −0.577905 −0.288952 0.957344i \(-0.593307\pi\)
−0.288952 + 0.957344i \(0.593307\pi\)
\(152\) 0 0
\(153\) 5.00260e6 5.00260e6i 0.00912914 0.00912914i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 6.14477e8 + 6.14477e8i 1.01136 + 1.01136i 0.999935 + 0.0114287i \(0.00363793\pi\)
0.0114287 + 0.999935i \(0.496362\pi\)
\(158\) 0 0
\(159\) 1.41472e9i 2.21351i
\(160\) 0 0
\(161\) −9.09240e8 −1.35324
\(162\) 0 0
\(163\) −7.22020e8 + 7.22020e8i −1.02282 + 1.02282i −0.0230852 + 0.999734i \(0.507349\pi\)
−0.999734 + 0.0230852i \(0.992651\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.41221e8 + 2.41221e8i 0.310134 + 0.310134i 0.844961 0.534827i \(-0.179623\pi\)
−0.534827 + 0.844961i \(0.679623\pi\)
\(168\) 0 0
\(169\) 2.59326e8i 0.317906i
\(170\) 0 0
\(171\) 5.23623e8 0.612399
\(172\) 0 0
\(173\) 4.30005e8 4.30005e8i 0.480053 0.480053i −0.425096 0.905148i \(-0.639759\pi\)
0.905148 + 0.425096i \(0.139759\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1.44033e9 1.44033e9i −1.46747 1.46747i
\(178\) 0 0
\(179\) 7.13896e7i 0.0695381i −0.999395 0.0347691i \(-0.988930\pi\)
0.999395 0.0347691i \(-0.0110696\pi\)
\(180\) 0 0
\(181\) −9.52190e8 −0.887175 −0.443588 0.896231i \(-0.646295\pi\)
−0.443588 + 0.896231i \(0.646295\pi\)
\(182\) 0 0
\(183\) −1.58166e9 + 1.58166e9i −1.41029 + 1.41029i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 3.07335e7 + 3.07335e7i 0.0251330 + 0.0251330i
\(188\) 0 0
\(189\) 1.01228e9i 0.793331i
\(190\) 0 0
\(191\) 1.77574e9 1.33428 0.667138 0.744935i \(-0.267519\pi\)
0.667138 + 0.744935i \(0.267519\pi\)
\(192\) 0 0
\(193\) −2.85453e8 + 2.85453e8i −0.205734 + 0.205734i −0.802451 0.596717i \(-0.796471\pi\)
0.596717 + 0.802451i \(0.296471\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.45741e7 + 2.45741e7i 0.0163159 + 0.0163159i 0.715218 0.698902i \(-0.246328\pi\)
−0.698902 + 0.715218i \(0.746328\pi\)
\(198\) 0 0
\(199\) 2.42299e9i 1.54504i 0.634991 + 0.772520i \(0.281004\pi\)
−0.634991 + 0.772520i \(0.718996\pi\)
\(200\) 0 0
\(201\) −9.89695e7 −0.0606342
\(202\) 0 0
\(203\) −1.55662e7 + 1.55662e7i −0.00916640 + 0.00916640i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −6.03222e8 6.03222e8i −0.328546 0.328546i
\(208\) 0 0
\(209\) 3.21688e9i 1.68597i
\(210\) 0 0
\(211\) 2.16866e9 1.09411 0.547056 0.837096i \(-0.315748\pi\)
0.547056 + 0.837096i \(0.315748\pi\)
\(212\) 0 0
\(213\) 3.74673e8 3.74673e8i 0.182026 0.182026i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −1.14986e9 1.14986e9i −0.518566 0.518566i
\(218\) 0 0
\(219\) 1.19733e8i 0.0520519i
\(220\) 0 0
\(221\) 6.89496e7 0.0289043
\(222\) 0 0
\(223\) −1.67197e8 + 1.67197e8i −0.0676097 + 0.0676097i −0.740103 0.672493i \(-0.765223\pi\)
0.672493 + 0.740103i \(0.265223\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.34285e8 + 4.34285e8i 0.163558 + 0.163558i 0.784141 0.620583i \(-0.213104\pi\)
−0.620583 + 0.784141i \(0.713104\pi\)
\(228\) 0 0
\(229\) 1.56042e9i 0.567415i 0.958911 + 0.283707i \(0.0915644\pi\)
−0.958911 + 0.283707i \(0.908436\pi\)
\(230\) 0 0
\(231\) 3.63514e9 1.27665
\(232\) 0 0
\(233\) −3.48617e9 + 3.48617e9i −1.18284 + 1.18284i −0.203833 + 0.979006i \(0.565340\pi\)
−0.979006 + 0.203833i \(0.934660\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −4.66588e9 4.66588e9i −1.47890 1.47890i
\(238\) 0 0
\(239\) 4.20339e8i 0.128827i −0.997923 0.0644136i \(-0.979482\pi\)
0.997923 0.0644136i \(-0.0205177\pi\)
\(240\) 0 0
\(241\) −6.09300e9 −1.80619 −0.903094 0.429443i \(-0.858710\pi\)
−0.903094 + 0.429443i \(0.858710\pi\)
\(242\) 0 0
\(243\) −1.73573e9 + 1.73573e9i −0.497801 + 0.497801i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.60849e9 + 3.60849e9i 0.969476 + 0.969476i
\(248\) 0 0
\(249\) 6.00360e9i 1.56176i
\(250\) 0 0
\(251\) −2.47458e9 −0.623458 −0.311729 0.950171i \(-0.600908\pi\)
−0.311729 + 0.950171i \(0.600908\pi\)
\(252\) 0 0
\(253\) 3.70590e9 3.70590e9i 0.904505 0.904505i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.95891e9 + 2.95891e9i 0.678264 + 0.678264i 0.959607 0.281343i \(-0.0907798\pi\)
−0.281343 + 0.959607i \(0.590780\pi\)
\(258\) 0 0
\(259\) 1.17249e9i 0.260562i
\(260\) 0 0
\(261\) −2.06544e7 −0.00445092
\(262\) 0 0
\(263\) −2.57619e9 + 2.57619e9i −0.538461 + 0.538461i −0.923077 0.384616i \(-0.874334\pi\)
0.384616 + 0.923077i \(0.374334\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 5.76511e9 + 5.76511e9i 1.13439 + 1.13439i
\(268\) 0 0
\(269\) 2.69186e9i 0.514095i −0.966399 0.257047i \(-0.917250\pi\)
0.966399 0.257047i \(-0.0827497\pi\)
\(270\) 0 0
\(271\) −1.90218e9 −0.352674 −0.176337 0.984330i \(-0.556425\pi\)
−0.176337 + 0.984330i \(0.556425\pi\)
\(272\) 0 0
\(273\) 4.07766e9 4.07766e9i 0.734110 0.734110i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −7.96974e9 7.96974e9i −1.35371 1.35371i −0.881473 0.472235i \(-0.843448\pi\)
−0.472235 0.881473i \(-0.656552\pi\)
\(278\) 0 0
\(279\) 1.52571e9i 0.251800i
\(280\) 0 0
\(281\) −5.45597e9 −0.875078 −0.437539 0.899199i \(-0.644150\pi\)
−0.437539 + 0.899199i \(0.644150\pi\)
\(282\) 0 0
\(283\) 5.55105e8 5.55105e8i 0.0865425 0.0865425i −0.662510 0.749053i \(-0.730509\pi\)
0.749053 + 0.662510i \(0.230509\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.17684e9 + 7.17684e9i 1.05780 + 1.05780i
\(288\) 0 0
\(289\) 6.96721e9i 0.998775i
\(290\) 0 0
\(291\) 4.01993e9 0.560592
\(292\) 0 0
\(293\) 9.04039e9 9.04039e9i 1.22664 1.22664i 0.261412 0.965227i \(-0.415812\pi\)
0.965227 0.261412i \(-0.0841880\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −4.12588e9 4.12588e9i −0.530262 0.530262i
\(298\) 0 0
\(299\) 8.31407e9i 1.04023i
\(300\) 0 0
\(301\) 1.40969e10 1.71734
\(302\) 0 0
\(303\) 9.08365e9 9.08365e9i 1.07768 1.07768i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 6.50352e9 + 6.50352e9i 0.732142 + 0.732142i 0.971044 0.238902i \(-0.0767875\pi\)
−0.238902 + 0.971044i \(0.576788\pi\)
\(308\) 0 0
\(309\) 2.89596e9i 0.317657i
\(310\) 0 0
\(311\) 9.19933e9 0.983365 0.491682 0.870775i \(-0.336382\pi\)
0.491682 + 0.870775i \(0.336382\pi\)
\(312\) 0 0
\(313\) 5.99222e9 5.99222e9i 0.624324 0.624324i −0.322310 0.946634i \(-0.604459\pi\)
0.946634 + 0.322310i \(0.104459\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.88098e8 + 2.88098e8i 0.0285301 + 0.0285301i 0.721228 0.692698i \(-0.243578\pi\)
−0.692698 + 0.721228i \(0.743578\pi\)
\(318\) 0 0
\(319\) 1.26890e8i 0.0122536i
\(320\) 0 0
\(321\) −2.10801e10 −1.98542
\(322\) 0 0
\(323\) −4.47163e8 + 4.47163e8i −0.0410824 + 0.0410824i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 2.39626e9 + 2.39626e9i 0.209577 + 0.209577i
\(328\) 0 0
\(329\) 3.18102e8i 0.0271508i
\(330\) 0 0
\(331\) −2.81201e9 −0.234264 −0.117132 0.993116i \(-0.537370\pi\)
−0.117132 + 0.993116i \(0.537370\pi\)
\(332\) 0 0
\(333\) −7.77874e8 + 7.77874e8i −0.0632604 + 0.0632604i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 4.41879e9 + 4.41879e9i 0.342597 + 0.342597i 0.857343 0.514746i \(-0.172114\pi\)
−0.514746 + 0.857343i \(0.672114\pi\)
\(338\) 0 0
\(339\) 7.84228e9i 0.593804i
\(340\) 0 0
\(341\) 9.37320e9 0.693219
\(342\) 0 0
\(343\) −8.89245e9 + 8.89245e9i −0.642458 + 0.642458i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −6.62298e9 6.62298e9i −0.456810 0.456810i 0.440797 0.897607i \(-0.354696\pi\)
−0.897607 + 0.440797i \(0.854696\pi\)
\(348\) 0 0
\(349\) 3.39723e9i 0.228993i −0.993424 0.114497i \(-0.963474\pi\)
0.993424 0.114497i \(-0.0365255\pi\)
\(350\) 0 0
\(351\) −9.25628e9 −0.609829
\(352\) 0 0
\(353\) −1.45235e10 + 1.45235e10i −0.935348 + 0.935348i −0.998033 0.0626857i \(-0.980033\pi\)
0.0626857 + 0.998033i \(0.480033\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 5.05303e8 + 5.05303e8i 0.0311085 + 0.0311085i
\(358\) 0 0
\(359\) 1.66475e10i 1.00224i −0.865379 0.501119i \(-0.832922\pi\)
0.865379 0.501119i \(-0.167078\pi\)
\(360\) 0 0
\(361\) −2.98211e10 −1.75588
\(362\) 0 0
\(363\) −4.51468e8 + 4.51468e8i −0.0260016 + 0.0260016i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −1.61073e10 1.61073e10i −0.887890 0.887890i 0.106430 0.994320i \(-0.466058\pi\)
−0.994320 + 0.106430i \(0.966058\pi\)
\(368\) 0 0
\(369\) 9.52274e9i 0.513637i
\(370\) 0 0
\(371\) 3.85089e10 2.03266
\(372\) 0 0
\(373\) −6.53374e9 + 6.53374e9i −0.337541 + 0.337541i −0.855441 0.517900i \(-0.826714\pi\)
0.517900 + 0.855441i \(0.326714\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.42337e8 1.42337e8i −0.00704616 0.00704616i
\(378\) 0 0
\(379\) 3.94682e9i 0.191289i −0.995416 0.0956445i \(-0.969509\pi\)
0.995416 0.0956445i \(-0.0304912\pi\)
\(380\) 0 0
\(381\) −1.38554e10 −0.657534
\(382\) 0 0
\(383\) −2.67274e10 + 2.67274e10i −1.24212 + 1.24212i −0.282993 + 0.959122i \(0.591327\pi\)
−0.959122 + 0.282993i \(0.908673\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 9.35236e9 + 9.35236e9i 0.416944 + 0.416944i
\(388\) 0 0
\(389\) 3.96726e10i 1.73258i 0.499544 + 0.866288i \(0.333501\pi\)
−0.499544 + 0.866288i \(0.666499\pi\)
\(390\) 0 0
\(391\) 1.03028e9 0.0440805
\(392\) 0 0
\(393\) −2.10440e10 + 2.10440e10i −0.882183 + 0.882183i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −2.49047e10 2.49047e10i −1.00258 1.00258i −0.999997 0.00258332i \(-0.999178\pi\)
−0.00258332 0.999997i \(-0.500822\pi\)
\(398\) 0 0
\(399\) 5.28902e10i 2.08681i
\(400\) 0 0
\(401\) 2.59767e10 1.00463 0.502316 0.864684i \(-0.332481\pi\)
0.502316 + 0.864684i \(0.332481\pi\)
\(402\) 0 0
\(403\) 1.05142e10 1.05142e10i 0.398619 0.398619i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.77887e9 4.77887e9i −0.174160 0.174160i
\(408\) 0 0
\(409\) 1.80246e10i 0.644129i 0.946718 + 0.322065i \(0.104377\pi\)
−0.946718 + 0.322065i \(0.895623\pi\)
\(410\) 0 0
\(411\) −1.07009e10 −0.375020
\(412\) 0 0
\(413\) 3.92061e10 3.92061e10i 1.34758 1.34758i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.16957e10 + 1.16957e10i 0.386797 + 0.386797i
\(418\) 0 0
\(419\) 1.70728e10i 0.553923i −0.960881 0.276961i \(-0.910673\pi\)
0.960881 0.276961i \(-0.0893274\pi\)
\(420\) 0 0
\(421\) 3.26742e10 1.04010 0.520052 0.854135i \(-0.325913\pi\)
0.520052 + 0.854135i \(0.325913\pi\)
\(422\) 0 0
\(423\) −2.11040e8 + 2.11040e8i −0.00659179 + 0.00659179i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −4.30531e10 4.30531e10i −1.29507 1.29507i
\(428\) 0 0
\(429\) 3.32396e10i 0.981357i
\(430\) 0 0
\(431\) 3.58171e10 1.03796 0.518980 0.854786i \(-0.326312\pi\)
0.518980 + 0.854786i \(0.326312\pi\)
\(432\) 0 0
\(433\) −2.16854e10 + 2.16854e10i −0.616901 + 0.616901i −0.944735 0.327834i \(-0.893681\pi\)
0.327834 + 0.944735i \(0.393681\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.39197e10 + 5.39197e10i 1.47850 + 1.47850i
\(438\) 0 0
\(439\) 2.38656e10i 0.642560i −0.946984 0.321280i \(-0.895887\pi\)
0.946984 0.321280i \(-0.104113\pi\)
\(440\) 0 0
\(441\) 2.15358e9 0.0569386
\(442\) 0 0
\(443\) −3.52746e10 + 3.52746e10i −0.915899 + 0.915899i −0.996728 0.0808289i \(-0.974243\pi\)
0.0808289 + 0.996728i \(0.474243\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −4.52577e10 4.52577e10i −1.13361 1.13361i
\(448\) 0 0
\(449\) 4.32717e10i 1.06468i −0.846531 0.532339i \(-0.821313\pi\)
0.846531 0.532339i \(-0.178687\pi\)
\(450\) 0 0
\(451\) −5.85030e10 −1.41407
\(452\) 0 0
\(453\) 2.01335e10 2.01335e10i 0.478108 0.478108i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.18804e10 1.18804e10i −0.272374 0.272374i 0.557681 0.830055i \(-0.311691\pi\)
−0.830055 + 0.557681i \(0.811691\pi\)
\(458\) 0 0
\(459\) 1.14704e9i 0.0258420i
\(460\) 0 0
\(461\) 3.51539e10 0.778340 0.389170 0.921166i \(-0.372762\pi\)
0.389170 + 0.921166i \(0.372762\pi\)
\(462\) 0 0
\(463\) 4.57448e10 4.57448e10i 0.995447 0.995447i −0.00454260 0.999990i \(-0.501446\pi\)
0.999990 + 0.00454260i \(0.00144596\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.50208e10 + 4.50208e10i 0.946555 + 0.946555i 0.998643 0.0520875i \(-0.0165875\pi\)
−0.0520875 + 0.998643i \(0.516587\pi\)
\(468\) 0 0
\(469\) 2.69396e9i 0.0556802i
\(470\) 0 0
\(471\) −8.23552e10 −1.67343
\(472\) 0 0
\(473\) −5.74563e10 + 5.74563e10i −1.14787 + 1.14787i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2.55481e10 + 2.55481e10i 0.493499 + 0.493499i
\(478\) 0 0
\(479\) 2.53738e10i 0.481995i −0.970526 0.240998i \(-0.922525\pi\)
0.970526 0.240998i \(-0.0774746\pi\)
\(480\) 0 0
\(481\) −1.07212e10 −0.200293
\(482\) 0 0
\(483\) 6.09304e10 6.09304e10i 1.11955 1.11955i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 5.71816e10 + 5.71816e10i 1.01658 + 1.01658i 0.999860 + 0.0167166i \(0.00532132\pi\)
0.0167166 + 0.999860i \(0.494679\pi\)
\(488\) 0 0
\(489\) 9.67686e10i 1.69238i
\(490\) 0 0
\(491\) −6.49461e10 −1.11745 −0.558723 0.829354i \(-0.688709\pi\)
−0.558723 + 0.829354i \(0.688709\pi\)
\(492\) 0 0
\(493\) 1.76384e7 1.76384e7i 0.000298587 0.000298587i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.01987e10 + 1.01987e10i 0.167154 + 0.167154i
\(498\) 0 0
\(499\) 1.18849e10i 0.191688i −0.995396 0.0958438i \(-0.969445\pi\)
0.995396 0.0958438i \(-0.0305549\pi\)
\(500\) 0 0
\(501\) −3.23296e10 −0.513156
\(502\) 0 0
\(503\) 5.44276e9 5.44276e9i 0.0850252 0.0850252i −0.663315 0.748340i \(-0.730851\pi\)
0.748340 + 0.663315i \(0.230851\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −1.73780e10 1.73780e10i −0.263008 0.263008i
\(508\) 0 0
\(509\) 9.40470e10i 1.40112i −0.713596 0.700558i \(-0.752935\pi\)
0.713596 0.700558i \(-0.247065\pi\)
\(510\) 0 0
\(511\) 3.25914e9 0.0477991
\(512\) 0 0
\(513\) 6.00303e10 6.00303e10i 0.866765 0.866765i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −1.29652e9 1.29652e9i −0.0181476 0.0181476i
\(518\) 0 0
\(519\) 5.76314e10i 0.794309i
\(520\) 0 0
\(521\) 1.18614e11 1.60985 0.804923 0.593380i \(-0.202207\pi\)
0.804923 + 0.593380i \(0.202207\pi\)
\(522\) 0 0
\(523\) 6.34549e10 6.34549e10i 0.848122 0.848122i −0.141776 0.989899i \(-0.545281\pi\)
0.989899 + 0.141776i \(0.0452814\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.30292e9 + 1.30292e9i 0.0168918 + 0.0168918i
\(528\) 0 0
\(529\) 4.59217e10i 0.586401i
\(530\) 0 0
\(531\) 5.20214e10 0.654341
\(532\) 0 0
\(533\) −6.56248e10 + 6.56248e10i −0.813129 + 0.813129i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 4.78399e9 + 4.78399e9i 0.0575298 + 0.0575298i
\(538\) 0 0
\(539\) 1.32305e10i 0.156755i
\(540\) 0 0
\(541\) 3.81183e10 0.444984 0.222492 0.974935i \(-0.428581\pi\)
0.222492 + 0.974935i \(0.428581\pi\)
\(542\) 0 0
\(543\) 6.38086e10 6.38086e10i 0.733973 0.733973i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −4.70178e10 4.70178e10i −0.525186 0.525186i 0.393947 0.919133i \(-0.371109\pi\)
−0.919133 + 0.393947i \(0.871109\pi\)
\(548\) 0 0
\(549\) 5.71259e10i 0.628845i
\(550\) 0 0
\(551\) 1.84621e9 0.0200298
\(552\) 0 0
\(553\) 1.27006e11 1.27006e11i 1.35807 1.35807i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.22536e11 + 1.22536e11i 1.27304 + 1.27304i 0.944486 + 0.328552i \(0.106561\pi\)
0.328552 + 0.944486i \(0.393439\pi\)
\(558\) 0 0
\(559\) 1.28901e11i 1.32011i
\(560\) 0 0
\(561\) −4.11905e9 −0.0415858
\(562\) 0 0
\(563\) 7.79452e10 7.79452e10i 0.775811 0.775811i −0.203304 0.979116i \(-0.565168\pi\)
0.979116 + 0.203304i \(0.0651681\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −9.68016e10 9.68016e10i −0.936592 0.936592i
\(568\) 0 0
\(569\) 5.27046e10i 0.502805i 0.967883 + 0.251402i \(0.0808917\pi\)
−0.967883 + 0.251402i \(0.919108\pi\)
\(570\) 0 0
\(571\) −1.89693e11 −1.78446 −0.892231 0.451579i \(-0.850861\pi\)
−0.892231 + 0.451579i \(0.850861\pi\)
\(572\) 0 0
\(573\) −1.18996e11 + 1.18996e11i −1.10386 + 1.10386i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −8.62244e9 8.62244e9i −0.0777906 0.0777906i 0.667141 0.744932i \(-0.267518\pi\)
−0.744932 + 0.667141i \(0.767518\pi\)
\(578\) 0 0
\(579\) 3.82578e10i 0.340413i
\(580\) 0 0
\(581\) 1.63419e11 1.43416
\(582\) 0 0
\(583\) −1.56955e11 + 1.56955e11i −1.35863 + 1.35863i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.39784e11 + 1.39784e11i 1.17735 + 1.17735i 0.980417 + 0.196934i \(0.0630986\pi\)
0.196934 + 0.980417i \(0.436901\pi\)
\(588\) 0 0
\(589\) 1.36377e11i 1.13313i
\(590\) 0 0
\(591\) −3.29353e9 −0.0269968
\(592\) 0 0
\(593\) −1.05062e11 + 1.05062e11i −0.849623 + 0.849623i −0.990086 0.140463i \(-0.955141\pi\)
0.140463 + 0.990086i \(0.455141\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.62370e11 1.62370e11i −1.27823 1.27823i
\(598\) 0 0
\(599\) 4.24466e10i 0.329713i 0.986318 + 0.164856i \(0.0527160\pi\)
−0.986318 + 0.164856i \(0.947284\pi\)
\(600\) 0 0
\(601\) 2.47731e10 0.189881 0.0949407 0.995483i \(-0.469734\pi\)
0.0949407 + 0.995483i \(0.469734\pi\)
\(602\) 0 0
\(603\) 1.78727e9 1.78727e9i 0.0135183 0.0135183i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −1.36799e11 1.36799e11i −1.00769 1.00769i −0.999970 0.00772443i \(-0.997541\pi\)
−0.00772443 0.999970i \(-0.502459\pi\)
\(608\) 0 0
\(609\) 2.08626e9i 0.0151670i
\(610\) 0 0
\(611\) −2.90871e9 −0.0208706
\(612\) 0 0
\(613\) −3.31585e10 + 3.31585e10i −0.234830 + 0.234830i −0.814705 0.579875i \(-0.803101\pi\)
0.579875 + 0.814705i \(0.303101\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.46615e11 + 1.46615e11i 1.01167 + 1.01167i 0.999931 + 0.0117352i \(0.00373553\pi\)
0.0117352 + 0.999931i \(0.496264\pi\)
\(618\) 0 0
\(619\) 1.37744e11i 0.938229i −0.883137 0.469114i \(-0.844573\pi\)
0.883137 0.469114i \(-0.155427\pi\)
\(620\) 0 0
\(621\) −1.38312e11 −0.930021
\(622\) 0 0
\(623\) −1.56927e11 + 1.56927e11i −1.04171 + 1.04171i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −2.15571e11 2.15571e11i −1.39483 1.39483i
\(628\) 0 0
\(629\) 1.32857e9i 0.00848757i
\(630\) 0 0
\(631\) −2.71052e11 −1.70976 −0.854881 0.518824i \(-0.826370\pi\)
−0.854881 + 0.518824i \(0.826370\pi\)
\(632\) 0 0
\(633\) −1.45327e11 + 1.45327e11i −0.905174 + 0.905174i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.48411e10 + 1.48411e10i 0.0901383 + 0.0901383i
\(638\) 0 0
\(639\) 1.35323e10i 0.0811649i
\(640\) 0 0
\(641\) 2.60272e11 1.54169 0.770843 0.637025i \(-0.219835\pi\)
0.770843 + 0.637025i \(0.219835\pi\)
\(642\) 0 0
\(643\) −4.79903e10 + 4.79903e10i −0.280743 + 0.280743i −0.833405 0.552662i \(-0.813612\pi\)
0.552662 + 0.833405i \(0.313612\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.65569e10 + 5.65569e10i 0.322751 + 0.322751i 0.849822 0.527070i \(-0.176710\pi\)
−0.527070 + 0.849822i \(0.676710\pi\)
\(648\) 0 0
\(649\) 3.19594e11i 1.80144i
\(650\) 0 0
\(651\) 1.54109e11 0.858034
\(652\) 0 0
\(653\) −3.80349e9 + 3.80349e9i −0.0209184 + 0.0209184i −0.717489 0.696570i \(-0.754708\pi\)
0.696570 + 0.717489i \(0.254708\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2.16223e9 + 2.16223e9i 0.0116049 + 0.0116049i
\(658\) 0 0
\(659\) 2.52199e11i 1.33721i 0.743616 + 0.668607i \(0.233109\pi\)
−0.743616 + 0.668607i \(0.766891\pi\)
\(660\) 0 0
\(661\) −2.49889e11 −1.30900 −0.654502 0.756060i \(-0.727122\pi\)
−0.654502 + 0.756060i \(0.727122\pi\)
\(662\) 0 0
\(663\) −4.62048e9 + 4.62048e9i −0.0239129 + 0.0239129i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.12687e9 2.12687e9i −0.0107458 0.0107458i
\(668\) 0 0
\(669\) 2.24085e10i 0.111869i
\(670\) 0 0
\(671\) 3.50953e11 1.73125
\(672\) 0 0
\(673\) 2.33984e11 2.33984e11i 1.14058 1.14058i 0.152235 0.988344i \(-0.451353\pi\)
0.988344 0.152235i \(-0.0486471\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6.08027e10 6.08027e10i −0.289447 0.289447i 0.547415 0.836861i \(-0.315612\pi\)
−0.836861 + 0.547415i \(0.815612\pi\)
\(678\) 0 0
\(679\) 1.09423e11i 0.514790i
\(680\) 0 0
\(681\) −5.82050e10 −0.270627
\(682\) 0 0
\(683\) −2.63408e10 + 2.63408e10i −0.121045 + 0.121045i −0.765034 0.643990i \(-0.777278\pi\)
0.643990 + 0.765034i \(0.277278\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −1.04568e11 1.04568e11i −0.469430 0.469430i
\(688\) 0 0
\(689\) 3.52124e11i 1.56250i
\(690\) 0 0
\(691\) 2.23440e11 0.980052 0.490026 0.871708i \(-0.336987\pi\)
0.490026 + 0.871708i \(0.336987\pi\)
\(692\) 0 0
\(693\) −6.56463e10 + 6.56463e10i −0.284628 + 0.284628i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −8.13221e9 8.13221e9i −0.0344570 0.0344570i
\(698\) 0 0
\(699\) 4.67234e11i 1.95716i
\(700\) 0 0
\(701\) −6.51821e9 −0.0269933 −0.0134967 0.999909i \(-0.504296\pi\)
−0.0134967 + 0.999909i \(0.504296\pi\)
\(702\) 0 0
\(703\) 6.95311e10 6.95311e10i 0.284681 0.284681i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.47258e11 + 2.47258e11i 0.989630 + 0.989630i
\(708\) 0 0
\(709\) 2.72652e11i 1.07901i −0.841983 0.539503i \(-0.818612\pi\)
0.841983 0.539503i \(-0.181388\pi\)
\(710\) 0 0
\(711\) 1.68520e11 0.659438
\(712\) 0 0
\(713\) 1.57109e11 1.57109e11i 0.607914 0.607914i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 2.81679e10 + 2.81679e10i 0.106581 + 0.106581i
\(718\) 0 0
\(719\) 2.21796e11i 0.829925i −0.909839 0.414962i \(-0.863795\pi\)
0.909839 0.414962i \(-0.136205\pi\)
\(720\) 0 0
\(721\) −7.88285e10 −0.291704
\(722\) 0 0
\(723\) 4.08307e11 4.08307e11i 1.49428 1.49428i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −2.44521e11 2.44521e11i −0.875344 0.875344i 0.117704 0.993049i \(-0.462446\pi\)
−0.993049 + 0.117704i \(0.962446\pi\)
\(728\) 0 0
\(729\) 1.15552e11i 0.409136i
\(730\) 0 0
\(731\) −1.59734e10 −0.0559408
\(732\) 0 0
\(733\) −7.98615e10 + 7.98615e10i −0.276644 + 0.276644i −0.831768 0.555124i \(-0.812671\pi\)
0.555124 + 0.831768i \(0.312671\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.09801e10 + 1.09801e10i 0.0372166 + 0.0372166i
\(738\) 0 0
\(739\) 8.32618e10i 0.279170i −0.990210 0.139585i \(-0.955423\pi\)
0.990210 0.139585i \(-0.0445768\pi\)
\(740\) 0 0
\(741\) −4.83627e11 −1.60412
\(742\) 0 0
\(743\) −2.21829e11 + 2.21829e11i −0.727885 + 0.727885i −0.970198 0.242313i \(-0.922094\pi\)
0.242313 + 0.970198i \(0.422094\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 1.08418e11 + 1.08418e11i 0.348191 + 0.348191i
\(748\) 0 0
\(749\) 5.73802e11i 1.82320i
\(750\) 0 0
\(751\) −2.12972e10 −0.0669519 −0.0334759 0.999440i \(-0.510658\pi\)
−0.0334759 + 0.999440i \(0.510658\pi\)
\(752\) 0 0
\(753\) 1.65828e11 1.65828e11i 0.515795 0.515795i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 3.61373e11 + 3.61373e11i 1.10045 + 1.10045i 0.994356 + 0.106098i \(0.0338359\pi\)
0.106098 + 0.994356i \(0.466164\pi\)
\(758\) 0 0
\(759\) 4.96682e11i 1.49662i
\(760\) 0 0
\(761\) −2.37570e10 −0.0708360 −0.0354180 0.999373i \(-0.511276\pi\)
−0.0354180 + 0.999373i \(0.511276\pi\)
\(762\) 0 0
\(763\) −6.52266e10 + 6.52266e10i −0.192454 + 0.192454i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.58500e11 + 3.58500e11i 1.03587 + 1.03587i
\(768\) 0 0
\(769\) 1.62927e11i 0.465894i −0.972489 0.232947i \(-0.925163\pi\)
0.972489 0.232947i \(-0.0748368\pi\)
\(770\) 0 0
\(771\) −3.96567e11 −1.12228
\(772\) 0 0
\(773\) 4.39446e10 4.39446e10i 0.123080 0.123080i −0.642884 0.765964i \(-0.722262\pi\)
0.765964 + 0.642884i \(0.222262\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −7.85716e10 7.85716e10i −0.215567 0.215567i
\(778\) 0 0
\(779\) 8.51201e11i 2.31144i
\(780\) 0 0
\(781\) −8.31358e10 −0.223452
\(782\) 0 0
\(783\) −2.36790e9 + 2.36790e9i −0.00629965 + 0.00629965i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 4.00167e11 + 4.00167e11i 1.04314 + 1.04314i 0.999027 + 0.0441121i \(0.0140459\pi\)
0.0441121 + 0.999027i \(0.485954\pi\)
\(788\) 0 0
\(789\) 3.45273e11i 0.890952i
\(790\) 0 0
\(791\) −2.13468e11 −0.545289
\(792\) 0 0
\(793\) 3.93676e11 3.93676e11i 0.995512 0.995512i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −3.15419e11 3.15419e11i −0.781726 0.781726i 0.198396 0.980122i \(-0.436427\pi\)
−0.980122 + 0.198396i \(0.936427\pi\)
\(798\) 0 0
\(799\) 3.60447e8i 0.000884411i
\(800\) 0 0
\(801\) −2.08222e11 −0.505821
\(802\) 0 0
\(803\) −1.32837e10 + 1.32837e10i −0.0319489 + 0.0319489i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.80388e11 + 1.80388e11i 0.425318 + 0.425318i
\(808\) 0 0
\(809\) 1.46517e11i 0.342055i −0.985266 0.171027i \(-0.945291\pi\)
0.985266 0.171027i \(-0.0547086\pi\)
\(810\) 0 0
\(811\) 2.95022e10 0.0681979 0.0340989 0.999418i \(-0.489144\pi\)
0.0340989 + 0.999418i \(0.489144\pi\)
\(812\) 0 0
\(813\) 1.27469e11 1.27469e11i 0.291772 0.291772i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −8.35971e11 8.35971e11i −1.87630 1.87630i
\(818\) 0 0
\(819\) 1.47275e11i 0.327337i
\(820\) 0 0
\(821\) 3.27089e11 0.719935 0.359968 0.932965i \(-0.382788\pi\)
0.359968 + 0.932965i \(0.382788\pi\)
\(822\) 0 0
\(823\) −1.62737e11 + 1.62737e11i −0.354720 + 0.354720i −0.861862 0.507142i \(-0.830702\pi\)
0.507142 + 0.861862i \(0.330702\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 4.65014e11 + 4.65014e11i 0.994131 + 0.994131i 0.999983 0.00585168i \(-0.00186266\pi\)
−0.00585168 + 0.999983i \(0.501863\pi\)
\(828\) 0 0
\(829\) 3.70693e11i 0.784867i 0.919780 + 0.392433i \(0.128367\pi\)
−0.919780 + 0.392433i \(0.871633\pi\)
\(830\) 0 0
\(831\) 1.06814e12 2.23988
\(832\) 0 0
\(833\) −1.83911e9 + 1.83911e9i −0.00381969 + 0.00381969i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −1.74914e11 1.74914e11i −0.356387 0.356387i
\(838\) 0 0
\(839\) 3.78408e11i 0.763682i 0.924228 + 0.381841i \(0.124710\pi\)
−0.924228 + 0.381841i \(0.875290\pi\)
\(840\) 0 0
\(841\) 5.00174e11 0.999854
\(842\) 0 0
\(843\) 3.65618e11 3.65618e11i 0.723964 0.723964i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −1.22890e10 1.22890e10i −0.0238772 0.0238772i
\(848\) 0 0
\(849\) 7.43979e10i 0.143196i
\(850\) 0 0
\(851\) −1.60202e11 −0.305457
\(852\) 0 0
\(853\) 1.83957e11 1.83957e11i 0.347472 0.347472i −0.511695 0.859167i \(-0.670982\pi\)
0.859167 + 0.511695i \(0.170982\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −2.29371e11 2.29371e11i −0.425222 0.425222i 0.461775 0.886997i \(-0.347213\pi\)
−0.886997 + 0.461775i \(0.847213\pi\)
\(858\) 0 0
\(859\) 3.79888e11i 0.697723i −0.937174 0.348861i \(-0.886568\pi\)
0.937174 0.348861i \(-0.113432\pi\)
\(860\) 0 0
\(861\) −9.61874e11 −1.75027
\(862\) 0 0
\(863\) −6.48008e11 + 6.48008e11i −1.16825 + 1.16825i −0.185635 + 0.982619i \(0.559434\pi\)
−0.982619 + 0.185635i \(0.940566\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 4.66890e11 + 4.66890e11i 0.826300 + 0.826300i
\(868\) 0 0
\(869\) 1.03531e12i 1.81547i
\(870\) 0 0
\(871\) 2.46335e10 0.0428010
\(872\) 0 0
\(873\) −7.25952e10 + 7.25952e10i −0.124983 + 0.124983i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −2.29437e11 2.29437e11i −0.387852 0.387852i 0.486069 0.873920i \(-0.338430\pi\)
−0.873920 + 0.486069i \(0.838430\pi\)
\(878\) 0 0
\(879\) 1.21164e12i 2.02963i
\(880\) 0 0
\(881\) 5.51671e11 0.915750 0.457875 0.889017i \(-0.348611\pi\)
0.457875 + 0.889017i \(0.348611\pi\)
\(882\) 0 0
\(883\) 3.85317e11 3.85317e11i 0.633833 0.633833i −0.315194 0.949027i \(-0.602070\pi\)
0.949027 + 0.315194i \(0.102070\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4.55043e11 4.55043e11i −0.735120 0.735120i 0.236509 0.971629i \(-0.423997\pi\)
−0.971629 + 0.236509i \(0.923997\pi\)
\(888\) 0 0
\(889\) 3.77145e11i 0.603811i
\(890\) 0 0
\(891\) 7.89091e11 1.25203
\(892\) 0 0
\(893\) 1.88640e10 1.88640e10i 0.0296639 0.0296639i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 5.57146e11 + 5.57146e11i 0.860595 + 0.860595i
\(898\) 0 0
\(899\) 5.37941e9i 0.00823562i
\(900\) 0 0
\(901\) −4.36351e10 −0.0662121
\(902\) 0 0
\(903\) −9.44665e11 + 9.44665e11i −1.42078 + 1.42078i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −4.42629e11 4.42629e11i −0.654049 0.654049i 0.299916 0.953965i \(-0.403041\pi\)
−0.953965 + 0.299916i \(0.903041\pi\)
\(908\) 0 0
\(909\) 3.28080e11i 0.480533i
\(910\) 0 0
\(911\) −2.98653e11 −0.433604 −0.216802 0.976216i \(-0.569563\pi\)
−0.216802 + 0.976216i \(0.569563\pi\)
\(912\) 0 0
\(913\) −6.66065e11 + 6.66065e11i −0.958591 + 0.958591i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −5.72822e11 5.72822e11i −0.810107 0.810107i
\(918\) 0 0
\(919\) 3.41448e11i 0.478699i 0.970933 + 0.239350i \(0.0769342\pi\)
−0.970933 + 0.239350i \(0.923066\pi\)
\(920\) 0 0
\(921\) −8.71633e11 −1.21142
\(922\) 0 0
\(923\) −9.32563e10 + 9.32563e10i −0.128491 + 0.128491i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −5.22976e10 5.22976e10i −0.0708211 0.0708211i
\(928\) 0 0
\(929\) 9.58950e11i 1.28746i −0.765254 0.643729i \(-0.777386\pi\)
0.765254 0.643729i \(-0.222614\pi\)
\(930\) 0 0
\(931\) −1.92500e11 −0.256231
\(932\) 0 0
\(933\) −6.16469e11 + 6.16469e11i −0.813551 + 0.813551i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −6.99661e11 6.99661e11i −0.907673 0.907673i 0.0884113 0.996084i \(-0.471821\pi\)
−0.996084 + 0.0884113i \(0.971821\pi\)
\(938\) 0 0
\(939\) 8.03106e11i 1.03302i
\(940\) 0 0
\(941\) 1.00859e10 0.0128634 0.00643170 0.999979i \(-0.497953\pi\)
0.00643170 + 0.999979i \(0.497953\pi\)
\(942\) 0 0
\(943\) −9.80597e11 + 9.80597e11i −1.24006 + 1.24006i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.73871e10 6.73871e10i −0.0837870 0.0837870i 0.663971 0.747758i \(-0.268870\pi\)
−0.747758 + 0.663971i \(0.768870\pi\)
\(948\) 0 0
\(949\) 2.98015e10i 0.0367429i
\(950\) 0 0
\(951\) −3.86123e10 −0.0472067
\(952\) 0 0
\(953\) −1.82422e11 + 1.82422e11i −0.221159 + 0.221159i −0.808986 0.587827i \(-0.799983\pi\)
0.587827 + 0.808986i \(0.299983\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 8.50322e9 + 8.50322e9i 0.0101376 + 0.0101376i
\(958\) 0 0
\(959\) 2.91281e11i 0.344380i
\(960\) 0 0
\(961\) −4.55521e11 −0.534091
\(962\) 0 0
\(963\) 3.80681e11 3.80681e11i 0.442645 0.442645i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 8.06230e11 + 8.06230e11i 0.922047 + 0.922047i 0.997174 0.0751265i \(-0.0239361\pi\)
−0.0751265 + 0.997174i \(0.523936\pi\)
\(968\) 0 0
\(969\) 5.99309e10i 0.0679760i
\(970\) 0 0
\(971\) 4.58944e11 0.516277 0.258138 0.966108i \(-0.416891\pi\)
0.258138 + 0.966108i \(0.416891\pi\)
\(972\) 0 0
\(973\) −3.18359e11 + 3.18359e11i −0.355194 + 0.355194i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 6.48952e11 + 6.48952e11i 0.712253 + 0.712253i 0.967006 0.254753i \(-0.0819942\pi\)
−0.254753 + 0.967006i \(0.581994\pi\)
\(978\) 0 0
\(979\) 1.27921e12i 1.39255i
\(980\) 0 0
\(981\) −8.65473e10 −0.0934496
\(982\) 0 0
\(983\) 1.04063e12 1.04063e12i 1.11451 1.11451i 0.121977 0.992533i \(-0.461077\pi\)
0.992533 0.121977i \(-0.0389234\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −2.13168e10 2.13168e10i −0.0224622 0.0224622i
\(988\) 0 0
\(989\) 1.92610e12i 2.01324i
\(990\) 0 0
\(991\) 8.09242e11 0.839042 0.419521 0.907746i \(-0.362198\pi\)
0.419521 + 0.907746i \(0.362198\pi\)
\(992\) 0 0
\(993\) 1.88440e11 1.88440e11i 0.193810 0.193810i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 9.33394e11 + 9.33394e11i 0.944679 + 0.944679i 0.998548 0.0538691i \(-0.0171554\pi\)
−0.0538691 + 0.998548i \(0.517155\pi\)
\(998\) 0 0
\(999\) 1.78357e11i 0.179072i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 100.9.f.c.57.2 12
5.2 odd 4 inner 100.9.f.c.93.5 yes 12
5.3 odd 4 inner 100.9.f.c.93.2 yes 12
5.4 even 2 inner 100.9.f.c.57.5 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
100.9.f.c.57.2 12 1.1 even 1 trivial
100.9.f.c.57.5 yes 12 5.4 even 2 inner
100.9.f.c.93.2 yes 12 5.3 odd 4 inner
100.9.f.c.93.5 yes 12 5.2 odd 4 inner