Properties

Label 1.70.a.a.1.4
Level 1
Weight 70
Character 1.1
Self dual Yes
Analytic conductor 30.151
Analytic rank 1
Dimension 5
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1 \)
Weight: \( k \) = \( 70 \)
Character orbit: \([\chi]\) = 1.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(30.1514953292\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{43}\cdot 3^{17}\cdot 5^{5}\cdot 7^{2}\cdot 17\cdot 23 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-8.63045e7\)
Character \(\chi\) = 1.1

$q$-expansion

\(f(q)\) \(=\) \(q+2.12545e10 q^{2} +3.67245e16 q^{3} -1.38540e20 q^{4} -2.01597e24 q^{5} +7.80563e26 q^{6} +2.05778e29 q^{7} -1.54911e31 q^{8} +5.14307e32 q^{9} +O(q^{10})\) \(q+2.12545e10 q^{2} +3.67245e16 q^{3} -1.38540e20 q^{4} -2.01597e24 q^{5} +7.80563e26 q^{6} +2.05778e29 q^{7} -1.54911e31 q^{8} +5.14307e32 q^{9} -4.28486e34 q^{10} -1.09142e36 q^{11} -5.08782e36 q^{12} -2.46650e37 q^{13} +4.37373e39 q^{14} -7.40358e40 q^{15} -2.47476e41 q^{16} -2.55025e42 q^{17} +1.09314e43 q^{18} -1.09623e44 q^{19} +2.79293e44 q^{20} +7.55712e45 q^{21} -2.31976e46 q^{22} -8.34028e45 q^{23} -5.68903e47 q^{24} +2.37009e48 q^{25} -5.24243e47 q^{26} -1.17547e49 q^{27} -2.85086e49 q^{28} -4.43119e49 q^{29} -1.57360e51 q^{30} -2.07006e51 q^{31} +3.88433e51 q^{32} -4.00818e52 q^{33} -5.42044e52 q^{34} -4.14844e53 q^{35} -7.12521e52 q^{36} +2.01350e54 q^{37} -2.32999e54 q^{38} -9.05809e53 q^{39} +3.12296e55 q^{40} -1.70767e55 q^{41} +1.60623e56 q^{42} -1.46418e55 q^{43} +1.51205e56 q^{44} -1.03683e57 q^{45} -1.77269e56 q^{46} -7.82219e57 q^{47} -9.08845e57 q^{48} +2.18442e58 q^{49} +5.03751e58 q^{50} -9.36567e58 q^{51} +3.41709e57 q^{52} +4.83946e59 q^{53} -2.49841e59 q^{54} +2.20027e60 q^{55} -3.18773e60 q^{56} -4.02587e60 q^{57} -9.41829e59 q^{58} -1.34248e61 q^{59} +1.02569e61 q^{60} +3.06698e61 q^{61} -4.39982e61 q^{62} +1.05833e62 q^{63} +2.28644e62 q^{64} +4.97239e61 q^{65} -8.51920e62 q^{66} +5.79237e62 q^{67} +3.53312e62 q^{68} -3.06293e62 q^{69} -8.81732e63 q^{70} +5.96461e63 q^{71} -7.96717e63 q^{72} -2.58846e63 q^{73} +4.27961e64 q^{74} +8.70404e64 q^{75} +1.51872e64 q^{76} -2.24590e65 q^{77} -1.92526e64 q^{78} -1.36419e65 q^{79} +4.98906e65 q^{80} -8.60817e65 q^{81} -3.62958e65 q^{82} +4.54701e65 q^{83} -1.04696e66 q^{84} +5.14124e66 q^{85} -3.11206e65 q^{86} -1.62733e66 q^{87} +1.69072e67 q^{88} -6.95403e66 q^{89} -2.20373e67 q^{90} -5.07552e66 q^{91} +1.15546e66 q^{92} -7.60220e67 q^{93} -1.66257e68 q^{94} +2.20998e68 q^{95} +1.42650e68 q^{96} +3.36085e68 q^{97} +4.64289e68 q^{98} -5.61323e68 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5q - 18005734368q^{2} - 4858082326815804q^{3} + \)\(12\!\cdots\!60\)\(q^{4} - \)\(18\!\cdots\!50\)\(q^{5} + \)\(65\!\cdots\!60\)\(q^{6} + \)\(76\!\cdots\!92\)\(q^{7} - \)\(45\!\cdots\!00\)\(q^{8} - \)\(31\!\cdots\!35\)\(q^{9} + O(q^{10}) \) \( 5q - 18005734368q^{2} - 4858082326815804q^{3} + \)\(12\!\cdots\!60\)\(q^{4} - \)\(18\!\cdots\!50\)\(q^{5} + \)\(65\!\cdots\!60\)\(q^{6} + \)\(76\!\cdots\!92\)\(q^{7} - \)\(45\!\cdots\!00\)\(q^{8} - \)\(31\!\cdots\!35\)\(q^{9} + \)\(44\!\cdots\!00\)\(q^{10} - \)\(60\!\cdots\!40\)\(q^{11} - \)\(11\!\cdots\!48\)\(q^{12} + \)\(24\!\cdots\!86\)\(q^{13} + \)\(35\!\cdots\!20\)\(q^{14} - \)\(22\!\cdots\!00\)\(q^{15} + \)\(95\!\cdots\!80\)\(q^{16} - \)\(34\!\cdots\!38\)\(q^{17} + \)\(24\!\cdots\!56\)\(q^{18} + \)\(50\!\cdots\!00\)\(q^{19} - \)\(14\!\cdots\!00\)\(q^{20} + \)\(30\!\cdots\!60\)\(q^{21} - \)\(11\!\cdots\!56\)\(q^{22} + \)\(49\!\cdots\!76\)\(q^{23} - \)\(37\!\cdots\!00\)\(q^{24} + \)\(46\!\cdots\!75\)\(q^{25} - \)\(16\!\cdots\!40\)\(q^{26} - \)\(46\!\cdots\!00\)\(q^{27} - \)\(14\!\cdots\!96\)\(q^{28} - \)\(62\!\cdots\!50\)\(q^{29} - \)\(33\!\cdots\!00\)\(q^{30} - \)\(77\!\cdots\!40\)\(q^{31} - \)\(59\!\cdots\!08\)\(q^{32} - \)\(11\!\cdots\!68\)\(q^{33} - \)\(25\!\cdots\!80\)\(q^{34} - \)\(74\!\cdots\!00\)\(q^{35} - \)\(20\!\cdots\!20\)\(q^{36} + \)\(11\!\cdots\!02\)\(q^{37} + \)\(11\!\cdots\!00\)\(q^{38} + \)\(14\!\cdots\!80\)\(q^{39} + \)\(11\!\cdots\!00\)\(q^{40} + \)\(12\!\cdots\!10\)\(q^{41} + \)\(29\!\cdots\!24\)\(q^{42} + \)\(18\!\cdots\!56\)\(q^{43} - \)\(20\!\cdots\!80\)\(q^{44} - \)\(16\!\cdots\!50\)\(q^{45} - \)\(10\!\cdots\!40\)\(q^{46} - \)\(10\!\cdots\!28\)\(q^{47} - \)\(32\!\cdots\!24\)\(q^{48} - \)\(18\!\cdots\!15\)\(q^{49} + \)\(36\!\cdots\!00\)\(q^{50} + \)\(11\!\cdots\!60\)\(q^{51} + \)\(94\!\cdots\!32\)\(q^{52} + \)\(63\!\cdots\!46\)\(q^{53} + \)\(18\!\cdots\!00\)\(q^{54} + \)\(90\!\cdots\!00\)\(q^{55} - \)\(33\!\cdots\!00\)\(q^{56} - \)\(10\!\cdots\!00\)\(q^{57} - \)\(21\!\cdots\!00\)\(q^{58} - \)\(33\!\cdots\!00\)\(q^{59} + \)\(41\!\cdots\!00\)\(q^{60} + \)\(26\!\cdots\!10\)\(q^{61} + \)\(44\!\cdots\!04\)\(q^{62} + \)\(32\!\cdots\!36\)\(q^{63} + \)\(11\!\cdots\!60\)\(q^{64} + \)\(32\!\cdots\!00\)\(q^{65} - \)\(33\!\cdots\!80\)\(q^{66} - \)\(12\!\cdots\!88\)\(q^{67} - \)\(42\!\cdots\!56\)\(q^{68} - \)\(68\!\cdots\!20\)\(q^{69} - \)\(12\!\cdots\!00\)\(q^{70} - \)\(11\!\cdots\!40\)\(q^{71} + \)\(33\!\cdots\!00\)\(q^{72} + \)\(33\!\cdots\!26\)\(q^{73} + \)\(33\!\cdots\!20\)\(q^{74} + \)\(13\!\cdots\!00\)\(q^{75} + \)\(18\!\cdots\!00\)\(q^{76} - \)\(68\!\cdots\!36\)\(q^{77} - \)\(57\!\cdots\!08\)\(q^{78} - \)\(36\!\cdots\!00\)\(q^{79} - \)\(22\!\cdots\!00\)\(q^{80} - \)\(11\!\cdots\!95\)\(q^{81} - \)\(93\!\cdots\!16\)\(q^{82} + \)\(11\!\cdots\!16\)\(q^{83} + \)\(29\!\cdots\!20\)\(q^{84} + \)\(74\!\cdots\!00\)\(q^{85} + \)\(18\!\cdots\!60\)\(q^{86} + \)\(12\!\cdots\!00\)\(q^{87} + \)\(15\!\cdots\!00\)\(q^{88} - \)\(18\!\cdots\!50\)\(q^{89} - \)\(85\!\cdots\!00\)\(q^{90} - \)\(80\!\cdots\!40\)\(q^{91} - \)\(21\!\cdots\!88\)\(q^{92} - \)\(11\!\cdots\!88\)\(q^{93} - \)\(32\!\cdots\!80\)\(q^{94} + \)\(15\!\cdots\!00\)\(q^{95} + \)\(78\!\cdots\!60\)\(q^{96} + \)\(36\!\cdots\!22\)\(q^{97} + \)\(17\!\cdots\!24\)\(q^{98} + \)\(58\!\cdots\!80\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.12545e10 0.874816 0.437408 0.899263i \(-0.355896\pi\)
0.437408 + 0.899263i \(0.355896\pi\)
\(3\) 3.67245e16 1.27137 0.635687 0.771947i \(-0.280717\pi\)
0.635687 + 0.771947i \(0.280717\pi\)
\(4\) −1.38540e20 −0.234696
\(5\) −2.01597e24 −1.54889 −0.774444 0.632643i \(-0.781970\pi\)
−0.774444 + 0.632643i \(0.781970\pi\)
\(6\) 7.80563e26 1.11222
\(7\) 2.05778e29 1.43720 0.718600 0.695423i \(-0.244783\pi\)
0.718600 + 0.695423i \(0.244783\pi\)
\(8\) −1.54911e31 −1.08013
\(9\) 5.14307e32 0.616390
\(10\) −4.28486e34 −1.35499
\(11\) −1.09142e36 −1.28808 −0.644040 0.764991i \(-0.722743\pi\)
−0.644040 + 0.764991i \(0.722743\pi\)
\(12\) −5.08782e36 −0.298386
\(13\) −2.46650e37 −0.0914186 −0.0457093 0.998955i \(-0.514555\pi\)
−0.0457093 + 0.998955i \(0.514555\pi\)
\(14\) 4.37373e39 1.25729
\(15\) −7.40358e40 −1.96921
\(16\) −2.47476e41 −0.710222
\(17\) −2.55025e42 −0.903846 −0.451923 0.892057i \(-0.649262\pi\)
−0.451923 + 0.892057i \(0.649262\pi\)
\(18\) 1.09314e43 0.539228
\(19\) −1.09623e44 −0.837344 −0.418672 0.908138i \(-0.637504\pi\)
−0.418672 + 0.908138i \(0.637504\pi\)
\(20\) 2.79293e44 0.363518
\(21\) 7.55712e45 1.82722
\(22\) −2.31976e46 −1.12683
\(23\) −8.34028e45 −0.0874118 −0.0437059 0.999044i \(-0.513916\pi\)
−0.0437059 + 0.999044i \(0.513916\pi\)
\(24\) −5.68903e47 −1.37325
\(25\) 2.37009e48 1.39905
\(26\) −5.24243e47 −0.0799745
\(27\) −1.17547e49 −0.487711
\(28\) −2.85086e49 −0.337305
\(29\) −4.43119e49 −0.156239 −0.0781195 0.996944i \(-0.524892\pi\)
−0.0781195 + 0.996944i \(0.524892\pi\)
\(30\) −1.57360e51 −1.72270
\(31\) −2.07006e51 −0.731147 −0.365573 0.930783i \(-0.619127\pi\)
−0.365573 + 0.930783i \(0.619127\pi\)
\(32\) 3.88433e51 0.458819
\(33\) −4.00818e52 −1.63763
\(34\) −5.42044e52 −0.790700
\(35\) −4.14844e53 −2.22606
\(36\) −7.12521e52 −0.144664
\(37\) 2.01350e54 1.58852 0.794261 0.607577i \(-0.207858\pi\)
0.794261 + 0.607577i \(0.207858\pi\)
\(38\) −2.32999e54 −0.732522
\(39\) −9.05809e53 −0.116227
\(40\) 3.12296e55 1.67300
\(41\) −1.70767e55 −0.390266 −0.195133 0.980777i \(-0.562514\pi\)
−0.195133 + 0.980777i \(0.562514\pi\)
\(42\) 1.60623e56 1.59848
\(43\) −1.46418e55 −0.0647044 −0.0323522 0.999477i \(-0.510300\pi\)
−0.0323522 + 0.999477i \(0.510300\pi\)
\(44\) 1.51205e56 0.302308
\(45\) −1.03683e57 −0.954719
\(46\) −1.77269e56 −0.0764693
\(47\) −7.82219e57 −1.60676 −0.803382 0.595464i \(-0.796968\pi\)
−0.803382 + 0.595464i \(0.796968\pi\)
\(48\) −9.08845e57 −0.902957
\(49\) 2.18442e58 1.06555
\(50\) 5.03751e58 1.22391
\(51\) −9.36567e58 −1.14913
\(52\) 3.41709e57 0.0214556
\(53\) 4.83946e59 1.57500 0.787498 0.616317i \(-0.211376\pi\)
0.787498 + 0.616317i \(0.211376\pi\)
\(54\) −2.49841e59 −0.426658
\(55\) 2.20027e60 1.99509
\(56\) −3.18773e60 −1.55237
\(57\) −4.02587e60 −1.06458
\(58\) −9.41829e59 −0.136680
\(59\) −1.34248e61 −1.08023 −0.540113 0.841592i \(-0.681619\pi\)
−0.540113 + 0.841592i \(0.681619\pi\)
\(60\) 1.02569e61 0.462167
\(61\) 3.06698e61 0.781326 0.390663 0.920534i \(-0.372246\pi\)
0.390663 + 0.920534i \(0.372246\pi\)
\(62\) −4.39982e61 −0.639619
\(63\) 1.05833e62 0.885876
\(64\) 2.28644e62 1.11160
\(65\) 4.97239e61 0.141597
\(66\) −8.51920e62 −1.43263
\(67\) 5.79237e62 0.579796 0.289898 0.957057i \(-0.406379\pi\)
0.289898 + 0.957057i \(0.406379\pi\)
\(68\) 3.53312e62 0.212129
\(69\) −3.06293e62 −0.111133
\(70\) −8.81732e63 −1.94740
\(71\) 5.96461e63 0.807549 0.403775 0.914859i \(-0.367698\pi\)
0.403775 + 0.914859i \(0.367698\pi\)
\(72\) −7.96717e63 −0.665783
\(73\) −2.58846e63 −0.134401 −0.0672004 0.997739i \(-0.521407\pi\)
−0.0672004 + 0.997739i \(0.521407\pi\)
\(74\) 4.27961e64 1.38966
\(75\) 8.70404e64 1.77872
\(76\) 1.51872e64 0.196521
\(77\) −2.24590e65 −1.85123
\(78\) −1.92526e64 −0.101677
\(79\) −1.36419e65 −0.464237 −0.232118 0.972688i \(-0.574566\pi\)
−0.232118 + 0.972688i \(0.574566\pi\)
\(80\) 4.98906e65 1.10005
\(81\) −8.60817e65 −1.23645
\(82\) −3.62958e65 −0.341411
\(83\) 4.54701e65 0.281534 0.140767 0.990043i \(-0.455043\pi\)
0.140767 + 0.990043i \(0.455043\pi\)
\(84\) −1.04696e66 −0.428841
\(85\) 5.14124e66 1.39996
\(86\) −3.11206e65 −0.0566045
\(87\) −1.62733e66 −0.198638
\(88\) 1.69072e67 1.39130
\(89\) −6.95403e66 −0.387509 −0.193754 0.981050i \(-0.562066\pi\)
−0.193754 + 0.981050i \(0.562066\pi\)
\(90\) −2.20373e67 −0.835204
\(91\) −5.07552e66 −0.131387
\(92\) 1.15546e66 0.0205152
\(93\) −7.60220e67 −0.929560
\(94\) −1.66257e68 −1.40562
\(95\) 2.20998e68 1.29695
\(96\) 1.42650e68 0.583330
\(97\) 3.36085e68 0.961224 0.480612 0.876933i \(-0.340414\pi\)
0.480612 + 0.876933i \(0.340414\pi\)
\(98\) 4.64289e68 0.932156
\(99\) −5.61323e68 −0.793960
\(100\) −3.28352e68 −0.328352
\(101\) −4.26999e68 −0.302928 −0.151464 0.988463i \(-0.548399\pi\)
−0.151464 + 0.988463i \(0.548399\pi\)
\(102\) −1.99063e69 −1.00527
\(103\) 4.89975e69 1.76721 0.883607 0.468229i \(-0.155108\pi\)
0.883607 + 0.468229i \(0.155108\pi\)
\(104\) 3.82087e68 0.0987442
\(105\) −1.52350e70 −2.83016
\(106\) 1.02861e70 1.37783
\(107\) −2.44106e69 −0.236504 −0.118252 0.992984i \(-0.537729\pi\)
−0.118252 + 0.992984i \(0.537729\pi\)
\(108\) 1.62850e69 0.114464
\(109\) −1.65662e70 −0.847245 −0.423623 0.905839i \(-0.639242\pi\)
−0.423623 + 0.905839i \(0.639242\pi\)
\(110\) 4.67657e70 1.74534
\(111\) 7.39450e70 2.01960
\(112\) −5.09252e70 −1.02073
\(113\) −4.32535e70 −0.637992 −0.318996 0.947756i \(-0.603346\pi\)
−0.318996 + 0.947756i \(0.603346\pi\)
\(114\) −8.55679e70 −0.931309
\(115\) 1.68138e70 0.135391
\(116\) 6.13897e69 0.0366687
\(117\) −1.26854e70 −0.0563496
\(118\) −2.85339e71 −0.945000
\(119\) −5.24786e71 −1.29901
\(120\) 1.14689e72 2.12701
\(121\) 4.73239e71 0.659152
\(122\) 6.51873e71 0.683517
\(123\) −6.27134e71 −0.496174
\(124\) 2.86786e71 0.171597
\(125\) −1.36284e72 −0.618089
\(126\) 2.24944e72 0.774979
\(127\) −5.32946e72 −1.39783 −0.698916 0.715204i \(-0.746334\pi\)
−0.698916 + 0.715204i \(0.746334\pi\)
\(128\) 2.56682e72 0.513631
\(129\) −5.37715e71 −0.0822635
\(130\) 1.05686e72 0.123872
\(131\) −9.29599e72 −0.836442 −0.418221 0.908345i \(-0.637346\pi\)
−0.418221 + 0.908345i \(0.637346\pi\)
\(132\) 5.55294e72 0.384346
\(133\) −2.25581e73 −1.20343
\(134\) 1.23114e73 0.507215
\(135\) 2.36972e73 0.755410
\(136\) 3.95061e73 0.976274
\(137\) 7.89544e73 1.51536 0.757681 0.652625i \(-0.226332\pi\)
0.757681 + 0.652625i \(0.226332\pi\)
\(138\) −6.51012e72 −0.0972210
\(139\) −1.62132e74 −1.88737 −0.943686 0.330842i \(-0.892667\pi\)
−0.943686 + 0.330842i \(0.892667\pi\)
\(140\) 5.74725e73 0.522448
\(141\) −2.87266e74 −2.04280
\(142\) 1.26775e74 0.706457
\(143\) 2.69198e73 0.117755
\(144\) −1.27279e74 −0.437774
\(145\) 8.93316e73 0.241997
\(146\) −5.50164e73 −0.117576
\(147\) 8.02219e74 1.35471
\(148\) −2.78951e74 −0.372820
\(149\) −4.94682e74 −0.524083 −0.262041 0.965057i \(-0.584396\pi\)
−0.262041 + 0.965057i \(0.584396\pi\)
\(150\) 1.85000e75 1.55605
\(151\) −1.17268e75 −0.784287 −0.392144 0.919904i \(-0.628266\pi\)
−0.392144 + 0.919904i \(0.628266\pi\)
\(152\) 1.69818e75 0.904442
\(153\) −1.31161e75 −0.557122
\(154\) −4.77356e75 −1.61949
\(155\) 4.17319e75 1.13246
\(156\) 1.25491e74 0.0272781
\(157\) −8.35431e75 −1.45671 −0.728354 0.685201i \(-0.759715\pi\)
−0.728354 + 0.685201i \(0.759715\pi\)
\(158\) −2.89952e75 −0.406122
\(159\) 1.77727e76 2.00241
\(160\) −7.83070e75 −0.710659
\(161\) −1.71625e75 −0.125628
\(162\) −1.82963e76 −1.08167
\(163\) 2.80579e76 1.34148 0.670738 0.741695i \(-0.265978\pi\)
0.670738 + 0.741695i \(0.265978\pi\)
\(164\) 2.36581e75 0.0915940
\(165\) 8.08039e76 2.53651
\(166\) 9.66446e75 0.246291
\(167\) −6.66449e76 −1.38054 −0.690269 0.723553i \(-0.742508\pi\)
−0.690269 + 0.723553i \(0.742508\pi\)
\(168\) −1.17068e77 −1.97364
\(169\) −7.21849e76 −0.991643
\(170\) 1.09275e77 1.22471
\(171\) −5.63800e76 −0.516130
\(172\) 2.02848e75 0.0151859
\(173\) −4.02628e76 −0.246782 −0.123391 0.992358i \(-0.539377\pi\)
−0.123391 + 0.992358i \(0.539377\pi\)
\(174\) −3.45882e76 −0.173772
\(175\) 4.87713e77 2.01072
\(176\) 2.70100e77 0.914823
\(177\) −4.93021e77 −1.37337
\(178\) −1.47805e77 −0.338999
\(179\) 1.65322e77 0.312537 0.156268 0.987715i \(-0.450054\pi\)
0.156268 + 0.987715i \(0.450054\pi\)
\(180\) 1.43643e77 0.224069
\(181\) −7.58549e76 −0.0977401 −0.0488700 0.998805i \(-0.515562\pi\)
−0.0488700 + 0.998805i \(0.515562\pi\)
\(182\) −1.07878e77 −0.114939
\(183\) 1.12634e78 0.993357
\(184\) 1.29200e77 0.0944164
\(185\) −4.05917e78 −2.46044
\(186\) −1.61581e78 −0.813195
\(187\) 2.78338e78 1.16423
\(188\) 1.08369e78 0.377101
\(189\) −2.41887e78 −0.700939
\(190\) 4.69721e78 1.13459
\(191\) −2.53179e78 −0.510243 −0.255121 0.966909i \(-0.582115\pi\)
−0.255121 + 0.966909i \(0.582115\pi\)
\(192\) 8.39683e78 1.41326
\(193\) −6.20489e78 −0.872985 −0.436492 0.899708i \(-0.643779\pi\)
−0.436492 + 0.899708i \(0.643779\pi\)
\(194\) 7.14334e78 0.840895
\(195\) 1.82609e78 0.180023
\(196\) −3.02630e78 −0.250079
\(197\) 7.90415e78 0.547987 0.273994 0.961732i \(-0.411655\pi\)
0.273994 + 0.961732i \(0.411655\pi\)
\(198\) −1.19307e79 −0.694570
\(199\) −1.63250e79 −0.798769 −0.399385 0.916783i \(-0.630776\pi\)
−0.399385 + 0.916783i \(0.630776\pi\)
\(200\) −3.67152e79 −1.51116
\(201\) 2.12722e79 0.737138
\(202\) −9.07567e78 −0.265006
\(203\) −9.11843e78 −0.224547
\(204\) 1.29752e79 0.269695
\(205\) 3.44262e79 0.604479
\(206\) 1.04142e80 1.54599
\(207\) −4.28946e78 −0.0538798
\(208\) 6.10399e78 0.0649275
\(209\) 1.19645e80 1.07857
\(210\) −3.23812e80 −2.47587
\(211\) 1.14615e79 0.0743866 0.0371933 0.999308i \(-0.488158\pi\)
0.0371933 + 0.999308i \(0.488158\pi\)
\(212\) −6.70460e79 −0.369645
\(213\) 2.19048e80 1.02670
\(214\) −5.18837e79 −0.206898
\(215\) 2.95176e79 0.100220
\(216\) 1.82093e80 0.526793
\(217\) −4.25974e80 −1.05080
\(218\) −3.52107e80 −0.741184
\(219\) −9.50599e79 −0.170874
\(220\) −3.04826e80 −0.468240
\(221\) 6.29018e79 0.0826284
\(222\) 1.57167e81 1.76678
\(223\) 7.96925e79 0.0767184 0.0383592 0.999264i \(-0.487787\pi\)
0.0383592 + 0.999264i \(0.487787\pi\)
\(224\) 7.99310e80 0.659415
\(225\) 1.21895e81 0.862363
\(226\) −9.19334e80 −0.558126
\(227\) −2.05085e81 −1.06916 −0.534578 0.845119i \(-0.679529\pi\)
−0.534578 + 0.845119i \(0.679529\pi\)
\(228\) 5.57744e80 0.249852
\(229\) 1.65307e81 0.636747 0.318374 0.947965i \(-0.396863\pi\)
0.318374 + 0.947965i \(0.396863\pi\)
\(230\) 3.57370e80 0.118442
\(231\) −8.24797e81 −2.35360
\(232\) 6.86439e80 0.168759
\(233\) −5.09024e81 −1.07884 −0.539422 0.842035i \(-0.681357\pi\)
−0.539422 + 0.842035i \(0.681357\pi\)
\(234\) −2.69622e80 −0.0492955
\(235\) 1.57693e82 2.48870
\(236\) 1.85988e81 0.253525
\(237\) −5.00991e81 −0.590218
\(238\) −1.11541e82 −1.13639
\(239\) 2.60321e81 0.229500 0.114750 0.993394i \(-0.463393\pi\)
0.114750 + 0.993394i \(0.463393\pi\)
\(240\) 1.83221e82 1.39858
\(241\) 1.75774e82 1.16243 0.581214 0.813751i \(-0.302578\pi\)
0.581214 + 0.813751i \(0.302578\pi\)
\(242\) 1.00585e82 0.576637
\(243\) −2.18051e82 −1.08428
\(244\) −4.24900e81 −0.183374
\(245\) −4.40374e82 −1.65041
\(246\) −1.33295e82 −0.434061
\(247\) 2.70385e81 0.0765488
\(248\) 3.20675e82 0.789735
\(249\) 1.66987e82 0.357935
\(250\) −2.89666e82 −0.540714
\(251\) 1.40922e82 0.229212 0.114606 0.993411i \(-0.463440\pi\)
0.114606 + 0.993411i \(0.463440\pi\)
\(252\) −1.46621e82 −0.207912
\(253\) 9.10272e81 0.112594
\(254\) −1.13275e83 −1.22285
\(255\) 1.88810e83 1.77987
\(256\) −8.04109e82 −0.662272
\(257\) −1.05298e81 −0.00758099 −0.00379050 0.999993i \(-0.501207\pi\)
−0.00379050 + 0.999993i \(0.501207\pi\)
\(258\) −1.14289e82 −0.0719654
\(259\) 4.14336e83 2.28302
\(260\) −6.88876e81 −0.0332323
\(261\) −2.27899e82 −0.0963041
\(262\) −1.97582e83 −0.731733
\(263\) −3.38100e83 −1.09792 −0.548962 0.835847i \(-0.684977\pi\)
−0.548962 + 0.835847i \(0.684977\pi\)
\(264\) 6.20910e83 1.76886
\(265\) −9.75623e83 −2.43949
\(266\) −4.79462e83 −1.05278
\(267\) −2.55384e83 −0.492668
\(268\) −8.02476e82 −0.136076
\(269\) 1.30658e84 1.94841 0.974206 0.225661i \(-0.0724541\pi\)
0.974206 + 0.225661i \(0.0724541\pi\)
\(270\) 5.03674e83 0.660845
\(271\) −1.19681e83 −0.138225 −0.0691124 0.997609i \(-0.522017\pi\)
−0.0691124 + 0.997609i \(0.522017\pi\)
\(272\) 6.31125e83 0.641931
\(273\) −1.86396e83 −0.167042
\(274\) 1.67814e84 1.32566
\(275\) −2.58675e84 −1.80209
\(276\) 4.24339e82 0.0260825
\(277\) 2.91614e84 1.58218 0.791090 0.611700i \(-0.209514\pi\)
0.791090 + 0.611700i \(0.209514\pi\)
\(278\) −3.44604e84 −1.65110
\(279\) −1.06465e84 −0.450672
\(280\) 6.42638e84 2.40444
\(281\) −2.47628e84 −0.819279 −0.409639 0.912248i \(-0.634345\pi\)
−0.409639 + 0.912248i \(0.634345\pi\)
\(282\) −6.10571e84 −1.78707
\(283\) −3.68218e84 −0.953833 −0.476917 0.878949i \(-0.658246\pi\)
−0.476917 + 0.878949i \(0.658246\pi\)
\(284\) −8.26338e83 −0.189529
\(285\) 8.11604e84 1.64891
\(286\) 5.72167e83 0.103014
\(287\) −3.51402e84 −0.560891
\(288\) 1.99774e84 0.282811
\(289\) −1.45738e84 −0.183062
\(290\) 1.89870e84 0.211703
\(291\) 1.23426e85 1.22207
\(292\) 3.58605e83 0.0315434
\(293\) −2.21476e85 −1.73139 −0.865694 0.500573i \(-0.833123\pi\)
−0.865694 + 0.500573i \(0.833123\pi\)
\(294\) 1.70508e85 1.18512
\(295\) 2.70642e85 1.67315
\(296\) −3.11913e85 −1.71581
\(297\) 1.28293e85 0.628212
\(298\) −1.05142e85 −0.458476
\(299\) 2.05713e83 0.00799107
\(300\) −1.20586e85 −0.417458
\(301\) −3.01297e84 −0.0929932
\(302\) −2.49248e85 −0.686107
\(303\) −1.56813e85 −0.385135
\(304\) 2.71291e85 0.594699
\(305\) −6.18296e85 −1.21019
\(306\) −2.78777e85 −0.487380
\(307\) 3.33336e85 0.520725 0.260363 0.965511i \(-0.416158\pi\)
0.260363 + 0.965511i \(0.416158\pi\)
\(308\) 3.11147e85 0.434477
\(309\) 1.79941e86 2.24679
\(310\) 8.86992e85 0.990698
\(311\) 5.41154e85 0.540863 0.270432 0.962739i \(-0.412834\pi\)
0.270432 + 0.962739i \(0.412834\pi\)
\(312\) 1.40320e85 0.125541
\(313\) −1.40450e86 −1.12523 −0.562615 0.826719i \(-0.690205\pi\)
−0.562615 + 0.826719i \(0.690205\pi\)
\(314\) −1.77567e86 −1.27435
\(315\) −2.13357e86 −1.37212
\(316\) 1.88995e85 0.108955
\(317\) −1.70168e85 −0.0879699 −0.0439849 0.999032i \(-0.514005\pi\)
−0.0439849 + 0.999032i \(0.514005\pi\)
\(318\) 3.77751e86 1.75174
\(319\) 4.83627e85 0.201248
\(320\) −4.60940e86 −1.72175
\(321\) −8.96469e85 −0.300685
\(322\) −3.64781e85 −0.109902
\(323\) 2.79567e86 0.756830
\(324\) 1.19258e86 0.290191
\(325\) −5.84581e85 −0.127900
\(326\) 5.96358e86 1.17354
\(327\) −6.08387e86 −1.07716
\(328\) 2.64537e86 0.421539
\(329\) −1.60964e87 −2.30924
\(330\) 1.71745e87 2.21898
\(331\) 1.21390e87 1.41292 0.706462 0.707751i \(-0.250290\pi\)
0.706462 + 0.707751i \(0.250290\pi\)
\(332\) −6.29943e85 −0.0660750
\(333\) 1.03556e87 0.979149
\(334\) −1.41651e87 −1.20772
\(335\) −1.16773e87 −0.898040
\(336\) −1.87021e87 −1.29773
\(337\) 2.61386e87 1.63701 0.818505 0.574499i \(-0.194803\pi\)
0.818505 + 0.574499i \(0.194803\pi\)
\(338\) −1.53426e87 −0.867505
\(339\) −1.58847e87 −0.811126
\(340\) −7.12267e86 −0.328564
\(341\) 2.25930e87 0.941776
\(342\) −1.19833e87 −0.451519
\(343\) 2.76506e86 0.0942013
\(344\) 2.26818e86 0.0698893
\(345\) 6.17479e86 0.172133
\(346\) −8.55768e86 −0.215889
\(347\) 2.58424e87 0.590155 0.295078 0.955473i \(-0.404655\pi\)
0.295078 + 0.955473i \(0.404655\pi\)
\(348\) 2.25451e86 0.0466196
\(349\) 1.39983e87 0.262180 0.131090 0.991370i \(-0.458152\pi\)
0.131090 + 0.991370i \(0.458152\pi\)
\(350\) 1.03661e88 1.75901
\(351\) 2.89930e86 0.0445859
\(352\) −4.23942e87 −0.590996
\(353\) 7.18553e87 0.908304 0.454152 0.890924i \(-0.349942\pi\)
0.454152 + 0.890924i \(0.349942\pi\)
\(354\) −1.04789e88 −1.20145
\(355\) −1.20245e88 −1.25080
\(356\) 9.63412e86 0.0909467
\(357\) −1.92725e88 −1.65152
\(358\) 3.51384e87 0.273412
\(359\) −2.70510e87 −0.191172 −0.0955860 0.995421i \(-0.530472\pi\)
−0.0955860 + 0.995421i \(0.530472\pi\)
\(360\) 1.60616e88 1.03122
\(361\) −5.12224e87 −0.298856
\(362\) −1.61226e87 −0.0855046
\(363\) 1.73795e88 0.838028
\(364\) 7.03163e86 0.0308360
\(365\) 5.21826e87 0.208172
\(366\) 2.39398e88 0.869005
\(367\) −6.88002e86 −0.0227306 −0.0113653 0.999935i \(-0.503618\pi\)
−0.0113653 + 0.999935i \(0.503618\pi\)
\(368\) 2.06402e87 0.0620818
\(369\) −8.78267e87 −0.240556
\(370\) −8.62759e88 −2.15243
\(371\) 9.95856e88 2.26359
\(372\) 1.05321e88 0.218164
\(373\) −8.56864e88 −1.61792 −0.808960 0.587864i \(-0.799969\pi\)
−0.808960 + 0.587864i \(0.799969\pi\)
\(374\) 5.91596e88 1.01849
\(375\) −5.00498e88 −0.785821
\(376\) 1.21174e89 1.73552
\(377\) 1.09295e87 0.0142831
\(378\) −5.14120e88 −0.613193
\(379\) −8.36126e88 −0.910373 −0.455186 0.890396i \(-0.650427\pi\)
−0.455186 + 0.890396i \(0.650427\pi\)
\(380\) −3.06171e88 −0.304389
\(381\) −1.95722e89 −1.77717
\(382\) −5.38121e88 −0.446369
\(383\) 2.17691e88 0.164999 0.0824997 0.996591i \(-0.473710\pi\)
0.0824997 + 0.996591i \(0.473710\pi\)
\(384\) 9.42652e88 0.653016
\(385\) 4.52768e89 2.86735
\(386\) −1.31882e89 −0.763702
\(387\) −7.53040e87 −0.0398832
\(388\) −4.65613e88 −0.225596
\(389\) 3.57077e89 1.58307 0.791537 0.611122i \(-0.209281\pi\)
0.791537 + 0.611122i \(0.209281\pi\)
\(390\) 3.88127e88 0.157487
\(391\) 2.12698e88 0.0790069
\(392\) −3.38390e89 −1.15093
\(393\) −3.41391e89 −1.06343
\(394\) 1.67999e89 0.479388
\(395\) 2.75017e89 0.719050
\(396\) 7.77658e88 0.186339
\(397\) −1.10958e89 −0.243717 −0.121859 0.992547i \(-0.538885\pi\)
−0.121859 + 0.992547i \(0.538885\pi\)
\(398\) −3.46980e89 −0.698777
\(399\) −8.28436e89 −1.53001
\(400\) −5.86540e89 −0.993638
\(401\) 4.75128e89 0.738465 0.369233 0.929337i \(-0.379621\pi\)
0.369233 + 0.929337i \(0.379621\pi\)
\(402\) 4.52131e89 0.644860
\(403\) 5.10580e88 0.0668404
\(404\) 5.91565e88 0.0710960
\(405\) 1.73539e90 1.91513
\(406\) −1.93808e89 −0.196437
\(407\) −2.19757e90 −2.04614
\(408\) 1.45084e90 1.24121
\(409\) 2.42528e89 0.190681 0.0953406 0.995445i \(-0.469606\pi\)
0.0953406 + 0.995445i \(0.469606\pi\)
\(410\) 7.31713e89 0.528808
\(411\) 2.89956e90 1.92659
\(412\) −6.78811e89 −0.414758
\(413\) −2.76254e90 −1.55250
\(414\) −9.11706e88 −0.0471349
\(415\) −9.16665e89 −0.436065
\(416\) −9.58067e88 −0.0419446
\(417\) −5.95422e90 −2.39955
\(418\) 2.54299e90 0.943547
\(419\) 1.70435e90 0.582338 0.291169 0.956672i \(-0.405956\pi\)
0.291169 + 0.956672i \(0.405956\pi\)
\(420\) 2.11065e90 0.664227
\(421\) 4.90128e90 1.42094 0.710472 0.703725i \(-0.248481\pi\)
0.710472 + 0.703725i \(0.248481\pi\)
\(422\) 2.43608e89 0.0650747
\(423\) −4.02300e90 −0.990393
\(424\) −7.49685e90 −1.70120
\(425\) −6.04431e90 −1.26453
\(426\) 4.65576e90 0.898171
\(427\) 6.31119e90 1.12292
\(428\) 3.38185e89 0.0555066
\(429\) 9.88616e89 0.149710
\(430\) 6.27383e89 0.0876740
\(431\) 3.44401e90 0.444221 0.222111 0.975021i \(-0.428705\pi\)
0.222111 + 0.975021i \(0.428705\pi\)
\(432\) 2.90901e90 0.346383
\(433\) 1.42290e91 1.56438 0.782189 0.623041i \(-0.214103\pi\)
0.782189 + 0.623041i \(0.214103\pi\)
\(434\) −9.05388e90 −0.919261
\(435\) 3.28066e90 0.307668
\(436\) 2.29509e90 0.198845
\(437\) 9.14289e89 0.0731937
\(438\) −2.02045e90 −0.149483
\(439\) −2.33620e91 −1.59766 −0.798828 0.601559i \(-0.794546\pi\)
−0.798828 + 0.601559i \(0.794546\pi\)
\(440\) −3.40845e91 −2.15496
\(441\) 1.12346e91 0.656791
\(442\) 1.33695e90 0.0722847
\(443\) 3.82184e90 0.191136 0.0955682 0.995423i \(-0.469533\pi\)
0.0955682 + 0.995423i \(0.469533\pi\)
\(444\) −1.02444e91 −0.473993
\(445\) 1.40191e91 0.600207
\(446\) 1.69383e90 0.0671145
\(447\) −1.81670e91 −0.666305
\(448\) 4.70499e91 1.59760
\(449\) 1.14776e91 0.360871 0.180436 0.983587i \(-0.442249\pi\)
0.180436 + 0.983587i \(0.442249\pi\)
\(450\) 2.59083e91 0.754409
\(451\) 1.86378e91 0.502695
\(452\) 5.99235e90 0.149734
\(453\) −4.30662e91 −0.997122
\(454\) −4.35898e91 −0.935315
\(455\) 1.02321e91 0.203504
\(456\) 6.23650e91 1.14988
\(457\) −7.31030e91 −1.24976 −0.624880 0.780721i \(-0.714852\pi\)
−0.624880 + 0.780721i \(0.714852\pi\)
\(458\) 3.51352e91 0.557037
\(459\) 2.99775e91 0.440816
\(460\) −2.32939e90 −0.0317758
\(461\) 7.71415e91 0.976351 0.488176 0.872745i \(-0.337663\pi\)
0.488176 + 0.872745i \(0.337663\pi\)
\(462\) −1.75307e92 −2.05897
\(463\) −1.44206e92 −1.57195 −0.785974 0.618260i \(-0.787838\pi\)
−0.785974 + 0.618260i \(0.787838\pi\)
\(464\) 1.09661e91 0.110964
\(465\) 1.53258e92 1.43978
\(466\) −1.08191e92 −0.943791
\(467\) −4.34642e91 −0.352127 −0.176063 0.984379i \(-0.556336\pi\)
−0.176063 + 0.984379i \(0.556336\pi\)
\(468\) 1.75743e90 0.0132250
\(469\) 1.19194e92 0.833284
\(470\) 3.35170e92 2.17715
\(471\) −3.06808e92 −1.85202
\(472\) 2.07965e92 1.16679
\(473\) 1.59803e91 0.0833445
\(474\) −1.06483e92 −0.516332
\(475\) −2.59817e92 −1.17149
\(476\) 7.27039e91 0.304872
\(477\) 2.48897e92 0.970812
\(478\) 5.53301e91 0.200770
\(479\) 2.77463e92 0.936764 0.468382 0.883526i \(-0.344837\pi\)
0.468382 + 0.883526i \(0.344837\pi\)
\(480\) −2.87579e92 −0.903513
\(481\) −4.96630e91 −0.145220
\(482\) 3.73599e92 1.01691
\(483\) −6.30285e91 −0.159721
\(484\) −6.55627e91 −0.154700
\(485\) −6.77540e92 −1.48883
\(486\) −4.63458e92 −0.948548
\(487\) 3.06757e91 0.0584851 0.0292426 0.999572i \(-0.490690\pi\)
0.0292426 + 0.999572i \(0.490690\pi\)
\(488\) −4.75109e92 −0.843935
\(489\) 1.03041e93 1.70552
\(490\) −9.35995e92 −1.44381
\(491\) 6.50375e91 0.0935088 0.0467544 0.998906i \(-0.485112\pi\)
0.0467544 + 0.998906i \(0.485112\pi\)
\(492\) 8.68833e91 0.116450
\(493\) 1.13006e92 0.141216
\(494\) 5.74692e91 0.0669662
\(495\) 1.13161e93 1.22976
\(496\) 5.12290e92 0.519276
\(497\) 1.22739e93 1.16061
\(498\) 3.54923e92 0.313128
\(499\) 1.05364e93 0.867412 0.433706 0.901054i \(-0.357206\pi\)
0.433706 + 0.901054i \(0.357206\pi\)
\(500\) 1.88809e92 0.145063
\(501\) −2.44750e93 −1.75518
\(502\) 2.99524e92 0.200518
\(503\) −2.42087e93 −1.51313 −0.756564 0.653919i \(-0.773124\pi\)
−0.756564 + 0.653919i \(0.773124\pi\)
\(504\) −1.63947e93 −0.956864
\(505\) 8.60819e92 0.469201
\(506\) 1.93474e92 0.0984987
\(507\) −2.65096e93 −1.26075
\(508\) 7.38344e92 0.328066
\(509\) 1.96613e93 0.816298 0.408149 0.912915i \(-0.366174\pi\)
0.408149 + 0.912915i \(0.366174\pi\)
\(510\) 4.01306e93 1.55706
\(511\) −5.32648e92 −0.193161
\(512\) −3.22428e93 −1.09300
\(513\) 1.28859e93 0.408382
\(514\) −2.23805e91 −0.00663198
\(515\) −9.87776e93 −2.73722
\(516\) 7.44951e91 0.0193069
\(517\) 8.53727e93 2.06964
\(518\) 8.80651e93 1.99723
\(519\) −1.47863e93 −0.313752
\(520\) −7.70277e92 −0.152944
\(521\) 1.44982e92 0.0269409 0.0134704 0.999909i \(-0.495712\pi\)
0.0134704 + 0.999909i \(0.495712\pi\)
\(522\) −4.84389e92 −0.0842484
\(523\) −1.14702e94 −1.86750 −0.933751 0.357923i \(-0.883485\pi\)
−0.933751 + 0.357923i \(0.883485\pi\)
\(524\) 1.28787e93 0.196310
\(525\) 1.79110e94 2.55638
\(526\) −7.18617e93 −0.960482
\(527\) 5.27917e93 0.660844
\(528\) 9.91929e93 1.16308
\(529\) −9.03420e93 −0.992359
\(530\) −2.07364e94 −2.13411
\(531\) −6.90449e93 −0.665841
\(532\) 3.12520e93 0.282440
\(533\) 4.21196e92 0.0356776
\(534\) −5.42806e93 −0.430994
\(535\) 4.92112e93 0.366318
\(536\) −8.97300e93 −0.626257
\(537\) 6.07137e93 0.397351
\(538\) 2.77707e94 1.70450
\(539\) −2.38412e94 −1.37251
\(540\) −3.28302e93 −0.177292
\(541\) 1.83776e94 0.931072 0.465536 0.885029i \(-0.345862\pi\)
0.465536 + 0.885029i \(0.345862\pi\)
\(542\) −2.54377e93 −0.120921
\(543\) −2.78574e93 −0.124264
\(544\) −9.90599e93 −0.414702
\(545\) 3.33971e94 1.31229
\(546\) −3.96176e93 −0.146131
\(547\) 5.34702e94 1.85161 0.925805 0.378002i \(-0.123389\pi\)
0.925805 + 0.378002i \(0.123389\pi\)
\(548\) −1.09383e94 −0.355650
\(549\) 1.57737e94 0.481602
\(550\) −5.49803e94 −1.57650
\(551\) 4.85761e93 0.130826
\(552\) 4.74481e93 0.120038
\(553\) −2.80720e94 −0.667201
\(554\) 6.19811e94 1.38412
\(555\) −1.49071e95 −3.12814
\(556\) 2.24618e94 0.442959
\(557\) −9.92032e94 −1.83874 −0.919372 0.393389i \(-0.871302\pi\)
−0.919372 + 0.393389i \(0.871302\pi\)
\(558\) −2.26286e94 −0.394255
\(559\) 3.61140e92 0.00591519
\(560\) 1.02664e95 1.58100
\(561\) 1.02219e95 1.48017
\(562\) −5.26322e94 −0.716718
\(563\) 1.16398e95 1.49076 0.745379 0.666641i \(-0.232268\pi\)
0.745379 + 0.666641i \(0.232268\pi\)
\(564\) 3.97979e94 0.479436
\(565\) 8.71980e94 0.988178
\(566\) −7.82630e94 −0.834429
\(567\) −1.77138e95 −1.77703
\(568\) −9.23982e94 −0.872260
\(569\) 1.17606e95 1.04485 0.522426 0.852685i \(-0.325027\pi\)
0.522426 + 0.852685i \(0.325027\pi\)
\(570\) 1.72503e95 1.44249
\(571\) −1.80537e94 −0.142108 −0.0710542 0.997472i \(-0.522636\pi\)
−0.0710542 + 0.997472i \(0.522636\pi\)
\(572\) −3.72947e93 −0.0276365
\(573\) −9.29789e94 −0.648709
\(574\) −7.46888e94 −0.490677
\(575\) −1.97672e94 −0.122294
\(576\) 1.17593e95 0.685182
\(577\) 1.06348e95 0.583667 0.291834 0.956469i \(-0.405735\pi\)
0.291834 + 0.956469i \(0.405735\pi\)
\(578\) −3.09760e94 −0.160145
\(579\) −2.27872e95 −1.10989
\(580\) −1.23760e94 −0.0567957
\(581\) 9.35676e94 0.404621
\(582\) 2.62336e95 1.06909
\(583\) −5.28187e95 −2.02872
\(584\) 4.00980e94 0.145171
\(585\) 2.55734e94 0.0872791
\(586\) −4.70738e95 −1.51465
\(587\) 7.48046e94 0.226941 0.113471 0.993541i \(-0.463803\pi\)
0.113471 + 0.993541i \(0.463803\pi\)
\(588\) −1.11140e95 −0.317944
\(589\) 2.26927e95 0.612221
\(590\) 5.75236e95 1.46370
\(591\) 2.90276e95 0.696696
\(592\) −4.98294e95 −1.12820
\(593\) 3.74120e95 0.799142 0.399571 0.916702i \(-0.369159\pi\)
0.399571 + 0.916702i \(0.369159\pi\)
\(594\) 2.72681e95 0.549570
\(595\) 1.05796e96 2.01202
\(596\) 6.85333e94 0.123000
\(597\) −5.99527e95 −1.01553
\(598\) 4.37233e93 0.00699072
\(599\) −9.07159e95 −1.36917 −0.684586 0.728932i \(-0.740017\pi\)
−0.684586 + 0.728932i \(0.740017\pi\)
\(600\) −1.34835e96 −1.92125
\(601\) 1.14169e96 1.53596 0.767979 0.640475i \(-0.221262\pi\)
0.767979 + 0.640475i \(0.221262\pi\)
\(602\) −6.40394e94 −0.0813520
\(603\) 2.97905e95 0.357381
\(604\) 1.62463e95 0.184069
\(605\) −9.54039e95 −1.02095
\(606\) −3.33300e95 −0.336922
\(607\) 4.17459e95 0.398661 0.199330 0.979932i \(-0.436123\pi\)
0.199330 + 0.979932i \(0.436123\pi\)
\(608\) −4.25813e95 −0.384189
\(609\) −3.34870e95 −0.285483
\(610\) −1.31416e96 −1.05869
\(611\) 1.92934e95 0.146888
\(612\) 1.81711e95 0.130754
\(613\) 6.32712e95 0.430348 0.215174 0.976576i \(-0.430968\pi\)
0.215174 + 0.976576i \(0.430968\pi\)
\(614\) 7.08491e95 0.455539
\(615\) 1.26429e96 0.768518
\(616\) 3.47914e96 1.99957
\(617\) −2.85759e96 −1.55297 −0.776483 0.630138i \(-0.782998\pi\)
−0.776483 + 0.630138i \(0.782998\pi\)
\(618\) 3.82456e96 1.96553
\(619\) −2.33642e96 −1.13560 −0.567798 0.823168i \(-0.692205\pi\)
−0.567798 + 0.823168i \(0.692205\pi\)
\(620\) −5.78154e95 −0.265785
\(621\) 9.80377e94 0.0426317
\(622\) 1.15020e96 0.473156
\(623\) −1.43099e96 −0.556927
\(624\) 2.24166e95 0.0825471
\(625\) −1.26763e96 −0.441703
\(626\) −2.98520e96 −0.984370
\(627\) 4.39390e96 1.37126
\(628\) 1.15741e96 0.341884
\(629\) −5.13493e96 −1.43578
\(630\) −4.53481e96 −1.20036
\(631\) −1.91201e96 −0.479157 −0.239578 0.970877i \(-0.577009\pi\)
−0.239578 + 0.970877i \(0.577009\pi\)
\(632\) 2.11327e96 0.501437
\(633\) 4.20917e95 0.0945732
\(634\) −3.61685e95 −0.0769575
\(635\) 1.07441e97 2.16508
\(636\) −2.46223e96 −0.469957
\(637\) −5.38787e95 −0.0974107
\(638\) 1.02793e96 0.176055
\(639\) 3.06764e96 0.497765
\(640\) −5.17464e96 −0.795556
\(641\) −6.94117e96 −1.01119 −0.505593 0.862772i \(-0.668726\pi\)
−0.505593 + 0.862772i \(0.668726\pi\)
\(642\) −1.90540e96 −0.263044
\(643\) −1.73392e96 −0.226856 −0.113428 0.993546i \(-0.536183\pi\)
−0.113428 + 0.993546i \(0.536183\pi\)
\(644\) 2.37769e95 0.0294845
\(645\) 1.08402e96 0.127417
\(646\) 5.94206e96 0.662087
\(647\) 1.35608e97 1.43248 0.716241 0.697853i \(-0.245861\pi\)
0.716241 + 0.697853i \(0.245861\pi\)
\(648\) 1.33350e97 1.33553
\(649\) 1.46521e97 1.39142
\(650\) −1.24250e96 −0.111889
\(651\) −1.56437e97 −1.33596
\(652\) −3.88714e96 −0.314839
\(653\) −2.52462e97 −1.93950 −0.969752 0.244090i \(-0.921511\pi\)
−0.969752 + 0.244090i \(0.921511\pi\)
\(654\) −1.29310e97 −0.942322
\(655\) 1.87405e97 1.29555
\(656\) 4.22608e96 0.277176
\(657\) −1.33126e96 −0.0828434
\(658\) −3.42121e97 −2.02016
\(659\) −1.64922e95 −0.00924128 −0.00462064 0.999989i \(-0.501471\pi\)
−0.00462064 + 0.999989i \(0.501471\pi\)
\(660\) −1.11946e97 −0.595308
\(661\) −1.36393e97 −0.688403 −0.344202 0.938896i \(-0.611850\pi\)
−0.344202 + 0.938896i \(0.611850\pi\)
\(662\) 2.58010e97 1.23605
\(663\) 2.31004e96 0.105052
\(664\) −7.04380e96 −0.304094
\(665\) 4.54766e97 1.86398
\(666\) 2.20103e97 0.856576
\(667\) 3.69573e95 0.0136571
\(668\) 9.23299e96 0.324007
\(669\) 2.92667e96 0.0975377
\(670\) −2.48195e97 −0.785620
\(671\) −3.34736e97 −1.00641
\(672\) 2.93543e97 0.838362
\(673\) 2.24509e97 0.609135 0.304567 0.952491i \(-0.401488\pi\)
0.304567 + 0.952491i \(0.401488\pi\)
\(674\) 5.55565e97 1.43208
\(675\) −2.78597e97 −0.682334
\(676\) 1.00005e97 0.232735
\(677\) −6.81276e97 −1.50666 −0.753328 0.657645i \(-0.771553\pi\)
−0.753328 + 0.657645i \(0.771553\pi\)
\(678\) −3.37621e97 −0.709587
\(679\) 6.91591e97 1.38147
\(680\) −7.96433e97 −1.51214
\(681\) −7.53164e97 −1.35930
\(682\) 4.80204e97 0.823881
\(683\) 1.00743e98 1.64324 0.821618 0.570039i \(-0.193072\pi\)
0.821618 + 0.570039i \(0.193072\pi\)
\(684\) 7.81089e96 0.121134
\(685\) −1.59170e98 −2.34713
\(686\) 5.87700e96 0.0824089
\(687\) 6.07082e97 0.809544
\(688\) 3.62350e96 0.0459545
\(689\) −1.19365e97 −0.143984
\(690\) 1.31242e97 0.150584
\(691\) −2.94162e97 −0.321066 −0.160533 0.987030i \(-0.551321\pi\)
−0.160533 + 0.987030i \(0.551321\pi\)
\(692\) 5.57802e96 0.0579188
\(693\) −1.15508e98 −1.14108
\(694\) 5.49269e97 0.516277
\(695\) 3.26854e98 2.92333
\(696\) 2.52091e97 0.214555
\(697\) 4.35498e97 0.352741
\(698\) 2.97528e97 0.229359
\(699\) −1.86937e98 −1.37161
\(700\) −6.75678e97 −0.471908
\(701\) 1.33034e97 0.0884485 0.0442243 0.999022i \(-0.485918\pi\)
0.0442243 + 0.999022i \(0.485918\pi\)
\(702\) 6.16233e96 0.0390045
\(703\) −2.20727e98 −1.33014
\(704\) −2.49546e98 −1.43184
\(705\) 5.79121e98 3.16406
\(706\) 1.52725e98 0.794599
\(707\) −8.78671e97 −0.435368
\(708\) 6.83032e97 0.322325
\(709\) −1.39958e98 −0.629075 −0.314537 0.949245i \(-0.601849\pi\)
−0.314537 + 0.949245i \(0.601849\pi\)
\(710\) −2.55575e98 −1.09422
\(711\) −7.01611e97 −0.286151
\(712\) 1.07725e98 0.418561
\(713\) 1.72649e97 0.0639109
\(714\) −4.09629e98 −1.44478
\(715\) −5.42696e97 −0.182389
\(716\) −2.29037e97 −0.0733511
\(717\) 9.56019e97 0.291780
\(718\) −5.74956e97 −0.167240
\(719\) −6.02544e98 −1.67048 −0.835241 0.549884i \(-0.814672\pi\)
−0.835241 + 0.549884i \(0.814672\pi\)
\(720\) 2.56591e98 0.678062
\(721\) 1.00826e99 2.53984
\(722\) −1.08871e98 −0.261444
\(723\) 6.45521e98 1.47788
\(724\) 1.05089e97 0.0229392
\(725\) −1.05023e98 −0.218587
\(726\) 3.69393e98 0.733121
\(727\) −9.25498e97 −0.175161 −0.0875807 0.996157i \(-0.527914\pi\)
−0.0875807 + 0.996157i \(0.527914\pi\)
\(728\) 7.86252e97 0.141915
\(729\) −8.25308e97 −0.142075
\(730\) 1.10912e98 0.182112
\(731\) 3.73403e97 0.0584828
\(732\) −1.56043e98 −0.233137
\(733\) −4.12420e98 −0.587831 −0.293916 0.955831i \(-0.594959\pi\)
−0.293916 + 0.955831i \(0.594959\pi\)
\(734\) −1.46232e97 −0.0198851
\(735\) −1.61725e99 −2.09829
\(736\) −3.23964e97 −0.0401062
\(737\) −6.32189e98 −0.746825
\(738\) −1.86672e98 −0.210443
\(739\) −6.23242e98 −0.670539 −0.335269 0.942122i \(-0.608827\pi\)
−0.335269 + 0.942122i \(0.608827\pi\)
\(740\) 5.62358e98 0.577456
\(741\) 9.92978e97 0.0973221
\(742\) 2.11665e99 1.98022
\(743\) −9.37642e97 −0.0837381 −0.0418690 0.999123i \(-0.513331\pi\)
−0.0418690 + 0.999123i \(0.513331\pi\)
\(744\) 1.17766e99 1.00405
\(745\) 9.97267e98 0.811745
\(746\) −1.82122e99 −1.41538
\(747\) 2.33856e98 0.173535
\(748\) −3.85610e98 −0.273240
\(749\) −5.02318e98 −0.339904
\(750\) −1.06379e99 −0.687450
\(751\) −8.97025e98 −0.553639 −0.276819 0.960922i \(-0.589280\pi\)
−0.276819 + 0.960922i \(0.589280\pi\)
\(752\) 1.93580e99 1.14116
\(753\) 5.17531e98 0.291413
\(754\) 2.32302e97 0.0124951
\(755\) 2.36409e99 1.21477
\(756\) 3.35110e98 0.164508
\(757\) 2.27469e99 1.06688 0.533439 0.845839i \(-0.320899\pi\)
0.533439 + 0.845839i \(0.320899\pi\)
\(758\) −1.77715e99 −0.796409
\(759\) 3.34293e98 0.143148
\(760\) −3.42349e99 −1.40088
\(761\) 3.10760e99 1.21522 0.607608 0.794237i \(-0.292129\pi\)
0.607608 + 0.794237i \(0.292129\pi\)
\(762\) −4.15998e99 −1.55469
\(763\) −3.40897e99 −1.21766
\(764\) 3.50755e98 0.119752
\(765\) 2.64417e99 0.862919
\(766\) 4.62692e98 0.144344
\(767\) 3.31123e98 0.0987529
\(768\) −2.95305e99 −0.841994
\(769\) −6.21896e99 −1.69535 −0.847674 0.530517i \(-0.821998\pi\)
−0.847674 + 0.530517i \(0.821998\pi\)
\(770\) 9.62337e99 2.50840
\(771\) −3.86701e97 −0.00963827
\(772\) 8.59626e98 0.204886
\(773\) −5.78018e99 −1.31749 −0.658747 0.752364i \(-0.728913\pi\)
−0.658747 + 0.752364i \(0.728913\pi\)
\(774\) −1.60055e98 −0.0348904
\(775\) −4.90623e99 −1.02291
\(776\) −5.20632e99 −1.03825
\(777\) 1.52163e100 2.90258
\(778\) 7.58952e99 1.38490
\(779\) 1.87200e99 0.326787
\(780\) −2.52987e98 −0.0422507
\(781\) −6.50988e99 −1.04019
\(782\) 4.52079e98 0.0691165
\(783\) 5.20874e98 0.0761995
\(784\) −5.40592e99 −0.756773
\(785\) 1.68421e100 2.25628
\(786\) −7.25611e99 −0.930306
\(787\) 8.49135e99 1.04195 0.520977 0.853571i \(-0.325568\pi\)
0.520977 + 0.853571i \(0.325568\pi\)
\(788\) −1.09504e99 −0.128610
\(789\) −1.24166e100 −1.39587
\(790\) 5.84535e99 0.629037
\(791\) −8.90064e99 −0.916923
\(792\) 8.69550e99 0.857582
\(793\) −7.56470e98 −0.0714278
\(794\) −2.35836e99 −0.213208
\(795\) −3.58293e100 −3.10151
\(796\) 2.26166e99 0.187468
\(797\) 6.54680e98 0.0519657 0.0259829 0.999662i \(-0.491728\pi\)
0.0259829 + 0.999662i \(0.491728\pi\)
\(798\) −1.76080e100 −1.33848
\(799\) 1.99485e100 1.45227
\(800\) 9.20619e99 0.641912
\(801\) −3.57650e99 −0.238856
\(802\) 1.00986e100 0.646021
\(803\) 2.82508e99 0.173119
\(804\) −2.94705e99 −0.173003
\(805\) 3.45991e99 0.194584
\(806\) 1.08521e99 0.0584731
\(807\) 4.79834e100 2.47716
\(808\) 6.61467e99 0.327202
\(809\) −1.91402e100 −0.907239 −0.453620 0.891195i \(-0.649868\pi\)
−0.453620 + 0.891195i \(0.649868\pi\)
\(810\) 3.68848e100 1.67539
\(811\) −1.81091e100 −0.788275 −0.394138 0.919051i \(-0.628957\pi\)
−0.394138 + 0.919051i \(0.628957\pi\)
\(812\) 1.26327e99 0.0527002
\(813\) −4.39524e99 −0.175735
\(814\) −4.67084e100 −1.79000
\(815\) −5.65640e100 −2.07779
\(816\) 2.31778e100 0.816134
\(817\) 1.60509e99 0.0541798
\(818\) 5.15482e99 0.166811
\(819\) −2.61037e99 −0.0809856
\(820\) −4.76941e99 −0.141869
\(821\) 4.37394e100 1.24748 0.623740 0.781632i \(-0.285612\pi\)
0.623740 + 0.781632i \(0.285612\pi\)
\(822\) 6.16289e100 1.68541
\(823\) 4.69012e100 1.22996 0.614978 0.788544i \(-0.289165\pi\)
0.614978 + 0.788544i \(0.289165\pi\)
\(824\) −7.59023e100 −1.90883
\(825\) −9.49974e100 −2.29113
\(826\) −5.87166e100 −1.35815
\(827\) 4.85405e100 1.07687 0.538436 0.842666i \(-0.319015\pi\)
0.538436 + 0.842666i \(0.319015\pi\)
\(828\) 5.94263e98 0.0126454
\(829\) 1.00919e100 0.205988 0.102994 0.994682i \(-0.467158\pi\)
0.102994 + 0.994682i \(0.467158\pi\)
\(830\) −1.94833e100 −0.381477
\(831\) 1.07094e101 2.01154
\(832\) −5.63949e99 −0.101621
\(833\) −5.57082e100 −0.963089
\(834\) −1.26554e101 −2.09917
\(835\) 1.34354e101 2.13830
\(836\) −1.65756e100 −0.253135
\(837\) 2.43330e100 0.356589
\(838\) 3.62252e100 0.509439
\(839\) −9.55850e100 −1.29004 −0.645019 0.764167i \(-0.723150\pi\)
−0.645019 + 0.764167i \(0.723150\pi\)
\(840\) 2.36006e101 3.05694
\(841\) −7.84746e100 −0.975589
\(842\) 1.04174e101 1.24307
\(843\) −9.09402e100 −1.04161
\(844\) −1.58787e99 −0.0174583
\(845\) 1.45523e101 1.53594
\(846\) −8.55071e100 −0.866413
\(847\) 9.73824e100 0.947334
\(848\) −1.19765e101 −1.11860
\(849\) −1.35226e101 −1.21268
\(850\) −1.28469e101 −1.10623
\(851\) −1.67932e100 −0.138856
\(852\) −3.03469e100 −0.240962
\(853\) −1.93739e101 −1.47732 −0.738662 0.674076i \(-0.764542\pi\)
−0.738662 + 0.674076i \(0.764542\pi\)
\(854\) 1.34141e101 0.982351
\(855\) 1.13661e101 0.799428
\(856\) 3.78147e100 0.255456
\(857\) −1.15045e101 −0.746500 −0.373250 0.927731i \(-0.621757\pi\)
−0.373250 + 0.927731i \(0.621757\pi\)
\(858\) 2.10126e100 0.130969
\(859\) 1.59766e101 0.956578 0.478289 0.878203i \(-0.341257\pi\)
0.478289 + 0.878203i \(0.341257\pi\)
\(860\) −4.08937e99 −0.0235212
\(861\) −1.29051e101 −0.713102
\(862\) 7.32010e100 0.388612
\(863\) −1.27110e101 −0.648345 −0.324172 0.945998i \(-0.605086\pi\)
−0.324172 + 0.945998i \(0.605086\pi\)
\(864\) −4.56592e100 −0.223771
\(865\) 8.11688e100 0.382238
\(866\) 3.02431e101 1.36854
\(867\) −5.35217e100 −0.232740
\(868\) 5.90144e100 0.246620
\(869\) 1.48890e101 0.597974
\(870\) 6.97290e100 0.269153
\(871\) −1.42869e100 −0.0530042
\(872\) 2.56628e101 0.915137
\(873\) 1.72851e101 0.592489
\(874\) 1.94328e100 0.0640311
\(875\) −2.80444e101 −0.888317
\(876\) 1.31696e100 0.0401034
\(877\) 9.97885e100 0.292142 0.146071 0.989274i \(-0.453337\pi\)
0.146071 + 0.989274i \(0.453337\pi\)
\(878\) −4.96548e101 −1.39766
\(879\) −8.13362e101 −2.20124
\(880\) −5.44514e101 −1.41696
\(881\) 7.47754e100 0.187107 0.0935535 0.995614i \(-0.470177\pi\)
0.0935535 + 0.995614i \(0.470177\pi\)
\(882\) 2.38787e101 0.574572
\(883\) 1.70719e101 0.395036 0.197518 0.980299i \(-0.436712\pi\)
0.197518 + 0.980299i \(0.436712\pi\)
\(884\) −8.71442e99 −0.0193926
\(885\) 9.93919e101 2.12720
\(886\) 8.12314e100 0.167209
\(887\) 5.22741e101 1.03496 0.517478 0.855697i \(-0.326871\pi\)
0.517478 + 0.855697i \(0.326871\pi\)
\(888\) −1.14549e102 −2.18144
\(889\) −1.09669e102 −2.00896
\(890\) 2.97971e101 0.525071
\(891\) 9.39510e101 1.59265
\(892\) −1.10406e100 −0.0180055
\(893\) 8.57494e101 1.34541
\(894\) −3.86131e101 −0.582895
\(895\) −3.33285e101 −0.484084
\(896\) 5.28195e101 0.738190
\(897\) 7.55470e99 0.0101596
\(898\) 2.43951e101 0.315696
\(899\) 9.17283e100 0.114234
\(900\) −1.68874e101 −0.202393
\(901\) −1.23418e102 −1.42355
\(902\) 3.96138e101 0.439765
\(903\) −1.10650e101 −0.118229
\(904\) 6.70044e101 0.689116
\(905\) 1.52922e101 0.151388
\(906\) −9.15352e101 −0.872298
\(907\) 1.78006e102 1.63299 0.816497 0.577350i \(-0.195913\pi\)
0.816497 + 0.577350i \(0.195913\pi\)
\(908\) 2.84125e101 0.250927
\(909\) −2.19608e101 −0.186722
\(910\) 2.17479e101 0.178028
\(911\) −5.06510e101 −0.399213 −0.199606 0.979876i \(-0.563966\pi\)
−0.199606 + 0.979876i \(0.563966\pi\)
\(912\) 9.96306e101 0.756085
\(913\) −4.96268e101 −0.362639
\(914\) −1.55377e102 −1.09331
\(915\) −2.27066e102 −1.53860
\(916\) −2.29017e101 −0.149442
\(917\) −1.91291e102 −1.20213
\(918\) 6.37158e101 0.385633
\(919\) −1.40587e102 −0.819523 −0.409762 0.912193i \(-0.634388\pi\)
−0.409762 + 0.912193i \(0.634388\pi\)
\(920\) −2.60464e101 −0.146240
\(921\) 1.22416e102 0.662037
\(922\) 1.63961e102 0.854128
\(923\) −1.47117e101 −0.0738250
\(924\) 1.14267e102 0.552382
\(925\) 4.77218e102 2.22243
\(926\) −3.06502e102 −1.37517
\(927\) 2.51997e102 1.08929
\(928\) −1.72122e101 −0.0716854
\(929\) 6.77380e101 0.271826 0.135913 0.990721i \(-0.456603\pi\)
0.135913 + 0.990721i \(0.456603\pi\)
\(930\) 3.25744e102 1.25955
\(931\) −2.39464e102 −0.892227
\(932\) 7.05202e101 0.253201
\(933\) 1.98736e102 0.687639
\(934\) −9.23811e101 −0.308046
\(935\) −5.61123e102 −1.80326
\(936\) 1.96510e101 0.0608650
\(937\) 1.41794e102 0.423295 0.211647 0.977346i \(-0.432117\pi\)
0.211647 + 0.977346i \(0.432117\pi\)
\(938\) 2.53342e102 0.728970
\(939\) −5.15795e102 −1.43059
\(940\) −2.18469e102 −0.584087
\(941\) 2.70724e102 0.697726 0.348863 0.937174i \(-0.386568\pi\)
0.348863 + 0.937174i \(0.386568\pi\)
\(942\) −6.52107e102 −1.62018
\(943\) 1.42424e101 0.0341139
\(944\) 3.32233e102 0.767200
\(945\) 4.87638e102 1.08568
\(946\) 3.39655e101 0.0729111
\(947\) −8.25080e102 −1.70774 −0.853870 0.520487i \(-0.825750\pi\)
−0.853870 + 0.520487i \(0.825750\pi\)
\(948\) 6.94074e101 0.138522
\(949\) 6.38442e100 0.0122867
\(950\) −5.52229e102 −1.02484
\(951\) −6.24935e101 −0.111843
\(952\) 8.12950e102 1.40310
\(953\) −5.79812e102 −0.965122 −0.482561 0.875862i \(-0.660293\pi\)
−0.482561 + 0.875862i \(0.660293\pi\)
\(954\) 5.29019e102 0.849282
\(955\) 5.10403e102 0.790309
\(956\) −3.60650e101 −0.0538627
\(957\) 1.77610e102 0.255862
\(958\) 5.89735e102 0.819496
\(959\) 1.62471e103 2.17788
\(960\) −1.69278e103 −2.18899
\(961\) −3.73084e102 −0.465424
\(962\) −1.05556e102 −0.127041
\(963\) −1.25546e102 −0.145779
\(964\) −2.43517e102 −0.272817
\(965\) 1.25089e103 1.35216
\(966\) −1.33964e102 −0.139726
\(967\) 4.01425e102 0.404009 0.202004 0.979385i \(-0.435254\pi\)
0.202004 + 0.979385i \(0.435254\pi\)
\(968\) −7.33099e102 −0.711972
\(969\) 1.02670e103 0.962213
\(970\) −1.44008e103 −1.30245
\(971\) 5.69960e102 0.497486 0.248743 0.968570i \(-0.419983\pi\)
0.248743 + 0.968570i \(0.419983\pi\)
\(972\) 3.02089e102 0.254477
\(973\) −3.33632e103 −2.71253
\(974\) 6.51998e101 0.0511638
\(975\) −2.14685e102 −0.162608
\(976\) −7.59005e102 −0.554915
\(977\) 8.26703e102 0.583428 0.291714 0.956506i \(-0.405774\pi\)
0.291714 + 0.956506i \(0.405774\pi\)
\(978\) 2.19010e103 1.49201
\(979\) 7.58975e102 0.499142
\(980\) 6.10095e102 0.387345
\(981\) −8.52012e102 −0.522234
\(982\) 1.38234e102 0.0818030
\(983\) −6.43048e102 −0.367407 −0.183703 0.982982i \(-0.558809\pi\)
−0.183703 + 0.982982i \(0.558809\pi\)
\(984\) 9.71498e102 0.535934
\(985\) −1.59346e103 −0.848770
\(986\) 2.40190e102 0.123538
\(987\) −5.91132e103 −2.93591
\(988\) −3.74592e101 −0.0179657
\(989\) 1.22117e101 0.00565593
\(990\) 2.40519e103 1.07581
\(991\) 3.91036e103 1.68918 0.844590 0.535413i \(-0.179844\pi\)
0.844590 + 0.535413i \(0.179844\pi\)
\(992\) −8.04079e102 −0.335464
\(993\) 4.45801e103 1.79635
\(994\) 2.60876e103 1.01532
\(995\) 3.29107e103 1.23720
\(996\) −2.31344e102 −0.0840060
\(997\) −5.45024e103 −1.91176 −0.955878 0.293763i \(-0.905092\pi\)
−0.955878 + 0.293763i \(0.905092\pi\)
\(998\) 2.23947e103 0.758826
\(999\) −2.36682e103 −0.774740
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))