Maass form invariants
Level: | \( 31 \) |
Weight: | \( 0 \) |
Character: | 31.1 |
Symmetry: | odd |
Fricke sign: | $+1$ |
Spectral parameter: | \(2.2806857382355253830551205564 \pm 4 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -0.83926043 \pm 1.4 \cdot 10^{-6} \) | \(a_{3}= +0.51575128 \pm 1.3 \cdot 10^{-6} \) |
\(a_{4}= -0.29564193 \pm 1.6 \cdot 10^{-6} \) | \(a_{5}= -1.53687913 \pm 1.2 \cdot 10^{-6} \) | \(a_{6}= -0.43284964 \pm 1.6 \cdot 10^{-6} \) |
\(a_{7}= -0.22386340 \pm 1.2 \cdot 10^{-6} \) | \(a_{8}= +1.08738100 \pm 1.6 \cdot 10^{-6} \) | \(a_{9}= -0.73400062 \pm 1.2 \cdot 10^{-6} \) |
\(a_{10}= +1.28984184 \pm 1.5 \cdot 10^{-6} \) | \(a_{11}= +1.73696830 \pm 1.2 \cdot 10^{-6} \) | \(a_{12}= -0.15247770 \pm 1.9 \cdot 10^{-6} \) |
\(a_{13}= -1.41986022 \pm 1.2 \cdot 10^{-6} \) | \(a_{14}= +0.18787969 \pm 1.2 \cdot 10^{-6} \) | \(a_{15}= -0.79264737 \pm 1.2 \cdot 10^{-6} \) |
\(a_{16}= -0.61695392 \pm 1.4 \cdot 10^{-6} \) | \(a_{17}= -0.29357228 \pm 1.1 \cdot 10^{-6} \) | \(a_{18}= +0.61601768 \pm 1.6 \cdot 10^{-6} \) |
\(a_{19}= -0.81892866 \pm 1.2 \cdot 10^{-6} \) | \(a_{20}= +0.45436591 \pm 1.5 \cdot 10^{-6} \) | \(a_{21}= -0.11545783 \pm 1.2 \cdot 10^{-6} \) |
\(a_{22}= -1.45776877 \pm 1.3 \cdot 10^{-6} \) | \(a_{23}= -0.01589541 \pm 1.1 \cdot 10^{-6} \) | \(a_{24}= +0.56081814 \pm 2.0 \cdot 10^{-6} \) |
\(a_{25}= +1.36199745 \pm 1.1 \cdot 10^{-6} \) | \(a_{26}= +1.19163250 \pm 1.2 \cdot 10^{-6} \) | \(a_{27}= -0.89431303 \pm 1.1 \cdot 10^{-6} \) |
\(a_{28}= +0.06618341 \pm 1.2 \cdot 10^{-6} \) | \(a_{29}= -0.64307468 \pm 1.1 \cdot 10^{-6} \) | \(a_{30}= +0.66523757 \pm 1.6 \cdot 10^{-6} \) |
\(a_{31}= -0.17960530 \pm 1.0 \cdot 10^{-8} \) | \(a_{32}= -0.56959599 \pm 1.6 \cdot 10^{-6} \) | \(a_{33}= +0.89584362 \pm 1.2 \cdot 10^{-6} \) |
\(a_{34}= +0.24638360 \pm 1.5 \cdot 10^{-6} \) | \(a_{35}= +0.34405098 \pm 1.1 \cdot 10^{-6} \) | \(a_{36}= +0.21700136 \pm 1.7 \cdot 10^{-6} \) |
\(a_{37}= -0.14559214 \pm 1.1 \cdot 10^{-6} \) | \(a_{38}= +0.68729442 \pm 1.5 \cdot 10^{-6} \) | \(a_{39}= -0.73229472 \pm 1.2 \cdot 10^{-6} \) |
\(a_{40}= -1.67117317 \pm 1.6 \cdot 10^{-6} \) | \(a_{41}= -0.51594193 \pm 1.0 \cdot 10^{-6} \) | \(a_{42}= +0.09689919 \pm 1.4 \cdot 10^{-6} \) |
\(a_{43}= +1.43130308 \pm 1.0 \cdot 10^{-6} \) | \(a_{44}= -0.51352066 \pm 1.2 \cdot 10^{-6} \) | \(a_{45}= +1.12807023 \pm 1.2 \cdot 10^{-6} \) |
\(a_{46}= +0.01334039 \pm 1.1 \cdot 10^{-6} \) | \(a_{47}= +1.00443573 \pm 1.0 \cdot 10^{-6} \) | \(a_{48}= -0.31819477 \pm 1.8 \cdot 10^{-6} \) |
\(a_{49}= -0.94988518 \pm 1.1 \cdot 10^{-6} \) | \(a_{50}= -1.14307056 \pm 1.4 \cdot 10^{-6} \) | \(a_{51}= -0.15141028 \pm 1.3 \cdot 10^{-6} \) |
\(a_{52}= +0.41977021 \pm 1.2 \cdot 10^{-6} \) | \(a_{53}= -0.15450433 \pm 1.1 \cdot 10^{-6} \) | \(a_{54}= +0.75056154 \pm 1.4 \cdot 10^{-6} \) |
\(a_{55}= -2.66951033 \pm 1.2 \cdot 10^{-6} \) | \(a_{56}= -0.24342481 \pm 1.2 \cdot 10^{-6} \) | \(a_{57}= -0.42236350 \pm 1.2 \cdot 10^{-6} \) |
\(a_{58}= +0.53970713 \pm 1.3 \cdot 10^{-6} \) | \(a_{59}= +0.83387642 \pm 1.2 \cdot 10^{-6} \) | \(a_{60}= +0.23433980 \pm 1.9 \cdot 10^{-6} \) |
\(a_{61}= -0.81371056 \pm 1.1 \cdot 10^{-6} \) | \(a_{62}= +0.15073562 \pm 1.4 \cdot 10^{-6} \) | \(a_{63}= +0.16431587 \pm 1.4 \cdot 10^{-6} \) |
\(a_{64}= +1.09499330 \pm 1.5 \cdot 10^{-6} \) | \(a_{65}= +2.18215354 \pm 1.2 \cdot 10^{-6} \) | \(a_{66}= -0.75184610 \pm 1.3 \cdot 10^{-6} \) |
\(a_{67}= -0.59624489 \pm 9.9 \cdot 10^{-7} \) | \(a_{68}= +0.08679227 \pm 1.8 \cdot 10^{-6} \) | \(a_{69}= -0.00819808 \pm 1.3 \cdot 10^{-6} \) |
\(a_{70}= -0.28874838 \pm 1.2 \cdot 10^{-6} \) | \(a_{71}= +0.16298140 \pm 9.6 \cdot 10^{-7} \) | \(a_{72}= -0.79813833 \pm 1.6 \cdot 10^{-6} \) |
\(a_{73}= +1.00179964 \pm 1.0 \cdot 10^{-6} \) | \(a_{74}= +0.12218972 \pm 1.3 \cdot 10^{-6} \) | \(a_{75}= +0.70245192 \pm 1.1 \cdot 10^{-6} \) |
\(a_{76}= +0.24210965 \pm 1.4 \cdot 10^{-6} \) | \(a_{77}= -0.38884363 \pm 1.0 \cdot 10^{-6} \) | \(a_{78}= +0.61458598 \pm 1.2 \cdot 10^{-6} \) |
\(a_{79}= -0.85960283 \pm 1.2 \cdot 10^{-6} \) | \(a_{80}= +0.94818360 \pm 1.3 \cdot 10^{-6} \) | \(a_{81}= +0.27275754 \pm 1.2 \cdot 10^{-6} \) |
\(a_{82}= +0.43300965 \pm 1.4 \cdot 10^{-6} \) | \(a_{83}= -0.67182150 \pm 1.0 \cdot 10^{-6} \) | \(a_{84}= +0.03413418 \pm 1.5 \cdot 10^{-6} \) |
\(a_{85}= +0.45118511 \pm 1.0 \cdot 10^{-6} \) | \(a_{86}= -1.20123604 \pm 1.2 \cdot 10^{-6} \) | \(a_{87}= -0.33166658 \pm 1.3 \cdot 10^{-6} \) |
\(a_{88}= +1.88874634 \pm 1.2 \cdot 10^{-6} \) | \(a_{89}= -1.62060661 \pm 1.0 \cdot 10^{-6} \) | \(a_{90}= -0.94674471 \pm 1.5 \cdot 10^{-6} \) |
\(a_{91}= +0.31785474 \pm 1.3 \cdot 10^{-6} \) | \(a_{92}= +0.00469935 \pm 1.2 \cdot 10^{-6} \) | \(a_{93}= -0.09263166 \pm 1.3 \cdot 10^{-6} \) |
\(a_{94}= -0.84298317 \pm 1.4 \cdot 10^{-6} \) | \(a_{95}= +1.25859437 \pm 1.3 \cdot 10^{-6} \) | \(a_{96}= -0.29376986 \pm 2.0 \cdot 10^{-6} \) |
\(a_{97}= -0.97578723 \pm 1.1 \cdot 10^{-6} \) | \(a_{98}= +0.79720104 \pm 1.1 \cdot 10^{-6} \) | \(a_{99}= -1.27493581 \pm 1.1 \cdot 10^{-6} \) |
\(a_{100}= -0.40266355 \pm 1.4 \cdot 10^{-6} \) | \(a_{101}= -1.20918820 \pm 1.2 \cdot 10^{-6} \) | \(a_{102}= +0.12707265 \pm 1.8 \cdot 10^{-6} \) |
\(a_{103}= -0.54776050 \pm 1.0 \cdot 10^{-6} \) | \(a_{104}= -1.54392903 \pm 1.3 \cdot 10^{-6} \) | \(a_{105}= +0.17744473 \pm 1.1 \cdot 10^{-6} \) |
\(a_{106}= +0.12966937 \pm 1.3 \cdot 10^{-6} \) | \(a_{107}= +1.33742784 \pm 1.0 \cdot 10^{-6} \) | \(a_{108}= +0.26439643 \pm 1.4 \cdot 10^{-6} \) |
\(a_{109}= -0.84196080 \pm 1.1 \cdot 10^{-6} \) | \(a_{110}= +2.24041439 \pm 1.2 \cdot 10^{-6} \) | \(a_{111}= -0.07508933 \pm 1.1 \cdot 10^{-6} \) |
\(a_{112}= +0.13811340 \pm 1.0 \cdot 10^{-6} \) | \(a_{113}= +1.01429733 \pm 1.0 \cdot 10^{-6} \) | \(a_{114}= +0.35447298 \pm 1.3 \cdot 10^{-6} \) |
\(a_{115}= +0.02442932 \pm 1.0 \cdot 10^{-6} \) | \(a_{116}= +0.19011984 \pm 1.4 \cdot 10^{-6} \) | \(a_{117}= +1.04217829 \pm 1.2 \cdot 10^{-6} \) |
\(a_{118}= -0.69983949 \pm 1.7 \cdot 10^{-6} \) | \(a_{119}= +0.06572009 \pm 9.2 \cdot 10^{-7} \) | \(a_{120}= -0.86190969 \pm 1.8 \cdot 10^{-6} \) |
\(a_{121}= +2.01705888 \pm 1.2 \cdot 10^{-6} \) | \(a_{122}= +0.68291508 \pm 1.6 \cdot 10^{-6} \) | \(a_{123}= -0.26609771 \pm 1.3 \cdot 10^{-6} \) |
\(a_{124}= +0.05309886 \pm 1.6 \cdot 10^{-6} \) | \(a_{125}= -0.55634632 \pm 1.2 \cdot 10^{-6} \) | \(a_{126}= -0.13790381 \pm 1.7 \cdot 10^{-6} \) |
\(a_{127}= -0.63106079 \pm 1.2 \cdot 10^{-6} \) | \(a_{128}= -0.34938856 \pm 1.4 \cdot 10^{-6} \) | \(a_{129}= +0.73819639 \pm 9.8 \cdot 10^{-7} \) |
\(a_{130}= -1.83139512 \pm 1.2 \cdot 10^{-6} \) | \(a_{131}= +0.89867042 \pm 1.2 \cdot 10^{-6} \) | \(a_{132}= -0.26484893 \pm 1.3 \cdot 10^{-6} \) |
\(a_{133}= +0.18332815 \pm 1.1 \cdot 10^{-6} \) | \(a_{134}= +0.50040475 \pm 1.1 \cdot 10^{-6} \) | \(a_{135}= +1.37445103 \pm 1.0 \cdot 10^{-6} \) |
\(a_{136}= -0.31922492 \pm 1.9 \cdot 10^{-6} \) | \(a_{137}= +0.56143491 \pm 1.1 \cdot 10^{-6} \) | \(a_{138}= +0.00688032 \pm 1.1 \cdot 10^{-6} \) |
\(a_{139}= +0.21394267 \pm 9.1 \cdot 10^{-7} \) | \(a_{140}= -0.10171590 \pm 1.1 \cdot 10^{-6} \) | \(a_{141}= +0.51803901 \pm 1.3 \cdot 10^{-6} \) |
\(a_{142}= -0.13678384 \pm 1.0 \cdot 10^{-6} \) | \(a_{143}= -2.46625220 \pm 1.2 \cdot 10^{-6} \) | \(a_{144}= +0.45284456 \pm 1.5 \cdot 10^{-6} \) |
\(a_{145}= +0.98832805 \pm 1.0 \cdot 10^{-6} \) | \(a_{146}= -0.84077080 \pm 1.3 \cdot 10^{-6} \) | \(a_{147}= -0.48990449 \pm 1.2 \cdot 10^{-6} \) |
\(a_{148}= +0.04304314 \pm 1.5 \cdot 10^{-6} \) | \(a_{149}= -0.96041586 \pm 1.0 \cdot 10^{-6} \) | \(a_{150}= -0.58954010 \pm 1.5 \cdot 10^{-6} \) |
\(a_{151}= -1.53246600 \pm 1.1 \cdot 10^{-6} \) | \(a_{152}= -0.89048747 \pm 1.3 \cdot 10^{-6} \) | \(a_{153}= +0.21548224 \pm 1.1 \cdot 10^{-6} \) |
\(a_{154}= +0.32634107 \pm 1.1 \cdot 10^{-6} \) | \(a_{155}= +0.27603164 \pm 1.2 \cdot 10^{-6} \) | \(a_{156}= +0.21649702 \pm 1.3 \cdot 10^{-6} \) |
\(a_{157}= -0.13434526 \pm 1.0 \cdot 10^{-6} \) | \(a_{158}= +0.72143064 \pm 1.5 \cdot 10^{-6} \) | \(a_{159}= -0.07968581 \pm 1.1 \cdot 10^{-6} \) |
\(a_{160}= +0.87540018 \pm 1.4 \cdot 10^{-6} \) | \(a_{161}= +0.00355840 \pm 1.0 \cdot 10^{-6} \) | \(a_{162}= -0.22891461 \pm 1.7 \cdot 10^{-6} \) |
\(a_{163}= +0.31524533 \pm 1.2 \cdot 10^{-6} \) | \(a_{164}= +0.15253407 \pm 1.7 \cdot 10^{-6} \) | \(a_{165}= -1.37680335 \pm 1.1 \cdot 10^{-6} \) |
\(a_{166}= +0.56383321 \pm 1.3 \cdot 10^{-6} \) | \(a_{167}= -0.16138759 \pm 1.2 \cdot 10^{-6} \) | \(a_{168}= -0.12554665 \pm 1.3 \cdot 10^{-6} \) |
\(a_{169}= +1.01600305 \pm 1.1 \cdot 10^{-6} \) | \(a_{170}= -0.37866181 \pm 1.3 \cdot 10^{-6} \) | \(a_{171}= +0.60109415 \pm 1.1 \cdot 10^{-6} \) |
\(a_{172}= -0.42315320 \pm 1.1 \cdot 10^{-6} \) | \(a_{173}= +1.87708645 \pm 1.2 \cdot 10^{-6} \) | \(a_{174}= +0.27835464 \pm 1.6 \cdot 10^{-6} \) |
\(a_{175}= -0.30490138 \pm 1.0 \cdot 10^{-6} \) | \(a_{176}= -1.07162941 \pm 7.9 \cdot 10^{-7} \) | \(a_{177}= +0.43007283 \pm 1.3 \cdot 10^{-6} \) |
\(a_{178}= +1.36011100 \pm 1.1 \cdot 10^{-6} \) | \(a_{179}= -0.68572435 \pm 1.3 \cdot 10^{-6} \) | \(a_{180}= -0.33350486 \pm 1.6 \cdot 10^{-6} \) |
\(a_{181}= -0.29728616 \pm 1.0 \cdot 10^{-6} \) | \(a_{182}= -0.26676290 \pm 1.2 \cdot 10^{-6} \) | \(a_{183}= -0.41967226 \pm 1.2 \cdot 10^{-6} \) |
\(a_{184}= -0.01728437 \pm 1.4 \cdot 10^{-6} \) | \(a_{185}= +0.22375751 \pm 1.0 \cdot 10^{-6} \) | \(a_{186}= +0.07774209 \pm 2.8 \cdot 10^{-6} \) |
\(a_{187}= -0.50992574 \pm 8.9 \cdot 10^{-7} \) | \(a_{188}= -0.29695332 \pm 1.7 \cdot 10^{-6} \) | \(a_{189}= +0.20020395 \pm 1.3 \cdot 10^{-6} \) |
\(a_{190}= -1.05628845 \pm 1.6 \cdot 10^{-6} \) | \(a_{191}= -1.25141167 \pm 1.2 \cdot 10^{-6} \) | \(a_{192}= +0.56474419 \pm 1.9 \cdot 10^{-6} \) |
\(a_{193}= -1.17635414 \pm 1.1 \cdot 10^{-6} \) | \(a_{194}= +0.81893961 \pm 1.4 \cdot 10^{-6} \) | \(a_{195}= +1.12544847 \pm 1.0 \cdot 10^{-6} \) |
\(a_{196}= +0.28082589 \pm 1.4 \cdot 10^{-6} \) | \(a_{197}= -0.74283227 \pm 9.0 \cdot 10^{-7} \) | \(a_{198}= +1.07000318 \pm 1.2 \cdot 10^{-6} \) |
\(a_{199}= +0.69736019 \pm 1.0 \cdot 10^{-6} \) | \(a_{200}= +1.48101015 \pm 1.2 \cdot 10^{-6} \) | \(a_{201}= -0.30751406 \pm 1.0 \cdot 10^{-6} \) |
\(a_{202}= +1.01482381 \pm 1.5 \cdot 10^{-6} \) | \(a_{203}= +0.14396088 \pm 1.1 \cdot 10^{-6} \) | \(a_{204}= +0.04476323 \pm 2.2 \cdot 10^{-6} \) |
\(a_{205}= +0.79294038 \pm 1.0 \cdot 10^{-6} \) | \(a_{206}= +0.45971372 \pm 1.2 \cdot 10^{-6} \) | \(a_{207}= +0.01166724 \pm 1.0 \cdot 10^{-6} \) |
\(a_{208}= +0.87598833 \pm 1.2 \cdot 10^{-6} \) | \(a_{209}= -1.42245313 \pm 1.3 \cdot 10^{-6} \) | \(a_{210}= -0.14892234 \pm 1.5 \cdot 10^{-6} \) |
\(a_{211}= +1.52629236 \pm 1.1 \cdot 10^{-6} \) | \(a_{212}= +0.04567796 \pm 1.4 \cdot 10^{-6} \) | \(a_{213}= +0.08405787 \pm 1.1 \cdot 10^{-6} \) |
\(a_{214}= -1.12245027 \pm 1.1 \cdot 10^{-6} \) | \(a_{215}= -2.19973982 \pm 1.1 \cdot 10^{-6} \) | \(a_{216}= -0.97245900 \pm 1.2 \cdot 10^{-6} \) |
\(a_{217}= +0.04020705 \pm 1.2 \cdot 10^{-6} \) | \(a_{218}= +0.70662438 \pm 1.4 \cdot 10^{-6} \) | \(a_{219}= +0.51667944 \pm 1.0 \cdot 10^{-6} \) |
\(a_{220}= +0.78921918 \pm 1.0 \cdot 10^{-6} \) | \(a_{221}= +0.41683160 \pm 1.1 \cdot 10^{-6} \) | \(a_{222}= +0.06301950 \pm 1.4 \cdot 10^{-6} \) |
\(a_{223}= -1.08232679 \pm 1.3 \cdot 10^{-6} \) | \(a_{224}= +0.12751169 \pm 1.2 \cdot 10^{-6} \) | \(a_{225}= -0.99970697 \pm 1.0 \cdot 10^{-6} \) |
\(a_{226}= -0.85125962 \pm 1.3 \cdot 10^{-6} \) | \(a_{227}= +0.79444172 \pm 1.1 \cdot 10^{-6} \) | \(a_{228}= +0.12486836 \pm 1.4 \cdot 10^{-6} \) |
\(a_{229}= +1.05116221 \pm 1.2 \cdot 10^{-6} \) | \(a_{230}= -0.02050257 \pm 1.1 \cdot 10^{-6} \) | \(a_{231}= -0.20054660 \pm 1.2 \cdot 10^{-6} \) |
\(a_{232}= -0.69926719 \pm 1.3 \cdot 10^{-6} \) | \(a_{233}= -0.43741105 \pm 9.3 \cdot 10^{-7} \) | \(a_{234}= -0.87465900 \pm 1.3 \cdot 10^{-6} \) |
\(a_{235}= -1.54369631 \pm 1.1 \cdot 10^{-6} \) | \(a_{236}= -0.24652883 \pm 1.9 \cdot 10^{-6} \) | \(a_{237}= -0.44334125 \pm 1.3 \cdot 10^{-6} \) |
\(a_{238}= -0.05515627 \pm 8.8 \cdot 10^{-7} \) | \(a_{239}= +0.46994294 \pm 1.2 \cdot 10^{-6} \) | \(a_{240}= +0.48902690 \pm 1.6 \cdot 10^{-6} \) |
\(a_{241}= -1.34685808 \pm 9.5 \cdot 10^{-7} \) | \(a_{242}= -1.69283771 \pm 1.4 \cdot 10^{-6} \) | \(a_{243}= +1.03498808 \pm 1.3 \cdot 10^{-6} \) |
\(a_{244}= +0.24056696 \pm 1.9 \cdot 10^{-6} \) | \(a_{245}= +1.45985870 \pm 1.0 \cdot 10^{-6} \) | \(a_{246}= +0.22332528 \pm 1.9 \cdot 10^{-6} \) |
\(a_{247}= +1.16276424 \pm 1.2 \cdot 10^{-6} \) | \(a_{248}= -0.19529939 \pm 1.6 \cdot 10^{-6} \) | \(a_{249}= -0.34649280 \pm 1.1 \cdot 10^{-6} \) |
\(a_{250}= +0.46691945 \pm 1.6 \cdot 10^{-6} \) | \(a_{251}= -0.33455000 \pm 1.1 \cdot 10^{-6} \) | \(a_{252}= -0.04857866 \pm 1.7 \cdot 10^{-6} \) |
\(a_{253}= -0.02760982 \pm 1.0 \cdot 10^{-6} \) | \(a_{254}= +0.52962436 \pm 1.4 \cdot 10^{-6} \) | \(a_{255}= +0.23269929 \pm 1.2 \cdot 10^{-6} \) |
\(a_{256}= -0.80176530 \pm 1.4 \cdot 10^{-6} \) | \(a_{257}= -1.20542611 \pm 1.1 \cdot 10^{-6} \) | \(a_{258}= -0.61953902 \pm 1.3 \cdot 10^{-6} \) |
\(a_{259}= +0.03259275 \pm 1.1 \cdot 10^{-6} \) | \(a_{260}= -0.64513608 \pm 1.1 \cdot 10^{-6} \) | \(a_{261}= +0.47201721 \pm 1.1 \cdot 10^{-6} \) |
\(a_{262}= -0.75421853 \pm 1.4 \cdot 10^{-6} \) | \(a_{263}= +1.69786704 \pm 1.2 \cdot 10^{-6} \) | \(a_{264}= +0.97412333 \pm 1.2 \cdot 10^{-6} \) |
\(a_{265}= +0.23745449 \pm 1.0 \cdot 10^{-6} \) | \(a_{266}= -0.15386007 \pm 1.3 \cdot 10^{-6} \) | \(a_{267}= -0.83582993 \pm 1.0 \cdot 10^{-6} \) |
\(a_{268}= +0.17627499 \pm 1.1 \cdot 10^{-6} \) | \(a_{269}= +1.42239408 \pm 1.0 \cdot 10^{-6} \) | \(a_{270}= -1.15352237 \pm 1.3 \cdot 10^{-6} \) |
\(a_{271}= +0.14736338 \pm 1.4 \cdot 10^{-6} \) | \(a_{272}= +0.18112057 \pm 1.8 \cdot 10^{-6} \) | \(a_{273}= +0.16393399 \pm 1.2 \cdot 10^{-6} \) |
\(a_{274}= -0.47119011 \pm 1.4 \cdot 10^{-6} \) | \(a_{275}= +2.36574639 \pm 1.3 \cdot 10^{-6} \) | \(a_{276}= +0.00242370 \pm 1.3 \cdot 10^{-6} \) |
\(a_{277}= +1.67792245 \pm 1.1 \cdot 10^{-6} \) | \(a_{278}= -0.17955362 \pm 1.1 \cdot 10^{-6} \) | \(a_{279}= +0.13183040 \pm 1.2 \cdot 10^{-6} \) |
\(a_{280}= +0.37411451 \pm 1.1 \cdot 10^{-6} \) | \(a_{281}= +0.70781890 \pm 1.1 \cdot 10^{-6} \) | \(a_{282}= -0.43476964 \pm 1.8 \cdot 10^{-6} \) |
\(a_{283}= -0.13437540 \pm 1.1 \cdot 10^{-6} \) | \(a_{284}= -0.04818414 \pm 9.9 \cdot 10^{-7} \) | \(a_{285}= +0.64912165 \pm 1.3 \cdot 10^{-6} \) |
\(a_{286}= +2.06982789 \pm 1.3 \cdot 10^{-6} \) | \(a_{287}= +0.11550051 \pm 1.0 \cdot 10^{-6} \) | \(a_{288}= +0.41808381 \pm 1.6 \cdot 10^{-6} \) |
\(a_{289}= -0.91381532 \pm 1.2 \cdot 10^{-6} \) | \(a_{290}= -0.82946462 \pm 1.3 \cdot 10^{-6} \) | \(a_{291}= -0.50326351 \pm 1.4 \cdot 10^{-6} \) |
\(a_{292}= -0.29617398 \pm 1.3 \cdot 10^{-6} \) | \(a_{293}= -1.39756388 \pm 1.0 \cdot 10^{-6} \) | \(a_{294}= +0.41115746 \pm 1.3 \cdot 10^{-6} \) |
\(a_{295}= -1.28156727 \pm 1.1 \cdot 10^{-6} \) | \(a_{296}= -0.15831412 \pm 1.5 \cdot 10^{-6} \) | \(a_{297}= -1.55339339 \pm 9.5 \cdot 10^{-7} \) |
\(a_{298}= +0.80603903 \pm 1.3 \cdot 10^{-6} \) | \(a_{299}= +0.02256926 \pm 1.1 \cdot 10^{-6} \) | \(a_{300}= -0.20767424 \pm 1.5 \cdot 10^{-6} \) |
\(a_{301}= -0.32041637 \pm 1.0 \cdot 10^{-6} \) | \(a_{302}= +1.28613808 \pm 1.2 \cdot 10^{-6} \) | \(a_{303}= -0.62364036 \pm 1.5 \cdot 10^{-6} \) |
\(a_{304}= +0.50524125 \pm 9.6 \cdot 10^{-7} \) | \(a_{305}= +1.25057478 \pm 1.1 \cdot 10^{-6} \) | \(a_{306}= -0.18084571 \pm 1.3 \cdot 10^{-6} \) |
\(a_{307}= +0.09850949 \pm 1.2 \cdot 10^{-6} \) | \(a_{308}= +0.11495848 \pm 1.1 \cdot 10^{-6} \) | \(a_{309}= -0.28250818 \pm 1.2 \cdot 10^{-6} \) |
\(a_{310}= -0.23166243 \pm 2.7 \cdot 10^{-6} \) | \(a_{311}= -1.23573552 \pm 9.6 \cdot 10^{-7} \) | \(a_{312}= -0.79628337 \pm 1.4 \cdot 10^{-6} \) |
\(a_{313}= +0.39779593 \pm 1.2 \cdot 10^{-6} \) | \(a_{314}= +0.11275066 \pm 1.2 \cdot 10^{-6} \) | \(a_{315}= -0.25253364 \pm 1.2 \cdot 10^{-6} \) |
\(a_{316}= +0.25413464 \pm 1.8 \cdot 10^{-6} \) | \(a_{317}= +1.29393589 \pm 1.1 \cdot 10^{-6} \) | \(a_{318}= +0.06687715 \pm 1.4 \cdot 10^{-6} \) |
\(a_{319}= -1.11700033 \pm 1.1 \cdot 10^{-6} \) | \(a_{320}= -1.68287234 \pm 1.5 \cdot 10^{-6} \) | \(a_{321}= +0.68978012 \pm 1.0 \cdot 10^{-6} \) |
\(a_{322}= -0.00298642 \pm 9.2 \cdot 10^{-7} \) | \(a_{323}= +0.24041475 \pm 9.8 \cdot 10^{-7} \) | \(a_{324}= -0.08063856 \pm 1.7 \cdot 10^{-6} \) |
\(a_{325}= -1.93384600 \pm 1.0 \cdot 10^{-6} \) | \(a_{326}= -0.26457293 \pm 1.4 \cdot 10^{-6} \) | \(a_{327}= -0.43424236 \pm 1.0 \cdot 10^{-6} \) |
\(a_{328}= -0.56102545 \pm 1.9 \cdot 10^{-6} \) | \(a_{329}= -0.22485640 \pm 8.7 \cdot 10^{-7} \) | \(a_{330}= +1.15549658 \pm 1.2 \cdot 10^{-6} \) |
\(a_{331}= +0.04671338 \pm 1.0 \cdot 10^{-6} \) | \(a_{332}= +0.19861861 \pm 1.5 \cdot 10^{-6} \) | \(a_{333}= +0.10686472 \pm 1.0 \cdot 10^{-6} \) |
\(a_{334}= +0.13544622 \pm 1.3 \cdot 10^{-6} \) | \(a_{335}= +0.91635633 \pm 1.0 \cdot 10^{-6} \) | \(a_{336}= +0.07123216 \pm 1.1 \cdot 10^{-6} \) |
\(a_{337}= -0.84155001 \pm 1.2 \cdot 10^{-6} \) | \(a_{338}= -0.85269116 \pm 1.2 \cdot 10^{-6} \) | \(a_{339}= +0.52312514 \pm 1.1 \cdot 10^{-6} \) |
\(a_{340}= -0.13338924 \pm 1.6 \cdot 10^{-6} \) | \(a_{341}= -0.31196872 \pm 1.2 \cdot 10^{-6} \) | \(a_{342}= -0.50447453 \pm 1.4 \cdot 10^{-6} \) |
\(a_{343}= +0.43650792 \pm 1.1 \cdot 10^{-6} \) | \(a_{344}= +1.55637178 \pm 1.2 \cdot 10^{-6} \) | \(a_{345}= +0.01259946 \pm 1.1 \cdot 10^{-6} \) |
\(a_{346}= -1.57536439 \pm 1.6 \cdot 10^{-6} \) | \(a_{347}= +1.33269642 \pm 1.2 \cdot 10^{-6} \) | \(a_{348}= +0.09805455 \pm 1.7 \cdot 10^{-6} \) |
\(a_{349}= -1.18516978 \pm 1.2 \cdot 10^{-6} \) | \(a_{350}= +0.25589166 \pm 1.2 \cdot 10^{-6} \) | \(a_{351}= +1.26979950 \pm 1.0 \cdot 10^{-6} \) |
\(a_{352}= -0.98937018 \pm 1.1 \cdot 10^{-6} \) | \(a_{353}= -0.33458222 \pm 1.3 \cdot 10^{-6} \) | \(a_{354}= -0.36094311 \pm 1.7 \cdot 10^{-6} \) |
\(a_{355}= -0.25048272 \pm 8.2 \cdot 10^{-7} \) | \(a_{356}= +0.47911926 \pm 1.2 \cdot 10^{-6} \) | \(a_{357}= +0.03389522 \pm 9.2 \cdot 10^{-7} \) |
\(a_{358}= +0.57550132 \pm 1.5 \cdot 10^{-6} \) | \(a_{359}= +0.77879401 \pm 1.1 \cdot 10^{-6} \) | \(a_{360}= +1.22664214 \pm 1.6 \cdot 10^{-6} \) |
\(a_{361}= -0.32935584 \pm 1.2 \cdot 10^{-6} \) | \(a_{362}= +0.24950051 \pm 1.2 \cdot 10^{-6} \) | \(a_{363}= +1.04030069 \pm 1.2 \cdot 10^{-6} \) |
\(a_{364}= -0.09397119 \pm 1.2 \cdot 10^{-6} \) | \(a_{365}= -1.53964495 \pm 1.2 \cdot 10^{-6} \) | \(a_{366}= +0.35221432 \pm 1.8 \cdot 10^{-6} \) |
\(a_{367}= +0.89945961 \pm 1.3 \cdot 10^{-6} \) | \(a_{368}= +0.00980674 \pm 1.2 \cdot 10^{-6} \) | \(a_{369}= +0.37870170 \pm 1.2 \cdot 10^{-6} \) |
\(a_{370}= -0.18779083 \pm 1.2 \cdot 10^{-6} \) | \(a_{371}= +0.03458787 \pm 1.1 \cdot 10^{-6} \) | \(a_{372}= +0.02738580 \pm 2.9 \cdot 10^{-6} \) |
\(a_{373}= +0.84905438 \pm 1.0 \cdot 10^{-6} \) | \(a_{374}= +0.42796050 \pm 1.1 \cdot 10^{-6} \) | \(a_{375}= -0.28693632 \pm 1.4 \cdot 10^{-6} \) |
\(a_{376}= +1.09220434 \pm 1.9 \cdot 10^{-6} \) | \(a_{377}= +0.91307615 \pm 1.1 \cdot 10^{-6} \) | \(a_{378}= -0.16802326 \pm 1.7 \cdot 10^{-6} \) |
\(a_{379}= -0.96013315 \pm 1.1 \cdot 10^{-6} \) | \(a_{380}= -0.37209327 \pm 1.5 \cdot 10^{-6} \) | \(a_{381}= -0.32547041 \pm 1.2 \cdot 10^{-6} \) |
\(a_{382}= +1.05026030 \pm 1.6 \cdot 10^{-6} \) | \(a_{383}= -1.35883276 \pm 1.1 \cdot 10^{-6} \) | \(a_{384}= -0.18019759 \pm 1.8 \cdot 10^{-6} \) |
\(a_{385}= +0.59760565 \pm 9.8 \cdot 10^{-7} \) | \(a_{386}= +0.98726749 \pm 1.2 \cdot 10^{-6} \) | \(a_{387}= -1.05057735 \pm 1.1 \cdot 10^{-6} \) |
\(a_{388}= +0.28848362 \pm 1.6 \cdot 10^{-6} \) | \(a_{389}= -1.13750901 \pm 1.0 \cdot 10^{-6} \) | \(a_{390}= -0.94454437 \pm 1.0 \cdot 10^{-6} \) |
\(a_{391}= +0.00466645 \pm 9.4 \cdot 10^{-7} \) | \(a_{392}= -1.03288710 \pm 1.5 \cdot 10^{-6} \) | \(a_{393}= +0.46349042 \pm 1.2 \cdot 10^{-6} \) |
\(a_{394}= +0.62342973 \pm 1.1 \cdot 10^{-6} \) | \(a_{395}= +1.32110564 \pm 1.1 \cdot 10^{-6} \) | \(a_{396}= +0.37692448 \pm 1.2 \cdot 10^{-6} \) |
\(a_{397}= +0.07796604 \pm 1.1 \cdot 10^{-6} \) | \(a_{398}= -0.58526682 \pm 1.2 \cdot 10^{-6} \) | \(a_{399}= +0.09455173 \pm 1.1 \cdot 10^{-6} \) |
\(a_{400}= -0.84028967 \pm 8.7 \cdot 10^{-7} \) | \(a_{401}= -1.64100325 \pm 1.2 \cdot 10^{-6} \) | \(a_{402}= +0.25808439 \pm 1.3 \cdot 10^{-6} \) |
\(a_{403}= +0.25501442 \pm 1.2 \cdot 10^{-6} \) | \(a_{404}= +0.35748673 \pm 1.6 \cdot 10^{-6} \) | \(a_{405}= -0.41919536 \pm 1.1 \cdot 10^{-6} \) |
\(a_{406}= -0.12082067 \pm 1.1 \cdot 10^{-6} \) | \(a_{407}= -0.25288893 \pm 1.0 \cdot 10^{-6} \) | \(a_{408}= -0.16464066 \pm 2.3 \cdot 10^{-6} \) |
\(a_{409}= +0.54173994 \pm 9.9 \cdot 10^{-7} \) | \(a_{410}= -0.66548349 \pm 1.4 \cdot 10^{-6} \) | \(a_{411}= +0.28956077 \pm 1.3 \cdot 10^{-6} \) |
\(a_{412}= +0.16194097 \pm 1.3 \cdot 10^{-6} \) | \(a_{413}= -0.18667441 \pm 1.2 \cdot 10^{-6} \) | \(a_{414}= -0.00979185 \pm 1.0 \cdot 10^{-6} \) |
\(a_{415}= +1.03250845 \pm 1.0 \cdot 10^{-6} \) | \(a_{416}= +0.80874669 \pm 1.3 \cdot 10^{-6} \) | \(a_{417}= +0.11034120 \pm 1.1 \cdot 10^{-6} \) |
\(a_{418}= +1.19380863 \pm 1.5 \cdot 10^{-6} \) | \(a_{419}= -0.24895094 \pm 1.1 \cdot 10^{-6} \) | \(a_{420}= -0.05246010 \pm 1.5 \cdot 10^{-6} \) |
\(a_{421}= +1.07061770 \pm 1.3 \cdot 10^{-6} \) | \(a_{422}= -1.28095678 \pm 1.1 \cdot 10^{-6} \) | \(a_{423}= -0.73725645 \pm 1.2 \cdot 10^{-6} \) |
\(a_{424}= -0.16800508 \pm 1.2 \cdot 10^{-6} \) | \(a_{425}= -0.39984469 \pm 7.6 \cdot 10^{-7} \) | \(a_{426}= -0.07054644 \pm 1.2 \cdot 10^{-6} \) |
\(a_{427}= +0.18216001 \pm 9.1 \cdot 10^{-7} \) | \(a_{428}= -0.39539975 \pm 1.1 \cdot 10^{-6} \) | \(a_{429}= -1.27197272 \pm 1.2 \cdot 10^{-6} \) |
\(a_{430}= +1.84615459 \pm 1.2 \cdot 10^{-6} \) | \(a_{431}= -0.07849999 \pm 1.1 \cdot 10^{-6} \) | \(a_{432}= +0.55174993 \pm 1.0 \cdot 10^{-6} \) |
\(a_{433}= -0.45845411 \pm 1.3 \cdot 10^{-6} \) | \(a_{434}= -0.03374419 \pm 2.6 \cdot 10^{-6} \) | \(a_{435}= +0.50973145 \pm 1.3 \cdot 10^{-6} \) |
\(a_{436}= +0.24891891 \pm 1.5 \cdot 10^{-6} \) | \(a_{437}= +0.01301721 \pm 1.2 \cdot 10^{-6} \) | \(a_{438}= -0.43362861 \pm 1.5 \cdot 10^{-6} \) |
\(a_{439}= -1.05728970 \pm 1.2 \cdot 10^{-6} \) | \(a_{440}= -2.90277482 \pm 1.3 \cdot 10^{-6} \) | \(a_{441}= +0.69721631 \pm 1.3 \cdot 10^{-6} \) |
\(a_{442}= -0.34983027 \pm 1.1 \cdot 10^{-6} \) | \(a_{443}= +0.06855287 \pm 1.1 \cdot 10^{-6} \) | \(a_{444}= +0.02219955 \pm 1.6 \cdot 10^{-6} \) |
\(a_{445}= +2.49067647 \pm 1.1 \cdot 10^{-6} \) | \(a_{446}= +0.90835405 \pm 1.4 \cdot 10^{-6} \) | \(a_{447}= -0.49533570 \pm 1.0 \cdot 10^{-6} \) |
\(a_{448}= -0.24512892 \pm 1.2 \cdot 10^{-6} \) | \(a_{449}= -0.31098880 \pm 1.0 \cdot 10^{-6} \) | \(a_{450}= +0.83901451 \pm 1.3 \cdot 10^{-6} \) |
\(a_{451}= -0.89617478 \pm 1.0 \cdot 10^{-6} \) | \(a_{452}= -0.29986882 \pm 1.4 \cdot 10^{-6} \) | \(a_{453}= -0.79037129 \pm 1.1 \cdot 10^{-6} \) |
\(a_{454}= -0.66674350 \pm 1.4 \cdot 10^{-6} \) | \(a_{455}= -0.48850431 \pm 1.1 \cdot 10^{-6} \) | \(a_{456}= -0.45927005 \pm 1.5 \cdot 10^{-6} \) |
\(a_{457}= -0.94122786 \pm 1.2 \cdot 10^{-6} \) | \(a_{458}= -0.88219885 \pm 1.6 \cdot 10^{-6} \) | \(a_{459}= +0.26254551 \pm 9.9 \cdot 10^{-7} \) |
\(a_{460}= -0.00722233 \pm 1.2 \cdot 10^{-6} \) | \(a_{461}= -0.97685706 \pm 1.0 \cdot 10^{-6} \) | \(a_{462}= +0.16831082 \pm 1.2 \cdot 10^{-6} \) |
\(a_{463}= -0.06335164 \pm 1.2 \cdot 10^{-6} \) | \(a_{464}= +0.39674744 \pm 1.0 \cdot 10^{-6} \) | \(a_{465}= +0.14236367 \pm 2.5 \cdot 10^{-6} \) |
\(a_{466}= +0.36710179 \pm 1.3 \cdot 10^{-6} \) | \(a_{467}= -0.27082649 \pm 1.1 \cdot 10^{-6} \) | \(a_{468}= -0.30811160 \pm 1.3 \cdot 10^{-6} \) |
\(a_{469}= +0.13347741 \pm 1.0 \cdot 10^{-6} \) | \(a_{470}= +1.29556323 \pm 1.4 \cdot 10^{-6} \) | \(a_{471}= -0.06928874 \pm 1.2 \cdot 10^{-6} \) |
\(a_{472}= +0.90674138 \pm 1.8 \cdot 10^{-6} \) | \(a_{473}= +2.48612808 \pm 1.0 \cdot 10^{-6} \) | \(a_{474}= +0.37207877 \pm 1.7 \cdot 10^{-6} \) |
\(a_{475}= -1.11537875 \pm 1.3 \cdot 10^{-6} \) | \(a_{476}= -0.01942961 \pm 8.9 \cdot 10^{-7} \) | \(a_{477}= +0.11340628 \pm 1.2 \cdot 10^{-6} \) |
\(a_{478}= -0.39440452 \pm 1.3 \cdot 10^{-6} \) | \(a_{479}= +0.92094106 \pm 1.1 \cdot 10^{-6} \) | \(a_{480}= +0.45148876 \pm 1.7 \cdot 10^{-6} \) |
\(a_{481}= +0.20672048 \pm 1.0 \cdot 10^{-6} \) | \(a_{482}= +1.13036469 \pm 1.1 \cdot 10^{-6} \) | \(a_{483}= +0.00183525 \pm 1.1 \cdot 10^{-6} \) |
\(a_{484}= -0.59632718 \pm 1.4 \cdot 10^{-6} \) | \(a_{485}= +1.49966703 \pm 1.0 \cdot 10^{-6} \) | \(a_{486}= -0.86862454 \pm 1.6 \cdot 10^{-6} \) |
\(a_{487}= -0.07425745 \pm 1.2 \cdot 10^{-6} \) | \(a_{488}= -0.88481341 \pm 2.0 \cdot 10^{-6} \) | \(a_{489}= +0.16258818 \pm 1.2 \cdot 10^{-6} \) |
\(a_{490}= -1.22520164 \pm 1.2 \cdot 10^{-6} \) | \(a_{491}= -0.48223428 \pm 1.0 \cdot 10^{-6} \) | \(a_{492}= +0.07866964 \pm 2.5 \cdot 10^{-6} \) |
\(a_{493}= +0.18878890 \pm 1.1 \cdot 10^{-6} \) | \(a_{494}= -0.97586201 \pm 1.3 \cdot 10^{-6} \) | \(a_{495}= +1.95942224 \pm 1.0 \cdot 10^{-6} \) |
\(a_{496}= +0.11080820 \pm 1.4 \cdot 10^{-6} \) | \(a_{497}= -0.03648557 \pm 1.1 \cdot 10^{-6} \) | \(a_{498}= +0.29079770 \pm 1.4 \cdot 10^{-6} \) |
\(a_{499}= -0.94833005 \pm 1.2 \cdot 10^{-6} \) | \(a_{500}= +0.16447930 \pm 1.7 \cdot 10^{-6} \) | \(a_{501}= -0.08323585 \pm 1.2 \cdot 10^{-6} \) |
\(a_{502}= +0.28077458 \pm 1.3 \cdot 10^{-6} \) | \(a_{503}= -1.78000618 \pm 1.4 \cdot 10^{-6} \) | \(a_{504}= +0.17867396 \pm 1.4 \cdot 10^{-6} \) |
\(a_{505}= +1.85837610 \pm 1.4 \cdot 10^{-6} \) | \(a_{506}= +0.02317183 \pm 7.7 \cdot 10^{-7} \) | \(a_{507}= +0.52400487 \pm 1.0 \cdot 10^{-6} \) |
\(a_{508}= +0.18656803 \pm 1.4 \cdot 10^{-6} \) | \(a_{509}= -0.71309136 \pm 1.1 \cdot 10^{-6} \) | \(a_{510}= -0.19529531 \pm 1.6 \cdot 10^{-6} \) |
\(a_{511}= -0.22426627 \pm 1.0 \cdot 10^{-6} \) | \(a_{512}= +1.02227845 \pm 1.3 \cdot 10^{-6} \) | \(a_{513}= +0.73237858 \pm 9.8 \cdot 10^{-7} \) |
\(a_{514}= +1.01166643 \pm 1.4 \cdot 10^{-6} \) | \(a_{515}= +0.84184168 \pm 1.1 \cdot 10^{-6} \) | \(a_{516}= -0.21824180 \pm 1.4 \cdot 10^{-6} \) |
\(a_{517}= +1.74467303 \pm 9.7 \cdot 10^{-7} \) | \(a_{518}= -0.02735381 \pm 1.1 \cdot 10^{-6} \) | \(a_{519}= +0.96810973 \pm 1.4 \cdot 10^{-6} \) |
\(a_{520}= +2.37283230 \pm 1.4 \cdot 10^{-6} \) | \(a_{521}= +0.09723625 \pm 1.2 \cdot 10^{-6} \) | \(a_{522}= -0.39614537 \pm 1.3 \cdot 10^{-6} \) |
\(a_{523}= -0.90923330 \pm 1.0 \cdot 10^{-6} \) | \(a_{524}= -0.26568466 \pm 1.6 \cdot 10^{-6} \) | \(a_{525}= -0.15725327 \pm 1.2 \cdot 10^{-6} \) |
\(a_{526}= -1.42495262 \pm 1.4 \cdot 10^{-6} \) | \(a_{527}= +0.05272714 \pm 1.1 \cdot 10^{-6} \) | \(a_{528}= -0.55269423 \pm 8.3 \cdot 10^{-7} \) |
\(a_{529}= -0.99974734 \pm 1.2 \cdot 10^{-6} \) | \(a_{530}= -0.19928615 \pm 1.3 \cdot 10^{-6} \) | \(a_{531}= -0.61206581 \pm 1.2 \cdot 10^{-6} \) |
\(a_{532}= -0.05419949 \pm 1.2 \cdot 10^{-6} \) | \(a_{533}= +0.73256542 \pm 1.0 \cdot 10^{-6} \) | \(a_{534}= +0.70147898 \pm 1.3 \cdot 10^{-6} \) |
\(a_{535}= -2.05546493 \pm 1.1 \cdot 10^{-6} \) | \(a_{536}= -0.64834537 \pm 1.0 \cdot 10^{-6} \) | \(a_{537}= -0.35366321 \pm 1.5 \cdot 10^{-6} \) |
\(a_{538}= -1.19375907 \pm 1.3 \cdot 10^{-6} \) | \(a_{539}= -1.64992045 \pm 1.0 \cdot 10^{-6} \) | \(a_{540}= -0.40634535 \pm 1.3 \cdot 10^{-6} \) |
\(a_{541}= +0.55233672 \pm 1.2 \cdot 10^{-6} \) | \(a_{542}= -0.12367625 \pm 1.4 \cdot 10^{-6} \) | \(a_{543}= -0.15332572 \pm 1.3 \cdot 10^{-6} \) |
\(a_{544}= +0.16721759 \pm 1.6 \cdot 10^{-6} \) | \(a_{545}= +1.29399197 \pm 1.1 \cdot 10^{-6} \) | \(a_{546}= -0.13758331 \pm 1.1 \cdot 10^{-6} \) |
\(a_{547}= +1.53331921 \pm 1.1 \cdot 10^{-6} \) | \(a_{548}= -0.16598370 \pm 1.5 \cdot 10^{-6} \) | \(a_{549}= +0.59726406 \pm 1.0 \cdot 10^{-6} \) |
\(a_{550}= -1.98547734 \pm 1.5 \cdot 10^{-6} \) | \(a_{551}= +0.52663228 \pm 1.1 \cdot 10^{-6} \) | \(a_{552}= -0.00891443 \pm 1.6 \cdot 10^{-6} \) |
\(a_{553}= +0.19243361 \pm 1.3 \cdot 10^{-6} \) | \(a_{554}= -1.40821392 \pm 1.2 \cdot 10^{-6} \) | \(a_{555}= +0.11540322 \pm 9.9 \cdot 10^{-7} \) |
\(a_{556}= -0.06325042 \pm 1.2 \cdot 10^{-6} \) | \(a_{557}= -0.20064448 \pm 1.0 \cdot 10^{-6} \) | \(a_{558}= -0.11064004 \pm 2.7 \cdot 10^{-6} \) |
\(a_{559}= -2.03225031 \pm 1.3 \cdot 10^{-6} \) | \(a_{560}= -0.21226360 \pm 8.6 \cdot 10^{-7} \) | \(a_{561}= -0.26299485 \pm 1.0 \cdot 10^{-6} \) |
\(a_{562}= -0.59404440 \pm 1.3 \cdot 10^{-6} \) | \(a_{563}= +1.28997960 \pm 1.1 \cdot 10^{-6} \) | \(a_{564}= -0.15315405 \pm 2.3 \cdot 10^{-6} \) |
\(a_{565}= -1.55885240 \pm 1.0 \cdot 10^{-6} \) | \(a_{566}= +0.11277596 \pm 1.5 \cdot 10^{-6} \) | \(a_{567}= -0.06106043 \pm 1.3 \cdot 10^{-6} \) |
\(a_{568}= +0.17722288 \pm 9.1 \cdot 10^{-7} \) | \(a_{569}= -0.26370943 \pm 1.0 \cdot 10^{-6} \) | \(a_{570}= -0.54478212 \pm 1.6 \cdot 10^{-6} \) |
\(a_{571}= +1.09742537 \pm 1.1 \cdot 10^{-6} \) | \(a_{572}= +0.72912756 \pm 1.1 \cdot 10^{-6} \) | \(a_{573}= -0.64541716 \pm 1.2 \cdot 10^{-6} \) |
\(a_{574}= -0.09693501 \pm 1.2 \cdot 10^{-6} \) | \(a_{575}= -0.02164951 \pm 9.4 \cdot 10^{-7} \) | \(a_{576}= -0.80372576 \pm 1.7 \cdot 10^{-6} \) |
\(a_{577}= +0.11033048 \pm 1.1 \cdot 10^{-6} \) | \(a_{578}= +0.76692904 \pm 1.8 \cdot 10^{-6} \) | \(a_{579}= -0.60670615 \pm 1.0 \cdot 10^{-6} \) |
\(a_{580}= -0.29219121 \pm 1.4 \cdot 10^{-6} \) | \(a_{581}= +0.15039625 \pm 9.5 \cdot 10^{-7} \) | \(a_{582}= +0.42236915 \pm 1.8 \cdot 10^{-6} \) |
\(a_{583}= -0.26836913 \pm 8.5 \cdot 10^{-7} \) | \(a_{584}= +1.08933790 \pm 1.4 \cdot 10^{-6} \) | \(a_{585}= -1.60170205 \pm 1.1 \cdot 10^{-6} \) |
\(a_{586}= +1.17292007 \pm 1.1 \cdot 10^{-6} \) | \(a_{587}= +0.66123316 \pm 1.1 \cdot 10^{-6} \) | \(a_{588}= +0.14483631 \pm 1.7 \cdot 10^{-6} \) |
\(a_{589}= +0.14708393 \pm 1.2 \cdot 10^{-6} \) | \(a_{590}= +1.07556870 \pm 1.4 \cdot 10^{-6} \) | \(a_{591}= -0.38311669 \pm 1.0 \cdot 10^{-6} \) |
\(a_{592}= +0.08982364 \pm 1.3 \cdot 10^{-6} \) | \(a_{593}= +0.14151549 \pm 1.3 \cdot 10^{-6} \) | \(a_{594}= +1.30370161 \pm 1.0 \cdot 10^{-6} \) |
\(a_{595}= -0.10100383 \pm 8.3 \cdot 10^{-7} \) | \(a_{596}= +0.28393920 \pm 1.3 \cdot 10^{-6} \) | \(a_{597}= +0.35966441 \pm 1.2 \cdot 10^{-6} \) |
\(a_{598}= -0.01894149 \pm 1.1 \cdot 10^{-6} \) | \(a_{599}= +1.76207222 \pm 1.3 \cdot 10^{-6} \) | \(a_{600}= +0.76383287 \pm 1.1 \cdot 10^{-6} \) |
\(a_{601}= +1.72703886 \pm 1.3 \cdot 10^{-6} \) | \(a_{602}= +0.26891278 \pm 1.1 \cdot 10^{-6} \) | \(a_{603}= +0.43764412 \pm 9.6 \cdot 10^{-7} \) |
\(a_{604}= +0.45306120 \pm 1.1 \cdot 10^{-6} \) | \(a_{605}= -3.09997569 \pm 1.4 \cdot 10^{-6} \) | \(a_{606}= +0.52339667 \pm 1.6 \cdot 10^{-6} \) |
\(a_{607}= +0.65195901 \pm 1.1 \cdot 10^{-6} \) | \(a_{608}= +0.46645848 \pm 1.2 \cdot 10^{-6} \) | \(a_{609}= +0.07424801 \pm 1.3 \cdot 10^{-6} \) |
\(a_{610}= -1.04955793 \pm 1.5 \cdot 10^{-6} \) | \(a_{611}= -1.42615834 \pm 9.3 \cdot 10^{-7} \) | \(a_{612}= -0.06370558 \pm 1.4 \cdot 10^{-6} \) |
\(a_{613}= +0.94812685 \pm 1.2 \cdot 10^{-6} \) | \(a_{614}= -0.08267512 \pm 1.7 \cdot 10^{-6} \) | \(a_{615}= +0.40896001 \pm 1.2 \cdot 10^{-6} \) |
\(a_{616}= -0.42282117 \pm 9.4 \cdot 10^{-7} \) | \(a_{617}= -0.87278478 \pm 1.2 \cdot 10^{-6} \) | \(a_{618}= +0.23709794 \pm 1.4 \cdot 10^{-6} \) |
\(a_{619}= -1.90433585 \pm 1.1 \cdot 10^{-6} \) | \(a_{620}= -0.08160653 \pm 2.8 \cdot 10^{-6} \) | \(a_{621}= +0.01421547 \pm 7.7 \cdot 10^{-7} \) |
\(a_{622}= +1.03710392 \pm 1.0 \cdot 10^{-6} \) | \(a_{623}= +0.36279450 \pm 9.8 \cdot 10^{-7} \) | \(a_{624}= +0.45179210 \pm 1.2 \cdot 10^{-6} \) |
\(a_{625}= -0.50696040 \pm 1.1 \cdot 10^{-6} \) | \(a_{626}= -0.33385438 \pm 1.5 \cdot 10^{-6} \) | \(a_{627}= -0.73363202 \pm 1.3 \cdot 10^{-6} \) |
\(a_{628}= +0.03971809 \pm 1.4 \cdot 10^{-6} \) | \(a_{629}= +0.04274182 \pm 1.0 \cdot 10^{-6} \) | \(a_{630}= +0.21194149 \pm 1.6 \cdot 10^{-6} \) |
\(a_{631}= -0.20761087 \pm 1.2 \cdot 10^{-6} \) | \(a_{632}= -0.93471579 \pm 1.9 \cdot 10^{-6} \) | \(a_{633}= +0.78718723 \pm 9.3 \cdot 10^{-7} \) |
\(a_{634}= -1.08594919 \pm 1.4 \cdot 10^{-6} \) | \(a_{635}= +0.96986416 \pm 1.2 \cdot 10^{-6} \) | \(a_{636}= +0.02355847 \pm 1.7 \cdot 10^{-6} \) |
\(a_{637}= +1.34870418 \pm 1.1 \cdot 10^{-6} \) | \(a_{638}= +0.93745418 \pm 1.3 \cdot 10^{-6} \) | \(a_{639}= -0.11962845 \pm 1.2 \cdot 10^{-6} \) |
\(a_{640}= +0.53696798 \pm 1.4 \cdot 10^{-6} \) | \(a_{641}= +0.06603666 \pm 1.3 \cdot 10^{-6} \) | \(a_{642}= -0.57890516 \pm 9.8 \cdot 10^{-7} \) |
\(a_{643}= +0.45637719 \pm 1.1 \cdot 10^{-6} \) | \(a_{644}= -0.00105201 \pm 1.0 \cdot 10^{-6} \) | \(a_{645}= -1.13451862 \pm 9.3 \cdot 10^{-7} \) |
\(a_{646}= -0.20177059 \pm 1.2 \cdot 10^{-6} \) | \(a_{647}= +0.81273941 \pm 1.3 \cdot 10^{-6} \) | \(a_{648}= +0.29659136 \pm 1.7 \cdot 10^{-6} \) |
\(a_{649}= +1.44841692 \pm 1.1 \cdot 10^{-6} \) | \(a_{650}= +1.62300043 \pm 1.1 \cdot 10^{-6} \) | \(a_{651}= +0.02073684 \pm 2.5 \cdot 10^{-6} \) |
\(a_{652}= -0.09319974 \pm 1.4 \cdot 10^{-6} \) | \(a_{653}= -1.59881985 \pm 1.1 \cdot 10^{-6} \) | \(a_{654}= +0.36444243 \pm 1.4 \cdot 10^{-6} \) |
\(a_{655}= -1.38114781 \pm 1.2 \cdot 10^{-6} \) | \(a_{656}= +0.31831240 \pm 2.0 \cdot 10^{-6} \) | \(a_{657}= -0.73532156 \pm 1.0 \cdot 10^{-6} \) |
\(a_{658}= +0.18871308 \pm 1.0 \cdot 10^{-6} \) | \(a_{659}= +1.57229720 \pm 1.2 \cdot 10^{-6} \) | \(a_{660}= +0.40704080 \pm 1.2 \cdot 10^{-6} \) |
\(a_{661}= +0.73957558 \pm 1.2 \cdot 10^{-6} \) | \(a_{662}= -0.03920469 \pm 1.2 \cdot 10^{-6} \) | \(a_{663}= +0.21498143 \pm 1.1 \cdot 10^{-6} \) |
\(a_{664}= -0.73052594 \pm 1.5 \cdot 10^{-6} \) | \(a_{665}= -0.28175321 \pm 1.1 \cdot 10^{-6} \) | \(a_{666}= -0.08968733 \pm 1.3 \cdot 10^{-6} \) |
\(a_{667}= +0.01022194 \pm 1.1 \cdot 10^{-6} \) | \(a_{668}= +0.04771294 \pm 1.4 \cdot 10^{-6} \) | \(a_{669}= -0.55821142 \pm 1.5 \cdot 10^{-6} \) |
\(a_{670}= -0.76906161 \pm 1.1 \cdot 10^{-6} \) | \(a_{671}= -1.41338946 \pm 1.0 \cdot 10^{-6} \) | \(a_{672}= +0.06576432 \pm 1.2 \cdot 10^{-6} \) |
\(a_{673}= -1.20186537 \pm 1.0 \cdot 10^{-6} \) | \(a_{674}= +0.70627962 \pm 1.5 \cdot 10^{-6} \) | \(a_{675}= -1.21805207 \pm 9.9 \cdot 10^{-7} \) |
\(a_{676}= -0.30037310 \pm 1.3 \cdot 10^{-6} \) | \(a_{677}= -0.62976237 \pm 1.1 \cdot 10^{-6} \) | \(a_{678}= -0.43903823 \pm 1.4 \cdot 10^{-6} \) |
\(a_{679}= +0.21844305 \pm 1.1 \cdot 10^{-6} \) | \(a_{680}= +0.49061011 \pm 1.7 \cdot 10^{-6} \) | \(a_{681}= +0.40973433 \pm 1.1 \cdot 10^{-6} \) |
\(a_{682}= +0.26182300 \pm 2.6 \cdot 10^{-6} \) | \(a_{683}= +0.14335014 \pm 1.1 \cdot 10^{-6} \) | \(a_{684}= -0.17770863 \pm 1.5 \cdot 10^{-6} \) |
\(a_{685}= -0.86285760 \pm 1.0 \cdot 10^{-6} \) | \(a_{686}= -0.36634383 \pm 1.1 \cdot 10^{-6} \) | \(a_{687}= +0.54213825 \pm 1.3 \cdot 10^{-6} \) |
\(a_{688}= -0.88304805 \pm 1.2 \cdot 10^{-6} \) | \(a_{689}= +0.21937456 \pm 1.2 \cdot 10^{-6} \) | \(a_{690}= -0.01057422 \pm 9.5 \cdot 10^{-7} \) |
\(a_{691}= -0.54978142 \pm 1.1 \cdot 10^{-6} \) | \(a_{692}= -0.55494546 \pm 1.9 \cdot 10^{-6} \) | \(a_{693}= +0.28541146 \pm 1.1 \cdot 10^{-6} \) |
\(a_{694}= -1.11847937 \pm 1.5 \cdot 10^{-6} \) | \(a_{695}= -0.32880402 \pm 8.2 \cdot 10^{-7} \) | \(a_{696}= -0.36064794 \pm 1.5 \cdot 10^{-6} \) |
\(a_{697}= +0.15146625 \pm 9.6 \cdot 10^{-7} \) | \(a_{698}= +0.99466610 \pm 1.3 \cdot 10^{-6} \) | \(a_{699}= -0.22559531 \pm 1.1 \cdot 10^{-6} \) |
\(a_{700}= +0.09014163 \pm 1.2 \cdot 10^{-6} \) | \(a_{701}= +0.95193283 \pm 1.2 \cdot 10^{-6} \) | \(a_{702}= -1.06569248 \pm 1.1 \cdot 10^{-6} \) |
\(a_{703}= +0.11922957 \pm 1.1 \cdot 10^{-6} \) | \(a_{704}= +1.90196865 \pm 1.3 \cdot 10^{-6} \) | \(a_{705}= -0.79616334 \pm 1.3 \cdot 10^{-6} \) |
\(a_{706}= +0.28080161 \pm 1.6 \cdot 10^{-6} \) | \(a_{707}= +0.27069298 \pm 1.1 \cdot 10^{-6} \) | \(a_{708}= -0.12714756 \pm 2.0 \cdot 10^{-6} \) |
\(a_{709}= +0.74005521 \pm 9.9 \cdot 10^{-7} \) | \(a_{710}= +0.21022023 \pm 8.0 \cdot 10^{-7} \) | \(a_{711}= +0.63094901 \pm 1.3 \cdot 10^{-6} \) |
\(a_{712}= -1.76221684 \pm 1.5 \cdot 10^{-6} \) | \(a_{713}= +0.00285490 \pm 1.1 \cdot 10^{-6} \) | \(a_{714}= -0.02844692 \pm 1.0 \cdot 10^{-6} \) |
\(a_{715}= +3.79033153 \pm 1.3 \cdot 10^{-6} \) | \(a_{716}= +0.20272887 \pm 1.8 \cdot 10^{-6} \) | \(a_{717}= +0.24237367 \pm 1.3 \cdot 10^{-6} \) |
\(a_{718}= -0.65361099 \pm 1.4 \cdot 10^{-6} \) | \(a_{719}= -0.28978357 \pm 1.0 \cdot 10^{-6} \) | \(a_{720}= -0.69596736 \pm 1.4 \cdot 10^{-6} \) |
\(a_{721}= +0.12262353 \pm 1.1 \cdot 10^{-6} \) | \(a_{722}= +0.27641533 \pm 1.6 \cdot 10^{-6} \) | \(a_{723}= -0.69464377 \pm 1.0 \cdot 10^{-6} \) |
\(a_{724}= +0.08789025 \pm 1.5 \cdot 10^{-6} \) | \(a_{725}= -0.87586607 \pm 1.0 \cdot 10^{-6} \) | \(a_{726}= -0.87308321 \pm 1.5 \cdot 10^{-6} \) |
\(a_{727}= -0.28398133 \pm 8.8 \cdot 10^{-7} \) | \(a_{728}= +0.34562920 \pm 1.2 \cdot 10^{-6} \) | \(a_{729}= +0.26103889 \pm 1.1 \cdot 10^{-6} \) |
\(a_{730}= +1.29216309 \pm 1.5 \cdot 10^{-6} \) | \(a_{731}= -0.42019091 \pm 8.9 \cdot 10^{-7} \) | \(a_{732}= +0.12407272 \pm 2.2 \cdot 10^{-6} \) |
\(a_{733}= -1.06826422 \pm 1.3 \cdot 10^{-6} \) | \(a_{734}= -0.75488086 \pm 1.6 \cdot 10^{-6} \) | \(a_{735}= +0.75292399 \pm 9.8 \cdot 10^{-7} \) |
\(a_{736}= +0.00905396 \pm 1.5 \cdot 10^{-6} \) | \(a_{737}= -1.03565848 \pm 1.1 \cdot 10^{-6} \) | \(a_{738}= -0.31782935 \pm 1.8 \cdot 10^{-6} \) |
\(a_{739}= +0.50241482 \pm 1.1 \cdot 10^{-6} \) | \(a_{740}= -0.06615210 \pm 1.3 \cdot 10^{-6} \) | \(a_{741}= +0.59969714 \pm 1.1 \cdot 10^{-6} \) |
\(a_{742}= -0.02902823 \pm 1.2 \cdot 10^{-6} \) | \(a_{743}= -0.95417448 \pm 1.2 \cdot 10^{-6} \) | \(a_{744}= -0.10072591 \pm 3.0 \cdot 10^{-6} \) |
\(a_{745}= +1.47604309 \pm 1.1 \cdot 10^{-6} \) | \(a_{746}= -0.71257775 \pm 1.3 \cdot 10^{-6} \) | \(a_{747}= +0.49311740 \pm 1.1 \cdot 10^{-6} \) |
\(a_{748}= +0.15075543 \pm 1.1 \cdot 10^{-6} \) | \(a_{749}= -0.29940114 \pm 9.0 \cdot 10^{-7} \) | \(a_{750}= +0.24081430 \pm 2.0 \cdot 10^{-6} \) |
\(a_{751}= -0.66127226 \pm 1.0 \cdot 10^{-6} \) | \(a_{752}= -0.61969057 \pm 2.0 \cdot 10^{-6} \) | \(a_{753}= -0.17254459 \pm 1.3 \cdot 10^{-6} \) |
\(a_{754}= -0.76630869 \pm 1.0 \cdot 10^{-6} \) | \(a_{755}= +2.35521500 \pm 1.2 \cdot 10^{-6} \) | \(a_{756}= -0.05918868 \pm 1.6 \cdot 10^{-6} \) |
\(a_{757}= -0.17403322 \pm 1.1 \cdot 10^{-6} \) | \(a_{758}= +0.80580176 \pm 1.1 \cdot 10^{-6} \) | \(a_{759}= -0.01423980 \pm 1.3 \cdot 10^{-6} \) |
\(a_{760}= +1.36857161 \pm 1.3 \cdot 10^{-6} \) | \(a_{761}= -0.40866349 \pm 1.4 \cdot 10^{-6} \) | \(a_{762}= +0.27315444 \pm 1.5 \cdot 10^{-6} \) |
\(a_{763}= +0.18848421 \pm 1.3 \cdot 10^{-6} \) | \(a_{764}= +0.36996976 \pm 1.7 \cdot 10^{-6} \) | \(a_{765}= -0.33117015 \pm 9.8 \cdot 10^{-7} \) |
\(a_{766}= +1.14041457 \pm 1.3 \cdot 10^{-6} \) | \(a_{767}= -1.18398797 \pm 1.2 \cdot 10^{-6} \) | \(a_{768}= -0.41351148 \pm 1.8 \cdot 10^{-6} \) |
\(a_{769}= +0.99732719 \pm 1.0 \cdot 10^{-6} \) | \(a_{770}= -0.50154678 \pm 1.0 \cdot 10^{-6} \) | \(a_{771}= -0.62170005 \pm 1.3 \cdot 10^{-6} \) |
\(a_{772}= +0.34777961 \pm 1.1 \cdot 10^{-6} \) | \(a_{773}= -1.23121780 \pm 9.9 \cdot 10^{-7} \) | \(a_{774}= +0.88170800 \pm 1.4 \cdot 10^{-6} \) |
\(a_{775}= -0.24462196 \pm 1.1 \cdot 10^{-6} \) | \(a_{776}= -1.06105250 \pm 1.8 \cdot 10^{-6} \) | \(a_{777}= +0.01680975 \pm 1.0 \cdot 10^{-6} \) |
\(a_{778}= +0.95466630 \pm 1.1 \cdot 10^{-6} \) | \(a_{779}= +0.42251963 \pm 1.1 \cdot 10^{-6} \) | \(a_{780}= -0.33272976 \pm 1.1 \cdot 10^{-6} \) |
\(a_{781}= +0.28309353 \pm 1.0 \cdot 10^{-6} \) | \(a_{782}= -0.00391637 \pm 9.1 \cdot 10^{-7} \) | \(a_{783}= +0.57511006 \pm 9.6 \cdot 10^{-7} \) |
\(a_{784}= +0.58603539 \pm 1.3 \cdot 10^{-6} \) | \(a_{785}= +0.20647242 \pm 9.7 \cdot 10^{-7} \) | \(a_{786}= -0.38898917 \pm 1.6 \cdot 10^{-6} \) |
\(a_{787}= +0.28245580 \pm 1.2 \cdot 10^{-6} \) | \(a_{788}= +0.21961236 \pm 1.1 \cdot 10^{-6} \) | \(a_{789}= +0.87567709 \pm 1.3 \cdot 10^{-6} \) |
\(a_{790}= -1.10875169 \pm 1.3 \cdot 10^{-6} \) | \(a_{791}= -0.22706405 \pm 9.2 \cdot 10^{-7} \) | \(a_{792}= -1.38634099 \pm 9.8 \cdot 10^{-7} \) |
\(a_{793}= +1.15535526 \pm 1.1 \cdot 10^{-6} \) | \(a_{794}= -0.06543382 \pm 1.4 \cdot 10^{-6} \) | \(a_{795}= +0.12246745 \pm 1.0 \cdot 10^{-6} \) |
\(a_{796}= -0.20616891 \pm 1.3 \cdot 10^{-6} \) | \(a_{797}= +1.80551277 \pm 1.2 \cdot 10^{-6} \) | \(a_{798}= -0.07935353 \pm 1.3 \cdot 10^{-6} \) |
\(a_{799}= -0.29487449 \pm 1.0 \cdot 10^{-6} \) | \(a_{800}= -0.77578828 \pm 1.1 \cdot 10^{-6} \) | \(a_{801}= +1.18952626 \pm 1.0 \cdot 10^{-6} \) |
\(a_{802}= +1.37722910 \pm 1.2 \cdot 10^{-6} \) | \(a_{803}= +1.74009422 \pm 9.4 \cdot 10^{-7} \) | \(a_{804}= +0.09091405 \pm 1.3 \cdot 10^{-6} \) |
\(a_{805}= -0.00546883 \pm 8.5 \cdot 10^{-7} \) | \(a_{806}= -0.21402352 \pm 2.7 \cdot 10^{-6} \) | \(a_{807}= +0.73360156 \pm 1.0 \cdot 10^{-6} \) |
\(a_{808}= -1.31484828 \pm 1.6 \cdot 10^{-6} \) | \(a_{809}= -1.01214194 \pm 1.2 \cdot 10^{-6} \) | \(a_{810}= +0.35181408 \pm 1.6 \cdot 10^{-6} \) |
\(a_{811}= -1.72799982 \pm 1.3 \cdot 10^{-6} \) | \(a_{812}= -0.04256087 \pm 1.2 \cdot 10^{-6} \) | \(a_{813}= +0.07600285 \pm 1.6 \cdot 10^{-6} \) |
\(a_{814}= +0.21223967 \pm 1.2 \cdot 10^{-6} \) | \(a_{815}= -0.48449396 \pm 1.1 \cdot 10^{-6} \) | \(a_{816}= +0.09341316 \pm 2.2 \cdot 10^{-6} \) |
\(a_{817}= -1.17213512 \pm 9.0 \cdot 10^{-7} \) | \(a_{818}= -0.45466090 \pm 1.2 \cdot 10^{-6} \) | \(a_{819}= -0.23330557 \pm 1.3 \cdot 10^{-6} \) |
\(a_{820}= -0.23442642 \pm 1.6 \cdot 10^{-6} \) | \(a_{821}= +0.56204521 \pm 1.3 \cdot 10^{-6} \) | \(a_{822}= -0.24301690 \pm 1.6 \cdot 10^{-6} \) |
\(a_{823}= +0.06518165 \pm 1.1 \cdot 10^{-6} \) | \(a_{824}= -0.59562437 \pm 1.3 \cdot 10^{-6} \) | \(a_{825}= +1.22013672 \pm 1.2 \cdot 10^{-6} \) |
\(a_{826}= +0.15666845 \pm 1.3 \cdot 10^{-6} \) | \(a_{827}= -0.87491200 \pm 1.2 \cdot 10^{-6} \) | \(a_{828}= -0.00344933 \pm 1.2 \cdot 10^{-6} \) |
\(a_{829}= +0.66152912 \pm 1.2 \cdot 10^{-6} \) | \(a_{830}= -0.86654348 \pm 1.5 \cdot 10^{-6} \) | \(a_{831}= +0.86539065 \pm 1.1 \cdot 10^{-6} \) |
\(a_{832}= -1.55473743 \pm 1.3 \cdot 10^{-6} \) | \(a_{833}= +0.27885996 \pm 1.0 \cdot 10^{-6} \) | \(a_{834}= -0.09260501 \pm 1.4 \cdot 10^{-6} \) |
\(a_{835}= +0.24803322 \pm 1.1 \cdot 10^{-6} \) | \(a_{836}= +0.42053679 \pm 1.5 \cdot 10^{-6} \) | \(a_{837}= +0.16062336 \pm 1.1 \cdot 10^{-6} \) |
\(a_{838}= +0.20893468 \pm 1.4 \cdot 10^{-6} \) | \(a_{839}= +1.52902539 \pm 1.0 \cdot 10^{-6} \) | \(a_{840}= +0.19295003 \pm 1.3 \cdot 10^{-6} \) |
\(a_{841}= -0.58645496 \pm 8.2 \cdot 10^{-7} \) | \(a_{842}= -0.89852707 \pm 1.6 \cdot 10^{-6} \) | \(a_{843}= +0.36505850 \pm 1.1 \cdot 10^{-6} \) |
\(a_{844}= -0.45123601 \pm 1.1 \cdot 10^{-6} \) | \(a_{845}= -1.56147388 \pm 1.2 \cdot 10^{-6} \) | \(a_{846}= +0.61875017 \pm 1.7 \cdot 10^{-6} \) |
\(a_{847}= -0.45154566 \pm 1.1 \cdot 10^{-6} \) | \(a_{848}= +0.09532205 \pm 1.0 \cdot 10^{-6} \) | \(a_{849}= -0.06930428 \pm 1.1 \cdot 10^{-6} \) |
\(a_{850}= +0.33557383 \pm 9.5 \cdot 10^{-7} \) | \(a_{851}= +0.00231425 \pm 1.1 \cdot 10^{-6} \) | \(a_{852}= -0.02485103 \pm 1.1 \cdot 10^{-6} \) |
\(a_{853}= -0.23377826 \pm 1.1 \cdot 10^{-6} \) | \(a_{854}= -0.15287969 \pm 9.3 \cdot 10^{-7} \) | \(a_{855}= -0.92380905 \pm 1.2 \cdot 10^{-6} \) |
\(a_{856}= +1.45429363 \pm 1.2 \cdot 10^{-6} \) | \(a_{857}= -1.18388092 \pm 1.0 \cdot 10^{-6} \) | \(a_{858}= +1.06751637 \pm 1.3 \cdot 10^{-6} \) |
\(a_{859}= -1.53225028 \pm 1.1 \cdot 10^{-6} \) | \(a_{860}= +0.65033532 \pm 1.1 \cdot 10^{-6} \) | \(a_{861}= +0.05956954 \pm 1.2 \cdot 10^{-6} \) |
\(a_{862}= +0.06588193 \pm 1.4 \cdot 10^{-6} \) | \(a_{863}= +1.05952707 \pm 1.1 \cdot 10^{-6} \) | \(a_{864}= +0.50939712 \pm 1.1 \cdot 10^{-6} \) |
\(a_{865}= -2.88485499 \pm 1.5 \cdot 10^{-6} \) | \(a_{866}= +0.38476240 \pm 1.5 \cdot 10^{-6} \) | \(a_{867}= -0.47130141 \pm 1.4 \cdot 10^{-6} \) |
\(a_{868}= -0.01188689 \pm 2.8 \cdot 10^{-6} \) | \(a_{869}= -1.49310286 \pm 1.2 \cdot 10^{-6} \) | \(a_{870}= -0.42779744 \pm 1.7 \cdot 10^{-6} \) |
\(a_{871}= +0.84658441 \pm 9.8 \cdot 10^{-7} \) | \(a_{872}= -0.91553218 \pm 1.4 \cdot 10^{-6} \) | \(a_{873}= +0.71622843 \pm 1.3 \cdot 10^{-6} \) |
\(a_{874}= -0.01092483 \pm 1.1 \cdot 10^{-6} \) | \(a_{875}= +0.12454558 \pm 1.2 \cdot 10^{-6} \) | \(a_{876}= -0.15275211 \pm 1.6 \cdot 10^{-6} \) |
\(a_{877}= -1.85823174 \pm 1.2 \cdot 10^{-6} \) | \(a_{878}= +0.88734141 \pm 1.4 \cdot 10^{-6} \) | \(a_{879}= -0.72079535 \pm 1.0 \cdot 10^{-6} \) |
\(a_{880}= +1.64696487 \pm 8.4 \cdot 10^{-7} \) | \(a_{881}= +1.00163522 \pm 1.2 \cdot 10^{-6} \) | \(a_{882}= -0.58514606 \pm 1.3 \cdot 10^{-6} \) |
\(a_{883}= -0.83276445 \pm 1.2 \cdot 10^{-6} \) | \(a_{884}= -0.12323290 \pm 1.2 \cdot 10^{-6} \) | \(a_{885}= -0.66096995 \pm 1.2 \cdot 10^{-6} \) |
\(a_{886}= -0.05753371 \pm 1.6 \cdot 10^{-6} \) | \(a_{887}= -1.00947959 \pm 1.0 \cdot 10^{-6} \) | \(a_{888}= -0.08165071 \pm 1.6 \cdot 10^{-6} \) |
\(a_{889}= +0.14127141 \pm 1.1 \cdot 10^{-6} \) | \(a_{890}= -2.09032621 \pm 1.1 \cdot 10^{-6} \) | \(a_{891}= +0.47377119 \pm 9.7 \cdot 10^{-7} \) |
\(a_{892}= +0.31998118 \pm 1.6 \cdot 10^{-6} \) | \(a_{893}= -0.82256121 \pm 8.1 \cdot 10^{-7} \) | \(a_{894}= +0.41571566 \pm 1.4 \cdot 10^{-6} \) |
\(a_{895}= +1.05387544 \pm 1.3 \cdot 10^{-6} \) | \(a_{896}= +0.07821531 \pm 1.1 \cdot 10^{-6} \) | \(a_{897}= +0.01164013 \pm 1.3 \cdot 10^{-6} \) |
\(a_{898}= +0.26100059 \pm 1.4 \cdot 10^{-6} \) | \(a_{899}= +0.11549962 \pm 1.1 \cdot 10^{-6} \) | \(a_{900}= +0.29555530 \pm 1.3 \cdot 10^{-6} \) |
\(a_{901}= +0.04535819 \pm 9.1 \cdot 10^{-7} \) | \(a_{902}= +0.75212403 \pm 9.8 \cdot 10^{-7} \) | \(a_{903}= -0.16525515 \pm 1.0 \cdot 10^{-6} \) |
\(a_{904}= +1.10292765 \pm 1.4 \cdot 10^{-6} \) | \(a_{905}= +0.45689290 \pm 9.6 \cdot 10^{-7} \) | \(a_{906}= +0.66332735 \pm 1.3 \cdot 10^{-6} \) |
\(a_{907}= +0.23398921 \pm 1.0 \cdot 10^{-6} \) | \(a_{908}= -0.23487028 \pm 1.6 \cdot 10^{-6} \) | \(a_{909}= +0.88754489 \pm 1.2 \cdot 10^{-6} \) |
\(a_{910}= +0.40998234 \pm 1.0 \cdot 10^{-6} \) | \(a_{911}= +0.34639296 \pm 1.1 \cdot 10^{-6} \) | \(a_{912}= +0.26057882 \pm 9.7 \cdot 10^{-7} \) |
\(a_{913}= -1.16693266 \pm 8.3 \cdot 10^{-7} \) | \(a_{914}= +0.78993530 \pm 1.4 \cdot 10^{-6} \) | \(a_{915}= +0.64498554 \pm 1.0 \cdot 10^{-6} \) |
\(a_{916}= -0.31076762 \pm 1.8 \cdot 10^{-6} \) | \(a_{917}= -0.20117941 \pm 1.4 \cdot 10^{-6} \) | \(a_{918}= -0.22034406 \pm 1.3 \cdot 10^{-6} \) |
\(a_{919}= +1.40075979 \pm 1.2 \cdot 10^{-6} \) | \(a_{920}= +0.02656398 \pm 1.2 \cdot 10^{-6} \) | \(a_{921}= +0.05080639 \pm 1.3 \cdot 10^{-6} \) |
\(a_{922}= +0.81983748 \pm 1.1 \cdot 10^{-6} \) | \(a_{923}= -0.23141081 \pm 1.1 \cdot 10^{-6} \) | \(a_{924}= +0.05928998 \pm 1.4 \cdot 10^{-6} \) |
\(a_{925}= -0.19829612 \pm 9.3 \cdot 10^{-7} \) | \(a_{926}= +0.05316852 \pm 1.5 \cdot 10^{-6} \) | \(a_{927}= +0.40205655 \pm 1.2 \cdot 10^{-6} \) |
\(a_{928}= +0.36629276 \pm 1.2 \cdot 10^{-6} \) | \(a_{929}= +1.67036086 \pm 1.1 \cdot 10^{-6} \) | \(a_{930}= -0.11948020 \pm 4.0 \cdot 10^{-6} \) |
\(a_{931}= +0.77788820 \pm 9.0 \cdot 10^{-7} \) | \(a_{932}= +0.12931705 \pm 1.7 \cdot 10^{-6} \) | \(a_{933}= -0.63733217 \pm 8.8 \cdot 10^{-7} \) |
\(a_{934}= +0.22729396 \pm 1.4 \cdot 10^{-6} \) | \(a_{935}= +0.78369423 \pm 8.1 \cdot 10^{-7} \) | \(a_{936}= +1.13324487 \pm 1.3 \cdot 10^{-6} \) |
\(a_{937}= +1.03283029 \pm 1.1 \cdot 10^{-6} \) | \(a_{938}= -0.11202231 \pm 1.0 \cdot 10^{-6} \) | \(a_{939}= +0.20516376 \pm 1.3 \cdot 10^{-6} \) |
\(a_{940}= +0.45638135 \pm 1.6 \cdot 10^{-6} \) | \(a_{941}= -0.87080377 \pm 1.1 \cdot 10^{-6} \) | \(a_{942}= +0.05815130 \pm 1.5 \cdot 10^{-6} \) |
\(a_{943}= +0.00820111 \pm 1.0 \cdot 10^{-6} \) | \(a_{944}= -0.51446333 \pm 1.4 \cdot 10^{-6} \) | \(a_{945}= -0.30768928 \pm 1.1 \cdot 10^{-6} \) |
\(a_{946}= -2.08650892 \pm 1.1 \cdot 10^{-6} \) | \(a_{947}= -0.24481589 \pm 1.2 \cdot 10^{-6} \) | \(a_{948}= +0.13107026 \pm 2.2 \cdot 10^{-6} \) |
\(a_{949}= -1.42241546 \pm 1.2 \cdot 10^{-6} \) | \(a_{950}= +0.93609325 \pm 1.8 \cdot 10^{-6} \) | \(a_{951}= +0.66734908 \pm 1.1 \cdot 10^{-6} \) |
\(a_{952}= +0.07146278 \pm 8.9 \cdot 10^{-7} \) | \(a_{953}= -0.50894172 \pm 1.3 \cdot 10^{-6} \) | \(a_{954}= -0.09517740 \pm 1.8 \cdot 10^{-6} \) |
\(a_{955}= +1.92326847 \pm 1.3 \cdot 10^{-6} \) | \(a_{956}= -0.13893484 \pm 1.5 \cdot 10^{-6} \) | \(a_{957}= -0.57609434 \pm 1.5 \cdot 10^{-6} \) |
\(a_{958}= -0.77290939 \pm 1.6 \cdot 10^{-6} \) | \(a_{959}= -0.12568473 \pm 1.2 \cdot 10^{-6} \) | \(a_{960}= -0.86794356 \pm 1.8 \cdot 10^{-6} \) |
\(a_{961}= +0.03225806 \pm 1.7 \cdot 10^{-6} \) | \(a_{962}= -0.17349232 \pm 1.2 \cdot 10^{-6} \) | \(a_{963}= -0.98167287 \pm 1.0 \cdot 10^{-6} \) |
\(a_{964}= +0.39818772 \pm 9.7 \cdot 10^{-7} \) | \(a_{965}= +1.80791413 \pm 1.0 \cdot 10^{-6} \) | \(a_{966}= -0.00154025 \pm 8.5 \cdot 10^{-7} \) |
\(a_{967}= +0.69273251 \pm 1.1 \cdot 10^{-6} \) | \(a_{968}= +2.19331151 \pm 1.6 \cdot 10^{-6} \) | \(a_{969}= +0.12399422 \pm 9.6 \cdot 10^{-7} \) |
\(a_{970}= -1.25861119 \pm 1.3 \cdot 10^{-6} \) | \(a_{971}= -1.73400971 \pm 1.2 \cdot 10^{-6} \) | \(a_{972}= -0.30598587 \pm 1.7 \cdot 10^{-6} \) |
\(a_{973}= -0.04789393 \pm 9.6 \cdot 10^{-7} \) | \(a_{974}= +0.06232134 \pm 1.7 \cdot 10^{-6} \) | \(a_{975}= -0.99738354 \pm 8.5 \cdot 10^{-7} \) |
\(a_{976}= +0.50202192 \pm 1.9 \cdot 10^{-6} \) | \(a_{977}= +0.47629207 \pm 1.3 \cdot 10^{-6} \) | \(a_{978}= -0.13645382 \pm 1.5 \cdot 10^{-6} \) |
\(a_{979}= -2.81494231 \pm 1.1 \cdot 10^{-6} \) | \(a_{980}= -0.43159544 \pm 1.3 \cdot 10^{-6} \) | \(a_{981}= +0.61799975 \pm 1.2 \cdot 10^{-6} \) |
\(a_{982}= +0.40472015 \pm 1.1 \cdot 10^{-6} \) | \(a_{983}= -0.74627043 \pm 9.0 \cdot 10^{-7} \) | \(a_{984}= -0.28934959 \pm 2.8 \cdot 10^{-6} \) |
\(a_{985}= +1.14164340 \pm 9.3 \cdot 10^{-7} \) | \(a_{986}= -0.15844305 \pm 1.5 \cdot 10^{-6} \) | \(a_{987}= -0.11596997 \pm 1.1 \cdot 10^{-6} \) |
\(a_{988}= -0.34376186 \pm 1.2 \cdot 10^{-6} \) | \(a_{989}= -0.02275115 \pm 9.2 \cdot 10^{-7} \) | \(a_{990}= -1.64446555 \pm 1.0 \cdot 10^{-6} \) |
\(a_{991}= -0.11619088 \pm 1.1 \cdot 10^{-6} \) | \(a_{992}= +0.10230246 \pm 1.6 \cdot 10^{-6} \) | \(a_{993}= +0.02409248 \pm 1.3 \cdot 10^{-6} \) |
\(a_{994}= +0.03062090 \pm 1.1 \cdot 10^{-6} \) | \(a_{995}= -1.07175832 \pm 1.0 \cdot 10^{-6} \) | \(a_{996}= +0.10243780 \pm 1.7 \cdot 10^{-6} \) |
\(a_{997}= -0.82329891 \pm 1.2 \cdot 10^{-6} \) | \(a_{998}= +0.79589589 \pm 1.4 \cdot 10^{-6} \) | \(a_{999}= +0.13020494 \pm 8.4 \cdot 10^{-7} \) |
\(a_{1000}= -0.60496042 \pm 1.8 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000