Maass form invariants
Level: | \( 31 \) |
Weight: | \( 0 \) |
Character: | 31.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(2.23271071476013831655819950919 \pm 4 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.47772563 \pm 1.2 \cdot 10^{-6} \) | \(a_{3}= +1.52208905 \pm 1.0 \cdot 10^{-6} \) |
\(a_{4}= -0.77177822 \pm 1.3 \cdot 10^{-6} \) | \(a_{5}= +1.13086727 \pm 1.0 \cdot 10^{-6} \) | \(a_{6}= +0.72714095 \pm 1.3 \cdot 10^{-6} \) |
\(a_{7}= -0.47678657 \pm 9.9 \cdot 10^{-7} \) | \(a_{8}= -0.84642387 \pm 1.3 \cdot 10^{-6} \) | \(a_{9}= +1.31675508 \pm 1.0 \cdot 10^{-6} \) |
\(a_{10}= +0.54024428 \pm 1.2 \cdot 10^{-6} \) | \(a_{11}= -1.11163133 \pm 9.9 \cdot 10^{-7} \) | \(a_{12}= -1.17471518 \pm 1.6 \cdot 10^{-6} \) |
\(a_{13}= -1.15182149 \pm 1.0 \cdot 10^{-6} \) | \(a_{14}= -0.22777316 \pm 1.0 \cdot 10^{-6} \) | \(a_{15}= +1.72128069 \pm 1.0 \cdot 10^{-6} \) |
\(a_{16}= +0.36741984 \pm 1.2 \cdot 10^{-6} \) | \(a_{17}= +1.22186166 \pm 9.3 \cdot 10^{-7} \) | \(a_{18}= +0.62904765 \pm 1.3 \cdot 10^{-6} \) |
\(a_{19}= +0.74104456 \pm 1.0 \cdot 10^{-6} \) | \(a_{20}= -0.87277873 \pm 1.2 \cdot 10^{-6} \) | \(a_{21}= -0.72571161 \pm 1.0 \cdot 10^{-6} \) |
\(a_{22}= -0.53105478 \pm 1.0 \cdot 10^{-6} \) | \(a_{23}= +1.45152405 \pm 9.4 \cdot 10^{-7} \) | \(a_{24}= -1.28833251 \pm 1.6 \cdot 10^{-6} \) |
\(a_{25}= +0.27886078 \pm 9.6 \cdot 10^{-7} \) | \(a_{26}= -0.55025465 \pm 1.0 \cdot 10^{-6} \) | \(a_{27}= +0.48212944 \pm 9.1 \cdot 10^{-7} \) |
\(a_{28}= +0.36797349 \pm 1.0 \cdot 10^{-6} \) | \(a_{29}= -1.22124753 \pm 9.3 \cdot 10^{-7} \) | \(a_{30}= +0.82229991 \pm 1.3 \cdot 10^{-6} \) |
\(a_{31}= +0.17960530 \pm 1.0 \cdot 10^{-8} \) | \(a_{32}= +1.02194975 \pm 1.3 \cdot 10^{-6} \) | \(a_{33}= -1.69200188 \pm 1.0 \cdot 10^{-6} \) |
\(a_{34}= +0.58371464 \pm 1.2 \cdot 10^{-6} \) | \(a_{35}= -0.53918232 \pm 9.1 \cdot 10^{-7} \) | \(a_{36}= -1.01624289 \pm 1.4 \cdot 10^{-6} \) |
\(a_{37}= +1.26175515 \pm 9.1 \cdot 10^{-7} \) | \(a_{38}= +0.35401598 \pm 1.2 \cdot 10^{-6} \) | \(a_{39}= -1.75317489 \pm 1.0 \cdot 10^{-6} \) |
\(a_{40}= -0.95719305 \pm 1.3 \cdot 10^{-6} \) | \(a_{41}= -0.45152599 \pm 9.0 \cdot 10^{-7} \) | \(a_{42}= -0.34669104 \pm 1.2 \cdot 10^{-6} \) |
\(a_{43}= -0.48791433 \pm 8.6 \cdot 10^{-7} \) | \(a_{44}= +0.85793285 \pm 1.0 \cdot 10^{-6} \) | \(a_{45}= +1.48907522 \pm 1.0 \cdot 10^{-6} \) |
\(a_{46}= +0.69343024 \pm 9.0 \cdot 10^{-7} \) | \(a_{47}= +1.23004339 \pm 8.8 \cdot 10^{-7} \) | \(a_{48}= +0.55924572 \pm 1.5 \cdot 10^{-6} \) |
\(a_{49}= -0.77267457 \pm 9.4 \cdot 10^{-7} \) | \(a_{50}= +0.13321894 \pm 1.2 \cdot 10^{-6} \) | \(a_{51}= +1.85978226 \pm 1.0 \cdot 10^{-6} \) |
\(a_{52}= +0.88895074 \pm 1.0 \cdot 10^{-6} \) | \(a_{53}= -0.85925918 \pm 9.4 \cdot 10^{-7} \) | \(a_{54}= +0.23032559 \pm 1.1 \cdot 10^{-6} \) |
\(a_{55}= -1.25710749 \pm 1.0 \cdot 10^{-6} \) | \(a_{56}= +0.40356353 \pm 1.0 \cdot 10^{-6} \) | \(a_{57}= +1.12793581 \pm 1.0 \cdot 10^{-6} \) |
\(a_{58}= -0.58342125 \pm 1.0 \cdot 10^{-6} \) | \(a_{59}= -0.88134123 \pm 1.0 \cdot 10^{-6} \) | \(a_{60}= -1.32844695 \pm 1.5 \cdot 10^{-6} \) |
\(a_{61}= +0.51570721 \pm 9.6 \cdot 10^{-7} \) | \(a_{62}= +0.08580206 \pm 1.2 \cdot 10^{-6} \) | \(a_{63}= -0.62781113 \pm 1.1 \cdot 10^{-6} \) |
\(a_{64}= +0.12079175 \pm 1.2 \cdot 10^{-6} \) | \(a_{65}= -1.30255723 \pm 1.0 \cdot 10^{-6} \) | \(a_{66}= -0.80831267 \pm 1.0 \cdot 10^{-6} \) |
\(a_{67}= +0.21918534 \pm 8.2 \cdot 10^{-7} \) | \(a_{68}= -0.94300622 \pm 1.5 \cdot 10^{-6} \) | \(a_{69}= +2.20934886 \pm 1.0 \cdot 10^{-6} \) |
\(a_{70}= -0.25758122 \pm 1.0 \cdot 10^{-6} \) | \(a_{71}= +0.23889846 \pm 7.9 \cdot 10^{-7} \) | \(a_{72}= -1.11453293 \pm 1.3 \cdot 10^{-6} \) |
\(a_{73}= -0.39441861 \pm 8.9 \cdot 10^{-7} \) | \(a_{74}= +0.60277278 \pm 1.1 \cdot 10^{-6} \) | \(a_{75}= +0.42445094 \pm 9.6 \cdot 10^{-7} \) |
\(a_{76}= -0.57192205 \pm 1.2 \cdot 10^{-6} \) | \(a_{77}= +0.53001088 \pm 8.7 \cdot 10^{-7} \) | \(a_{78}= -0.83753658 \pm 1.0 \cdot 10^{-6} \) |
\(a_{79}= +1.37151700 \pm 1.0 \cdot 10^{-6} \) | \(a_{80}= +0.41550307 \pm 1.1 \cdot 10^{-6} \) | \(a_{81}= -0.58291114 \pm 1.0 \cdot 10^{-6} \) |
\(a_{82}= -0.21570554 \pm 1.2 \cdot 10^{-6} \) | \(a_{83}= -0.41511563 \pm 8.3 \cdot 10^{-7} \) | \(a_{84}= +0.56008841 \pm 1.3 \cdot 10^{-6} \) |
\(a_{85}= +1.38176336 \pm 8.4 \cdot 10^{-7} \) | \(a_{86}= -0.23308918 \pm 1.0 \cdot 10^{-6} \) | \(a_{87}= -1.85884749 \pm 1.1 \cdot 10^{-6} \) |
\(a_{88}= +0.94091129 \pm 1.0 \cdot 10^{-6} \) | \(a_{89}= -0.59567436 \pm 8.5 \cdot 10^{-7} \) | \(a_{90}= +0.71136940 \pm 1.2 \cdot 10^{-6} \) |
\(a_{91}= +0.54917301 \pm 1.1 \cdot 10^{-6} \) | \(a_{92}= -1.12025465 \pm 1.0 \cdot 10^{-6} \) | \(a_{93}= +0.27337526 \pm 1.1 \cdot 10^{-6} \) |
\(a_{94}= +0.58762326 \pm 1.1 \cdot 10^{-6} \) | \(a_{95}= +0.83802304 \pm 1.0 \cdot 10^{-6} \) | \(a_{96}= +1.55549852 \pm 1.6 \cdot 10^{-6} \) |
\(a_{97}= -0.44412560 \pm 9.7 \cdot 10^{-7} \) | \(a_{98}= -0.36912645 \pm 9.8 \cdot 10^{-7} \) | \(a_{99}= -1.46374620 \pm 9.1 \cdot 10^{-7} \) |
\(a_{100}= -0.21521868 \pm 1.1 \cdot 10^{-6} \) | \(a_{101}= -1.71468787 \pm 1.0 \cdot 10^{-6} \) | \(a_{102}= +0.88846565 \pm 1.5 \cdot 10^{-6} \) |
\(a_{103}= +1.10004232 \pm 8.7 \cdot 10^{-7} \) | \(a_{104}= +0.97492921 \pm 1.1 \cdot 10^{-6} \) | \(a_{105}= -0.82068351 \pm 9.4 \cdot 10^{-7} \) |
\(a_{106}= -0.41049014 \pm 1.1 \cdot 10^{-6} \) | \(a_{107}= +1.19454731 \pm 8.8 \cdot 10^{-7} \) | \(a_{108}= -0.37209700 \pm 1.2 \cdot 10^{-6} \) |
\(a_{109}= -0.22177905 \pm 9.8 \cdot 10^{-7} \) | \(a_{110}= -0.60055247 \pm 1.0 \cdot 10^{-6} \) | \(a_{111}= +1.92050370 \pm 9.5 \cdot 10^{-7} \) |
\(a_{112}= -0.17518084 \pm 8.2 \cdot 10^{-7} \) | \(a_{113}= -0.35545031 \pm 9.0 \cdot 10^{-7} \) | \(a_{114}= +0.53884385 \pm 1.1 \cdot 10^{-6} \) |
\(a_{115}= +1.64148104 \pm 8.8 \cdot 10^{-7} \) | \(a_{116}= +0.94253224 \pm 1.1 \cdot 10^{-6} \) | \(a_{117}= -1.51666680 \pm 1.0 \cdot 10^{-6} \) |
\(a_{118}= -0.42103929 \pm 1.4 \cdot 10^{-6} \) | \(a_{119}= -0.58256722 \pm 7.6 \cdot 10^{-7} \) | \(a_{120}= -1.45693306 \pm 1.5 \cdot 10^{-6} \) |
\(a_{121}= +0.23572421 \pm 1.0 \cdot 10^{-6} \) | \(a_{122}= +0.24636655 \pm 1.3 \cdot 10^{-6} \) | \(a_{123}= -0.68726276 \pm 1.1 \cdot 10^{-6} \) |
\(a_{124}= -0.13861546 \pm 1.3 \cdot 10^{-6} \) | \(a_{125}= -0.81551274 \pm 1.0 \cdot 10^{-6} \) | \(a_{126}= -0.29992147 \pm 1.4 \cdot 10^{-6} \) |
\(a_{127}= -0.62408681 \pm 9.8 \cdot 10^{-7} \) | \(a_{128}= -0.96424443 \pm 1.2 \cdot 10^{-6} \) | \(a_{129}= -0.74264906 \pm 8.1 \cdot 10^{-7} \) |
\(a_{130}= -0.62226498 \pm 1.0 \cdot 10^{-6} \) | \(a_{131}= -0.60921372 \pm 1.0 \cdot 10^{-6} \) | \(a_{132}= +1.30585020 \pm 1.1 \cdot 10^{-6} \) |
\(a_{133}= -0.35332009 \pm 9.6 \cdot 10^{-7} \) | \(a_{134}= +0.10471045 \pm 9.1 \cdot 10^{-7} \) | \(a_{135}= +0.54522440 \pm 8.8 \cdot 10^{-7} \) |
\(a_{136}= -1.03421288 \pm 1.6 \cdot 10^{-6} \) | \(a_{137}= +1.08514318 \pm 9.7 \cdot 10^{-7} \) | \(a_{138}= +1.05546258 \pm 9.1 \cdot 10^{-7} \) |
\(a_{139}= -0.47379021 \pm 7.5 \cdot 10^{-7} \) | \(a_{140}= +0.41612917 \pm 9.6 \cdot 10^{-7} \) | \(a_{141}= +1.87223558 \pm 1.1 \cdot 10^{-6} \) |
\(a_{142}= +0.11412792 \pm 8.6 \cdot 10^{-7} \) | \(a_{143}= +1.28040086 \pm 1.0 \cdot 10^{-6} \) | \(a_{144}= +0.48380194 \pm 1.2 \cdot 10^{-6} \) |
\(a_{145}= -1.38106886 \pm 8.9 \cdot 10^{-7} \) | \(a_{146}= -0.18842388 \pm 1.1 \cdot 10^{-6} \) | \(a_{147}= -1.17607950 \pm 9.9 \cdot 10^{-7} \) |
\(a_{148}= -0.97379514 \pm 1.2 \cdot 10^{-6} \) | \(a_{149}= +0.51708100 \pm 8.6 \cdot 10^{-7} \) | \(a_{150}= +0.20277110 \pm 1.2 \cdot 10^{-6} \) |
\(a_{151}= -0.30458543 \pm 9.5 \cdot 10^{-7} \) | \(a_{152}= -0.62723780 \pm 1.1 \cdot 10^{-6} \) | \(a_{153}= +1.60889255 \pm 9.1 \cdot 10^{-7} \) |
\(a_{154}= +0.25319978 \pm 9.4 \cdot 10^{-7} \) | \(a_{155}= +0.20310976 \pm 1.0 \cdot 10^{-6} \) | \(a_{156}= +1.35306219 \pm 1.1 \cdot 10^{-6} \) |
\(a_{157}= +1.36234677 \pm 8.5 \cdot 10^{-7} \) | \(a_{158}= +0.65520883 \pm 1.2 \cdot 10^{-6} \) | \(a_{159}= -1.30786899 \pm 9.4 \cdot 10^{-7} \) |
\(a_{160}= +1.15568952 \pm 1.2 \cdot 10^{-6} \) | \(a_{161}= -0.69206717 \pm 8.4 \cdot 10^{-7} \) | \(a_{162}= -0.27847159 \pm 1.4 \cdot 10^{-6} \) |
\(a_{163}= -0.55407184 \pm 9.9 \cdot 10^{-7} \) | \(a_{164}= +0.34847792 \pm 1.4 \cdot 10^{-6} \) | \(a_{165}= -1.91342954 \pm 9.7 \cdot 10^{-7} \) |
\(a_{166}= -0.19831138 \pm 1.1 \cdot 10^{-6} \) | \(a_{167}= +0.54386434 \pm 1.0 \cdot 10^{-6} \) | \(a_{168}= +0.61425963 \pm 1.1 \cdot 10^{-6} \) |
\(a_{169}= +0.32669276 \pm 9.6 \cdot 10^{-7} \) | \(a_{170}= +0.66010378 \pm 1.1 \cdot 10^{-6} \) | \(a_{171}= +0.97577419 \pm 9.5 \cdot 10^{-7} \) |
\(a_{172}= +0.37656165 \pm 9.8 \cdot 10^{-7} \) | \(a_{173}= -1.31121692 \pm 1.0 \cdot 10^{-6} \) | \(a_{174}= -0.88801909 \pm 1.3 \cdot 10^{-6} \) |
\(a_{175}= -0.13295707 \pm 8.9 \cdot 10^{-7} \) | \(a_{176}= -0.40843541 \pm 6.5 \cdot 10^{-7} \) | \(a_{177}= -1.34147983 \pm 1.1 \cdot 10^{-6} \) |
\(a_{178}= -0.28456891 \pm 9.7 \cdot 10^{-7} \) | \(a_{179}= +1.61695778 \pm 1.0 \cdot 10^{-6} \) | \(a_{180}= -1.14923582 \pm 1.3 \cdot 10^{-6} \) |
\(a_{181}= +1.13642255 \pm 8.9 \cdot 10^{-7} \) | \(a_{182}= +0.26235403 \pm 9.9 \cdot 10^{-7} \) | \(a_{183}= +0.78495230 \pm 1.0 \cdot 10^{-6} \) |
\(a_{184}= -1.22860461 \pm 1.1 \cdot 10^{-6} \) | \(a_{185}= +1.42687760 \pm 8.6 \cdot 10^{-7} \) | \(a_{186}= +0.13059837 \pm 2.3 \cdot 10^{-6} \) |
\(a_{187}= -1.35825970 \pm 7.3 \cdot 10^{-7} \) | \(a_{188}= -0.94932070 \pm 1.4 \cdot 10^{-6} \) | \(a_{189}= -0.22987284 \pm 1.0 \cdot 10^{-6} \) |
\(a_{190}= +0.40034509 \pm 1.3 \cdot 10^{-6} \) | \(a_{191}= +0.01930643 \pm 9.9 \cdot 10^{-7} \) | \(a_{192}= +0.18385580 \pm 1.5 \cdot 10^{-6} \) |
\(a_{193}= -0.07239696 \pm 9.4 \cdot 10^{-7} \) | \(a_{194}= -0.21217018 \pm 1.2 \cdot 10^{-6} \) | \(a_{195}= -1.98260810 \pm 8.6 \cdot 10^{-7} \) |
\(a_{196}= +0.59633341 \pm 1.1 \cdot 10^{-6} \) | \(a_{197}= +0.66137300 \pm 7.4 \cdot 10^{-7} \) | \(a_{198}= -0.69926908 \pm 1.0 \cdot 10^{-6} \) |
\(a_{199}= +0.55977278 \pm 9.0 \cdot 10^{-7} \) | \(a_{200}= -0.23603442 \pm 1.0 \cdot 10^{-6} \) | \(a_{201}= +0.33361960 \pm 9.0 \cdot 10^{-7} \) |
\(a_{202}= -0.81915034 \pm 1.2 \cdot 10^{-6} \) | \(a_{203}= +0.58227441 \pm 9.4 \cdot 10^{-7} \) | \(a_{204}= -1.43533944 \pm 1.8 \cdot 10^{-6} \) |
\(a_{205}= -0.51061596 \pm 8.7 \cdot 10^{-7} \) | \(a_{206}= +0.52551841 \pm 1.0 \cdot 10^{-6} \) | \(a_{207}= +1.91130167 \pm 8.6 \cdot 10^{-7} \) |
\(a_{208}= -0.42320207 \pm 1.0 \cdot 10^{-6} \) | \(a_{209}= -0.82376835 \pm 1.1 \cdot 10^{-6} \) | \(a_{210}= -0.39206155 \pm 1.2 \cdot 10^{-6} \) |
\(a_{211}= -0.61964370 \pm 9.7 \cdot 10^{-7} \) | \(a_{212}= +0.66315752 \pm 1.1 \cdot 10^{-6} \) | \(a_{213}= +0.36362473 \pm 9.5 \cdot 10^{-7} \) |
\(a_{214}= +0.57066587 \pm 9.8 \cdot 10^{-7} \) | \(a_{215}= -0.55176635 \pm 9.3 \cdot 10^{-7} \) | \(a_{216}= -0.40808586 \pm 1.0 \cdot 10^{-6} \) |
\(a_{217}= -0.08563340 \pm 1.0 \cdot 10^{-6} \) | \(a_{218}= -0.10594954 \pm 1.2 \cdot 10^{-6} \) | \(a_{219}= -0.60034025 \pm 8.9 \cdot 10^{-7} \) |
\(a_{220}= +0.97020818 \pm 8.9 \cdot 10^{-7} \) | \(a_{221}= -1.40736653 \pm 9.2 \cdot 10^{-7} \) | \(a_{222}= +0.91747384 \pm 1.1 \cdot 10^{-6} \) |
\(a_{223}= +1.50696887 \pm 1.1 \cdot 10^{-6} \) | \(a_{224}= -0.48725191 \pm 1.0 \cdot 10^{-6} \) | \(a_{225}= +0.36719135 \pm 8.7 \cdot 10^{-7} \) |
\(a_{226}= -0.16980772 \pm 1.1 \cdot 10^{-6} \) | \(a_{227}= -0.42381384 \pm 9.3 \cdot 10^{-7} \) | \(a_{228}= -0.87051629 \pm 1.2 \cdot 10^{-6} \) |
\(a_{229}= +1.61427489 \pm 1.0 \cdot 10^{-6} \) | \(a_{230}= +0.78417757 \pm 9.4 \cdot 10^{-7} \) | \(a_{231}= +0.80672376 \pm 1.0 \cdot 10^{-6} \) |
\(a_{232}= +1.03369306 \pm 1.1 \cdot 10^{-6} \) | \(a_{233}= +0.32895761 \pm 7.7 \cdot 10^{-7} \) | \(a_{234}= -0.72455061 \pm 1.1 \cdot 10^{-6} \) |
\(a_{235}= +1.39101581 \pm 9.4 \cdot 10^{-7} \) | \(a_{236}= +0.68019996 \pm 1.5 \cdot 10^{-6} \) | \(a_{237}= +2.08757101 \pm 1.1 \cdot 10^{-6} \) |
\(a_{238}= -0.27830730 \pm 7.3 \cdot 10^{-7} \) | \(a_{239}= +0.97550147 \pm 1.0 \cdot 10^{-6} \) | \(a_{240}= +0.63243268 \pm 1.3 \cdot 10^{-6} \) |
\(a_{241}= -0.51120131 \pm 7.8 \cdot 10^{-7} \) | \(a_{242}= +0.11261150 \pm 1.1 \cdot 10^{-6} \) | \(a_{243}= -1.36937210 \pm 1.1 \cdot 10^{-6} \) |
\(a_{244}= -0.39801159 \pm 1.6 \cdot 10^{-6} \) | \(a_{245}= -0.87379238 \pm 9.0 \cdot 10^{-7} \) | \(a_{246}= -0.32832304 \pm 1.6 \cdot 10^{-6} \) |
\(a_{247}= -0.85355105 \pm 1.0 \cdot 10^{-6} \) | \(a_{248}= -0.15202221 \pm 1.3 \cdot 10^{-6} \) | \(a_{249}= -0.63184295 \pm 9.0 \cdot 10^{-7} \) |
\(a_{250}= -0.38959134 \pm 1.3 \cdot 10^{-6} \) | \(a_{251}= -0.36440757 \pm 9.3 \cdot 10^{-7} \) | \(a_{252}= +0.48453096 \pm 1.4 \cdot 10^{-6} \) |
\(a_{253}= -1.61355961 \pm 8.7 \cdot 10^{-7} \) | \(a_{254}= -0.29814227 \pm 1.2 \cdot 10^{-6} \) | \(a_{255}= +2.10316688 \pm 1.0 \cdot 10^{-6} \) |
\(a_{256}= -0.58143603 \pm 1.1 \cdot 10^{-6} \) | \(a_{257}= -0.28649108 \pm 9.8 \cdot 10^{-7} \) | \(a_{258}= -0.35478249 \pm 1.0 \cdot 10^{-6} \) |
\(a_{259}= -0.60158790 \pm 9.3 \cdot 10^{-7} \) | \(a_{260}= +1.00528530 \pm 9.6 \cdot 10^{-7} \) | \(a_{261}= -1.60808388 \pm 9.5 \cdot 10^{-7} \) |
\(a_{262}= -0.29103701 \pm 1.1 \cdot 10^{-6} \) | \(a_{263}= -1.48310272 \pm 1.0 \cdot 10^{-6} \) | \(a_{264}= +1.43215078 \pm 1.0 \cdot 10^{-6} \) |
\(a_{265}= -0.97170808 \pm 8.5 \cdot 10^{-7} \) | \(a_{266}= -0.16879006 \pm 1.0 \cdot 10^{-6} \) | \(a_{267}= -0.90666942 \pm 8.4 \cdot 10^{-7} \) |
\(a_{268}= -0.16916247 \pm 9.1 \cdot 10^{-7} \) | \(a_{269}= +0.18474143 \pm 8.9 \cdot 10^{-7} \) | \(a_{270}= +0.26046767 \pm 1.0 \cdot 10^{-6} \) |
\(a_{271}= +1.38703787 \pm 1.1 \cdot 10^{-6} \) | \(a_{272}= +0.44893622 \pm 1.4 \cdot 10^{-6} \) | \(a_{273}= +0.83589023 \pm 1.0 \cdot 10^{-6} \) |
\(a_{274}= +0.51840071 \pm 1.1 \cdot 10^{-6} \) | \(a_{275}= -0.30999038 \pm 1.1 \cdot 10^{-6} \) | \(a_{276}= -1.70512733 \pm 1.1 \cdot 10^{-6} \) |
\(a_{277}= -0.16555513 \pm 9.4 \cdot 10^{-7} \) | \(a_{278}= -0.22634173 \pm 9.4 \cdot 10^{-7} \) | \(a_{279}= +0.23649619 \pm 1.0 \cdot 10^{-6} \) |
\(a_{280}= +0.45637679 \pm 9.6 \cdot 10^{-7} \) | \(a_{281}= +0.23090205 \pm 9.8 \cdot 10^{-7} \) | \(a_{282}= +0.89441493 \pm 1.5 \cdot 10^{-6} \) |
\(a_{283}= +0.59125874 \pm 9.5 \cdot 10^{-7} \) | \(a_{284}= -0.18437663 \pm 8.2 \cdot 10^{-7} \) | \(a_{285}= +1.27554569 \pm 1.0 \cdot 10^{-6} \) |
\(a_{286}= +0.61168031 \pm 1.0 \cdot 10^{-6} \) | \(a_{287}= +0.21528152 \pm 8.3 \cdot 10^{-7} \) | \(a_{288}= +1.34565752 \pm 1.3 \cdot 10^{-6} \) |
\(a_{289}= +0.49294592 \pm 1.0 \cdot 10^{-6} \) | \(a_{290}= -0.65977199 \pm 1.1 \cdot 10^{-6} \) | \(a_{291}= -0.67599872 \pm 1.1 \cdot 10^{-6} \) |
\(a_{292}= +0.30440369 \pm 1.1 \cdot 10^{-6} \) | \(a_{293}= -1.00974276 \pm 8.4 \cdot 10^{-7} \) | \(a_{294}= -0.56184333 \pm 1.1 \cdot 10^{-6} \) |
\(a_{295}= -0.99667995 \pm 9.2 \cdot 10^{-7} \) | \(a_{296}= -1.06797968 \pm 1.2 \cdot 10^{-6} \) | \(a_{297}= -0.53595019 \pm 7.8 \cdot 10^{-7} \) |
\(a_{298}= +0.24702285 \pm 1.0 \cdot 10^{-6} \) | \(a_{299}= -1.67189660 \pm 9.8 \cdot 10^{-7} \) | \(a_{300}= -0.32758199 \pm 1.2 \cdot 10^{-6} \) |
\(a_{301}= +0.23263100 \pm 8.4 \cdot 10^{-7} \) | \(a_{302}= -0.14550827 \pm 1.0 \cdot 10^{-6} \) | \(a_{303}= -2.60990763 \pm 1.2 \cdot 10^{-6} \) |
\(a_{304}= +0.27227447 \pm 7.9 \cdot 10^{-7} \) | \(a_{305}= +0.58319641 \pm 9.2 \cdot 10^{-7} \) | \(a_{306}= +0.76860921 \pm 1.1 \cdot 10^{-6} \) |
\(a_{307}= +0.38582724 \pm 1.0 \cdot 10^{-6} \) | \(a_{308}= -0.40905086 \pm 9.8 \cdot 10^{-7} \) | \(a_{309}= +1.67436238 \pm 1.0 \cdot 10^{-6} \) |
\(a_{310}= +0.09703074 \pm 2.2 \cdot 10^{-6} \) | \(a_{311}= +0.29694262 \pm 7.9 \cdot 10^{-7} \) | \(a_{312}= +1.48392907 \pm 1.1 \cdot 10^{-6} \) |
\(a_{313}= -1.40944001 \pm 9.9 \cdot 10^{-7} \) | \(a_{314}= +0.65082797 \pm 1.0 \cdot 10^{-6} \) | \(a_{315}= -0.70997106 \pm 9.9 \cdot 10^{-7} \) |
\(a_{316}= -1.05850695 \pm 1.5 \cdot 10^{-6} \) | \(a_{317}= +0.11489633 \pm 9.5 \cdot 10^{-7} \) | \(a_{318}= -0.62480254 \pm 1.2 \cdot 10^{-6} \) |
\(a_{319}= +1.35757701 \pm 9.7 \cdot 10^{-7} \) | \(a_{320}= +0.13659943 \pm 1.2 \cdot 10^{-6} \) | \(a_{321}= +1.81820738 \pm 8.4 \cdot 10^{-7} \) |
\(a_{322}= -0.33061822 \pm 7.6 \cdot 10^{-7} \) | \(a_{323}= +0.90545394 \pm 8.0 \cdot 10^{-7} \) | \(a_{324}= +0.44987812 \pm 1.4 \cdot 10^{-6} \) |
\(a_{325}= -0.32119784 \pm 8.6 \cdot 10^{-7} \) | \(a_{326}= -0.26469432 \pm 1.1 \cdot 10^{-6} \) | \(a_{327}= -0.33756746 \pm 8.8 \cdot 10^{-7} \) |
\(a_{328}= +0.38218237 \pm 1.6 \cdot 10^{-6} \) | \(a_{329}= -0.58646816 \pm 7.2 \cdot 10^{-7} \) | \(a_{330}= -0.91409434 \pm 9.9 \cdot 10^{-7} \) |
\(a_{331}= +1.33519786 \pm 8.9 \cdot 10^{-7} \) | \(a_{332}= +0.32037720 \pm 1.2 \cdot 10^{-6} \) | \(a_{333}= +1.66142250 \pm 8.9 \cdot 10^{-7} \) |
\(a_{334}= +0.25981794 \pm 1.1 \cdot 10^{-6} \) | \(a_{335}= +0.24786953 \pm 8.4 \cdot 10^{-7} \) | \(a_{336}= -0.26664084 \pm 9.6 \cdot 10^{-7} \) |
\(a_{337}= +1.07337851 \pm 1.0 \cdot 10^{-6} \) | \(a_{338}= +0.15606950 \pm 9.9 \cdot 10^{-7} \) | \(a_{339}= -0.54102702 \pm 9.3 \cdot 10^{-7} \) |
\(a_{340}= -1.06641487 \pm 1.3 \cdot 10^{-6} \) | \(a_{341}= -0.19965488 \pm 1.0 \cdot 10^{-6} \) | \(a_{342}= +0.46615234 \pm 1.2 \cdot 10^{-6} \) |
\(a_{343}= +0.84518742 \pm 9.4 \cdot 10^{-7} \) | \(a_{344}= +0.41298234 \pm 1.0 \cdot 10^{-6} \) | \(a_{345}= +2.49848032 \pm 9.1 \cdot 10^{-7} \) |
\(a_{346}= -0.62640193 \pm 1.3 \cdot 10^{-6} \) | \(a_{347}= -1.82158154 \pm 1.0 \cdot 10^{-6} \) | \(a_{348}= +1.43461801 \pm 1.4 \cdot 10^{-6} \) |
\(a_{349}= -1.87185067 \pm 1.0 \cdot 10^{-6} \) | \(a_{350}= -0.06351700 \pm 1.0 \cdot 10^{-6} \) | \(a_{351}= -0.55532705 \pm 8.3 \cdot 10^{-7} \) |
\(a_{352}= -1.13603136 \pm 9.4 \cdot 10^{-7} \) | \(a_{353}= +1.37723453 \pm 1.1 \cdot 10^{-6} \) | \(a_{354}= -0.64085930 \pm 1.4 \cdot 10^{-6} \) |
\(a_{355}= +0.27016245 \pm 6.8 \cdot 10^{-7} \) | \(a_{356}= +0.45972849 \pm 1.0 \cdot 10^{-6} \) | \(a_{357}= -0.88671919 \pm 7.6 \cdot 10^{-7} \) |
\(a_{358}= +0.77246218 \pm 1.2 \cdot 10^{-6} \) | \(a_{359}= -0.51685061 \pm 9.6 \cdot 10^{-7} \) | \(a_{360}= -1.26038881 \pm 1.3 \cdot 10^{-6} \) |
\(a_{361}= -0.45085296 \pm 1.0 \cdot 10^{-6} \) | \(a_{362}= +0.54289818 \pm 1.0 \cdot 10^{-6} \) | \(a_{363}= +0.35879325 \pm 9.9 \cdot 10^{-7} \) |
\(a_{364}= -0.42383977 \pm 1.0 \cdot 10^{-6} \) | \(a_{365}= -0.44603510 \pm 1.0 \cdot 10^{-6} \) | \(a_{366}= +0.37499183 \pm 1.4 \cdot 10^{-6} \) |
\(a_{367}= -1.25457704 \pm 1.1 \cdot 10^{-6} \) | \(a_{368}= +0.53331874 \pm 1.0 \cdot 10^{-6} \) | \(a_{369}= -0.59454914 \pm 1.0 \cdot 10^{-6} \) |
\(a_{370}= +0.68165600 \pm 1.0 \cdot 10^{-6} \) | \(a_{371}= +0.40968323 \pm 9.5 \cdot 10^{-7} \) | \(a_{372}= -0.21098507 \pm 2.4 \cdot 10^{-6} \) |
\(a_{373}= -0.00732399 \pm 8.8 \cdot 10^{-7} \) | \(a_{374}= -0.64887548 \pm 9.1 \cdot 10^{-7} \) | \(a_{375}= -1.24128301 \pm 1.1 \cdot 10^{-6} \) |
\(a_{376}= -1.04113809 \pm 1.6 \cdot 10^{-6} \) | \(a_{377}= +1.40665915 \pm 9.1 \cdot 10^{-7} \) | \(a_{378}= -0.10981615 \pm 1.4 \cdot 10^{-6} \) |
\(a_{379}= +0.37671321 \pm 9.7 \cdot 10^{-7} \) | \(a_{380}= -0.64676793 \pm 1.2 \cdot 10^{-6} \) | \(a_{381}= -0.94991571 \pm 1.0 \cdot 10^{-6} \) |
\(a_{382}= +0.00922318 \pm 1.3 \cdot 10^{-6} \) | \(a_{383}= -1.03404682 \pm 9.4 \cdot 10^{-7} \) | \(a_{384}= -1.46766589 \pm 1.5 \cdot 10^{-6} \) |
\(a_{385}= +0.59937196 \pm 8.0 \cdot 10^{-7} \) | \(a_{386}= -0.03458588 \pm 9.9 \cdot 10^{-7} \) | \(a_{387}= -0.64246367 \pm 9.0 \cdot 10^{-7} \) |
\(a_{388}= +0.34276647 \pm 1.3 \cdot 10^{-6} \) | \(a_{389}= -0.80022949 \pm 8.4 \cdot 10^{-7} \) | \(a_{390}= -0.94714271 \pm 8.2 \cdot 10^{-7} \) |
\(a_{391}= +1.77356159 \pm 7.8 \cdot 10^{-7} \) | \(a_{392}= +0.65401020 \pm 1.2 \cdot 10^{-6} \) | \(a_{393}= -0.92727753 \pm 1.0 \cdot 10^{-6} \) |
\(a_{394}= +0.31595484 \pm 9.0 \cdot 10^{-7} \) | \(a_{395}= +1.55100368 \pm 9.5 \cdot 10^{-7} \) | \(a_{396}= +1.12968744 \pm 1.0 \cdot 10^{-6} \) |
\(a_{397}= +1.01959120 \pm 9.8 \cdot 10^{-7} \) | \(a_{398}= +0.26741781 \pm 1.0 \cdot 10^{-6} \) | \(a_{399}= -0.53778464 \pm 9.5 \cdot 10^{-7} \) |
\(a_{400}= +0.10245898 \pm 7.1 \cdot 10^{-7} \) | \(a_{401}= +0.64221271 \pm 9.9 \cdot 10^{-7} \) | \(a_{402}= +0.15937864 \pm 1.1 \cdot 10^{-6} \) |
\(a_{403}= -0.20687325 \pm 1.0 \cdot 10^{-6} \) | \(a_{404}= +1.32335875 \pm 1.3 \cdot 10^{-6} \) | \(a_{405}= -0.65919513 \pm 9.8 \cdot 10^{-7} \) |
\(a_{406}= +0.27816741 \pm 9.6 \cdot 10^{-7} \) | \(a_{407}= -1.40260656 \pm 8.9 \cdot 10^{-7} \) | \(a_{408}= -1.57416410 \pm 1.9 \cdot 10^{-6} \) |
\(a_{409}= -0.16991538 \pm 8.2 \cdot 10^{-7} \) | \(a_{410}= -0.24393433 \pm 1.1 \cdot 10^{-6} \) | \(a_{411}= +1.65168455 \pm 1.1 \cdot 10^{-6} \) |
\(a_{412}= -0.84898871 \pm 1.0 \cdot 10^{-6} \) | \(a_{413}= +0.42021166 \pm 1.0 \cdot 10^{-6} \) | \(a_{414}= +0.91307780 \pm 8.8 \cdot 10^{-7} \) |
\(a_{415}= -0.46944068 \pm 8.6 \cdot 10^{-7} \) | \(a_{416}= -1.17710368 \pm 1.1 \cdot 10^{-6} \) | \(a_{417}= -0.72115089 \pm 9.1 \cdot 10^{-7} \) |
\(a_{418}= -0.39353526 \pm 1.2 \cdot 10^{-6} \) | \(a_{419}= +0.52655282 \pm 9.3 \cdot 10^{-7} \) | \(a_{420}= +0.63338566 \pm 1.2 \cdot 10^{-6} \) |
\(a_{421}= +0.98218713 \pm 1.1 \cdot 10^{-6} \) | \(a_{422}= -0.29601968 \pm 9.4 \cdot 10^{-7} \) | \(a_{423}= +1.61966588 \pm 9.9 \cdot 10^{-7} \) |
\(a_{424}= +0.72729748 \pm 1.0 \cdot 10^{-6} \) | \(a_{425}= +0.34072930 \pm 6.2 \cdot 10^{-7} \) | \(a_{426}= +0.17371285 \pm 1.0 \cdot 10^{-6} \) |
\(a_{427}= -0.24588227 \pm 7.4 \cdot 10^{-7} \) | \(a_{428}= -0.92192559 \pm 9.7 \cdot 10^{-7} \) | \(a_{429}= +1.94888413 \pm 1.0 \cdot 10^{-6} \) |
\(a_{430}= -0.26359293 \pm 1.0 \cdot 10^{-6} \) | \(a_{431}= +0.68010678 \pm 9.5 \cdot 10^{-7} \) | \(a_{432}= +0.17714392 \pm 9.0 \cdot 10^{-7} \) |
\(a_{433}= +1.34190791 \pm 1.1 \cdot 10^{-6} \) | \(a_{434}= -0.04090927 \pm 2.2 \cdot 10^{-6} \) | \(a_{435}= -2.10210978 \pm 1.0 \cdot 10^{-6} \) |
\(a_{436}= +0.17116424 \pm 1.2 \cdot 10^{-6} \) | \(a_{437}= +1.07564400 \pm 1.0 \cdot 10^{-6} \) | \(a_{438}= -0.28679793 \pm 1.2 \cdot 10^{-6} \) |
\(a_{439}= +0.40387936 \pm 1.0 \cdot 10^{-6} \) | \(a_{440}= +1.06404579 \pm 1.1 \cdot 10^{-6} \) | \(a_{441}= -1.01742317 \pm 1.0 \cdot 10^{-6} \) |
\(a_{442}= -0.67233506 \pm 9.0 \cdot 10^{-7} \) | \(a_{443}= -0.01141434 \pm 9.6 \cdot 10^{-7} \) | \(a_{444}= -1.48220293 \pm 1.3 \cdot 10^{-6} \) |
\(a_{445}= -0.67362863 \pm 9.2 \cdot 10^{-7} \) | \(a_{446}= +0.71991765 \pm 1.1 \cdot 10^{-6} \) | \(a_{447}= +0.78704332 \pm 8.9 \cdot 10^{-7} \) |
\(a_{448}= -0.05759188 \pm 9.8 \cdot 10^{-7} \) | \(a_{449}= -0.31103270 \pm 8.5 \cdot 10^{-7} \) | \(a_{450}= +0.17541672 \pm 1.1 \cdot 10^{-6} \) |
\(a_{451}= +0.50193043 \pm 8.3 \cdot 10^{-7} \) | \(a_{452}= +0.27432880 \pm 1.1 \cdot 10^{-6} \) | \(a_{453}= -0.46360615 \pm 9.5 \cdot 10^{-7} \) |
\(a_{454}= -0.20246673 \pm 1.1 \cdot 10^{-6} \) | \(a_{455}= +0.62104179 \pm 9.0 \cdot 10^{-7} \) | \(a_{456}= -0.95471179 \pm 1.2 \cdot 10^{-6} \) |
\(a_{457}= -1.53802454 \pm 1.0 \cdot 10^{-6} \) | \(a_{458}= +0.77118049 \pm 1.3 \cdot 10^{-6} \) | \(a_{459}= +0.58909548 \pm 8.1 \cdot 10^{-7} \) |
\(a_{460}= -1.26685932 \pm 9.9 \cdot 10^{-7} \) | \(a_{461}= -1.59166091 \pm 8.7 \cdot 10^{-7} \) | \(a_{462}= +0.38539262 \pm 1.0 \cdot 10^{-6} \) |
\(a_{463}= +0.06448717 \pm 1.0 \cdot 10^{-6} \) | \(a_{464}= -0.44871057 \pm 8.3 \cdot 10^{-7} \) | \(a_{465}= +0.30915114 \pm 2.1 \cdot 10^{-6} \) |
\(a_{466}= +0.15715148 \pm 1.1 \cdot 10^{-6} \) | \(a_{467}= -1.10619916 \pm 9.3 \cdot 10^{-7} \) | \(a_{468}= +1.17053041 \pm 1.1 \cdot 10^{-6} \) |
\(a_{469}= -0.10450462 \pm 8.2 \cdot 10^{-7} \) | \(a_{470}= +0.66452391 \pm 1.1 \cdot 10^{-6} \) | \(a_{471}= +2.07361310 \pm 1.0 \cdot 10^{-6} \) |
\(a_{472}= +0.74598825 \pm 1.5 \cdot 10^{-6} \) | \(a_{473}= +0.54238086 \pm 8.7 \cdot 10^{-7} \) | \(a_{474}= +0.99728618 \pm 1.4 \cdot 10^{-6} \) |
\(a_{475}= +0.20664827 \pm 1.1 \cdot 10^{-6} \) | \(a_{476}= +0.44961270 \pm 7.4 \cdot 10^{-7} \) | \(a_{477}= -1.13143389 \pm 1.0 \cdot 10^{-6} \) |
\(a_{478}= +0.46602205 \pm 1.1 \cdot 10^{-6} \) | \(a_{479}= -0.09737618 \pm 9.6 \cdot 10^{-7} \) | \(a_{480}= +1.75906236 \pm 1.4 \cdot 10^{-6} \) |
\(a_{481}= -1.45331670 \pm 8.8 \cdot 10^{-7} \) | \(a_{482}= -0.24421397 \pm 9.0 \cdot 10^{-7} \) | \(a_{483}= -1.05338786 \pm 9.4 \cdot 10^{-7} \) |
\(a_{484}= -0.18192681 \pm 1.1 \cdot 10^{-6} \) | \(a_{485}= -0.50224711 \pm 8.4 \cdot 10^{-7} \) | \(a_{486}= -0.65418415 \pm 1.3 \cdot 10^{-6} \) |
\(a_{487}= -1.52404984 \pm 1.0 \cdot 10^{-6} \) | \(a_{488}= -0.43650689 \pm 1.7 \cdot 10^{-6} \) | \(a_{489}= -0.84334669 \pm 1.0 \cdot 10^{-6} \) |
\(a_{490}= -0.41743302 \pm 1.0 \cdot 10^{-6} \) | \(a_{491}= +1.52695995 \pm 8.5 \cdot 10^{-7} \) | \(a_{492}= +0.53041443 \pm 2.0 \cdot 10^{-6} \) |
\(a_{493}= -1.49219553 \pm 9.2 \cdot 10^{-7} \) | \(a_{494}= -0.40776322 \pm 1.1 \cdot 10^{-6} \) | \(a_{495}= -1.65530267 \pm 8.4 \cdot 10^{-7} \) |
\(a_{496}= +0.06599055 \pm 1.2 \cdot 10^{-6} \) | \(a_{497}= -0.11390358 \pm 9.2 \cdot 10^{-7} \) | \(a_{498}= -0.30184757 \pm 1.2 \cdot 10^{-6} \) |
\(a_{499}= +0.66510672 \pm 1.0 \cdot 10^{-6} \) | \(a_{500}= +0.62939497 \pm 1.4 \cdot 10^{-6} \) | \(a_{501}= +0.82780996 \pm 9.8 \cdot 10^{-7} \) |
\(a_{502}= -0.17408684 \pm 1.1 \cdot 10^{-6} \) | \(a_{503}= -1.83037231 \pm 1.2 \cdot 10^{-6} \) | \(a_{504}= +0.53139433 \pm 1.2 \cdot 10^{-6} \) |
\(a_{505}= -1.93908438 \pm 1.1 \cdot 10^{-6} \) | \(a_{506}= -0.77083879 \pm 6.4 \cdot 10^{-7} \) | \(a_{507}= +0.49725547 \pm 8.8 \cdot 10^{-7} \) |
\(a_{508}= +0.48165661 \pm 1.1 \cdot 10^{-6} \) | \(a_{509}= +0.92018649 \pm 9.7 \cdot 10^{-7} \) | \(a_{510}= +1.00473673 \pm 1.3 \cdot 10^{-6} \) |
\(a_{511}= +0.18805349 \pm 9.0 \cdot 10^{-7} \) | \(a_{512}= +0.68647754 \pm 1.0 \cdot 10^{-6} \) | \(a_{513}= +0.35727940 \pm 8.1 \cdot 10^{-7} \) |
\(a_{514}= -0.13686413 \pm 1.2 \cdot 10^{-6} \) | \(a_{515}= +1.24400186 \pm 9.4 \cdot 10^{-7} \) | \(a_{516}= +0.57316037 \pm 1.1 \cdot 10^{-6} \) |
\(a_{517}= -1.36735477 \pm 8.0 \cdot 10^{-7} \) | \(a_{518}= -0.28739396 \pm 9.7 \cdot 10^{-7} \) | \(a_{519}= -1.99578891 \pm 1.1 \cdot 10^{-6} \) |
\(a_{520}= +1.10251553 \pm 1.2 \cdot 10^{-6} \) | \(a_{521}= -1.49238628 \pm 9.9 \cdot 10^{-7} \) | \(a_{522}= -0.76822289 \pm 1.1 \cdot 10^{-6} \) |
\(a_{523}= +1.12117796 \pm 8.8 \cdot 10^{-7} \) | \(a_{524}= +0.47017788 \pm 1.3 \cdot 10^{-6} \) | \(a_{525}= -0.20237251 \pm 9.9 \cdot 10^{-7} \) |
\(a_{526}= -0.70851619 \pm 1.1 \cdot 10^{-6} \) | \(a_{527}= +0.21945283 \pm 9.4 \cdot 10^{-7} \) | \(a_{528}= -0.62167506 \pm 6.9 \cdot 10^{-7} \) |
\(a_{529}= +1.10692207 \pm 1.0 \cdot 10^{-6} \) | \(a_{530}= -0.46420986 \pm 1.1 \cdot 10^{-6} \) | \(a_{531}= -1.16051054 \pm 1.0 \cdot 10^{-6} \) |
\(a_{532}= +0.27268475 \pm 1.0 \cdot 10^{-6} \) | \(a_{533}= +0.52007734 \pm 9.0 \cdot 10^{-7} \) | \(a_{534}= -0.43313922 \pm 1.1 \cdot 10^{-6} \) |
\(a_{535}= +1.35087445 \pm 9.5 \cdot 10^{-7} \) | \(a_{536}= -0.18552370 \pm 8.7 \cdot 10^{-7} \) | \(a_{537}= +2.46115373 \pm 1.2 \cdot 10^{-6} \) |
\(a_{538}= +0.08825572 \pm 1.1 \cdot 10^{-6} \) | \(a_{539}= +0.85892926 \pm 8.2 \cdot 10^{-7} \) | \(a_{540}= -0.42079232 \pm 1.1 \cdot 10^{-6} \) |
\(a_{541}= +1.29484733 \pm 1.0 \cdot 10^{-6} \) | \(a_{542}= +0.66262354 \pm 1.1 \cdot 10^{-6} \) | \(a_{543}= +1.72973633 \pm 1.0 \cdot 10^{-6} \) |
\(a_{544}= +1.24868122 \pm 1.3 \cdot 10^{-6} \) | \(a_{545}= -0.25080267 \pm 9.7 \cdot 10^{-7} \) | \(a_{546}= +0.39932619 \pm 9.8 \cdot 10^{-7} \) |
\(a_{547}= -0.46537152 \pm 9.6 \cdot 10^{-7} \) | \(a_{548}= -0.83748987 \pm 1.2 \cdot 10^{-6} \) | \(a_{549}= +0.67906009 \pm 8.4 \cdot 10^{-7} \) |
\(a_{550}= -0.14809035 \pm 1.2 \cdot 10^{-6} \) | \(a_{551}= -0.90499883 \pm 9.7 \cdot 10^{-7} \) | \(a_{552}= -1.87004562 \pm 1.3 \cdot 10^{-6} \) |
\(a_{553}= -0.65392088 \pm 1.1 \cdot 10^{-6} \) | \(a_{554}= -0.07908993 \pm 9.9 \cdot 10^{-7} \) | \(a_{555}= +2.17183477 \pm 8.1 \cdot 10^{-7} \) |
\(a_{556}= +0.36566097 \pm 1.0 \cdot 10^{-6} \) | \(a_{557}= +0.53643075 \pm 8.4 \cdot 10^{-7} \) | \(a_{558}= +0.11298029 \pm 2.2 \cdot 10^{-6} \) |
\(a_{559}= +0.56199021 \pm 1.0 \cdot 10^{-6} \) | \(a_{560}= -0.19810628 \pm 7.1 \cdot 10^{-7} \) | \(a_{561}= -2.06739222 \pm 8.9 \cdot 10^{-7} \) |
\(a_{562}= +0.11030783 \pm 1.0 \cdot 10^{-6} \) | \(a_{563}= +0.31545326 \pm 9.1 \cdot 10^{-7} \) | \(a_{564}= -1.44495064 \pm 1.9 \cdot 10^{-6} \) |
\(a_{565}= -0.40196712 \pm 9.0 \cdot 10^{-7} \) | \(a_{566}= +0.28245945 \pm 1.2 \cdot 10^{-6} \) | \(a_{567}= +0.27792420 \pm 1.0 \cdot 10^{-6} \) |
\(a_{568}= -0.20220936 \pm 7.5 \cdot 10^{-7} \) | \(a_{569}= +0.31789665 \pm 8.9 \cdot 10^{-7} \) | \(a_{570}= +0.60936087 \pm 1.3 \cdot 10^{-6} \) |
\(a_{571}= -0.49772831 \pm 9.8 \cdot 10^{-7} \) | \(a_{572}= -0.98818550 \pm 9.8 \cdot 10^{-7} \) | \(a_{573}= +0.02938611 \pm 1.0 \cdot 10^{-6} \) |
\(a_{574}= +0.10284550 \pm 1.0 \cdot 10^{-6} \) | \(a_{575}= +0.40477313 \pm 7.7 \cdot 10^{-7} \) | \(a_{576}= +0.15905315 \pm 1.4 \cdot 10^{-6} \) |
\(a_{577}= -0.76321137 \pm 9.1 \cdot 10^{-7} \) | \(a_{578}= +0.23549290 \pm 1.5 \cdot 10^{-6} \) | \(a_{579}= -0.11019462 \pm 8.6 \cdot 10^{-7} \) |
\(a_{580}= +1.06587886 \pm 1.2 \cdot 10^{-6} \) | \(a_{581}= +0.19792155 \pm 7.9 \cdot 10^{-7} \) | \(a_{582}= -0.32294191 \pm 1.5 \cdot 10^{-6} \) |
\(a_{583}= +0.95517943 \pm 7.0 \cdot 10^{-7} \) | \(a_{584}= +0.33384533 \pm 1.2 \cdot 10^{-6} \) | \(a_{585}= -1.71514885 \pm 9.8 \cdot 10^{-7} \) |
\(a_{586}= -0.48238000 \pm 9.5 \cdot 10^{-7} \) | \(a_{587}= -0.94461980 \pm 9.6 \cdot 10^{-7} \) | \(a_{588}= +0.90767255 \pm 1.4 \cdot 10^{-6} \) |
\(a_{589}= +0.13309553 \pm 1.0 \cdot 10^{-6} \) | \(a_{590}= -0.47613956 \pm 1.1 \cdot 10^{-6} \) | \(a_{591}= +1.00666860 \pm 8.7 \cdot 10^{-7} \) |
\(a_{592}= +0.46359388 \pm 1.1 \cdot 10^{-6} \) | \(a_{593}= -1.13598822 \pm 1.0 \cdot 10^{-6} \) | \(a_{594}= -0.25603714 \pm 8.8 \cdot 10^{-7} \) |
\(a_{595}= -0.65880621 \pm 6.8 \cdot 10^{-7} \) | \(a_{596}= -0.39907185 \pm 1.1 \cdot 10^{-6} \) | \(a_{597}= +0.85202402 \pm 1.0 \cdot 10^{-6} \) |
\(a_{598}= -0.79870786 \pm 9.2 \cdot 10^{-7} \) | \(a_{599}= +0.81622095 \pm 1.0 \cdot 10^{-6} \) | \(a_{600}= -0.35926541 \pm 9.3 \cdot 10^{-7} \) |
\(a_{601}= +1.06794555 \pm 1.0 \cdot 10^{-6} \) | \(a_{602}= +0.11113379 \pm 9.1 \cdot 10^{-7} \) | \(a_{603}= +0.28861341 \pm 7.9 \cdot 10^{-7} \) |
\(a_{604}= +0.23507240 \pm 9.6 \cdot 10^{-7} \) | \(a_{605}= +0.26657280 \pm 1.1 \cdot 10^{-6} \) | \(a_{606}= -1.24681977 \pm 1.3 \cdot 10^{-6} \) |
\(a_{607}= +1.44939457 \pm 9.5 \cdot 10^{-7} \) | \(a_{608}= +0.75731030 \pm 1.0 \cdot 10^{-6} \) | \(a_{609}= +0.88627351 \pm 1.0 \cdot 10^{-6} \) |
\(a_{610}= +0.27860787 \pm 1.2 \cdot 10^{-6} \) | \(a_{611}= -1.41679042 \pm 7.6 \cdot 10^{-7} \) | \(a_{612}= -1.24170823 \pm 1.1 \cdot 10^{-6} \) |
\(a_{613}= +0.66767406 \pm 1.0 \cdot 10^{-6} \) | \(a_{614}= +0.18431956 \pm 1.4 \cdot 10^{-6} \) | \(a_{615}= -0.77720296 \pm 1.0 \cdot 10^{-6} \) |
\(a_{616}= -0.44861386 \pm 7.8 \cdot 10^{-7} \) | \(a_{617}= +0.07985132 \pm 9.9 \cdot 10^{-7} \) | \(a_{618}= +0.79988582 \pm 1.2 \cdot 10^{-6} \) |
\(a_{619}= -0.63067350 \pm 9.8 \cdot 10^{-7} \) | \(a_{620}= -0.15675569 \pm 2.3 \cdot 10^{-6} \) | \(a_{621}= +0.69982247 \pm 6.3 \cdot 10^{-7} \) |
\(a_{622}= +0.14185710 \pm 8.3 \cdot 10^{-7} \) | \(a_{623}= +0.28400953 \pm 8.1 \cdot 10^{-7} \) | \(a_{624}= -0.64415124 \pm 1.0 \cdot 10^{-6} \) |
\(a_{625}= -1.20109745 \pm 9.2 \cdot 10^{-7} \) | \(a_{626}= -0.67332562 \pm 1.3 \cdot 10^{-6} \) | \(a_{627}= -1.25384878 \pm 1.1 \cdot 10^{-6} \) |
\(a_{628}= -1.05142956 \pm 1.1 \cdot 10^{-6} \) | \(a_{629}= +1.54169024 \pm 8.8 \cdot 10^{-7} \) | \(a_{630}= -0.33917137 \pm 1.3 \cdot 10^{-6} \) |
\(a_{631}= +1.21099844 \pm 1.0 \cdot 10^{-6} \) | \(a_{632}= -1.16088473 \pm 1.5 \cdot 10^{-6} \) | \(a_{633}= -0.94315290 \pm 7.7 \cdot 10^{-7} \) |
\(a_{634}= +0.05488892 \pm 1.1 \cdot 10^{-6} \) | \(a_{635}= -0.70575935 \pm 1.0 \cdot 10^{-6} \) | \(a_{636}= +1.00938480 \pm 1.4 \cdot 10^{-6} \) |
\(a_{637}= +0.88998318 \pm 9.4 \cdot 10^{-7} \) | \(a_{638}= +0.64854934 \pm 1.1 \cdot 10^{-6} \) | \(a_{639}= +0.31457076 \pm 1.0 \cdot 10^{-6} \) |
\(a_{640}= -1.09043247 \pm 1.1 \cdot 10^{-6} \) | \(a_{641}= -0.54875517 \pm 1.1 \cdot 10^{-6} \) | \(a_{642}= +0.86860427 \pm 8.1 \cdot 10^{-7} \) |
\(a_{643}= -0.88727380 \pm 9.7 \cdot 10^{-7} \) | \(a_{644}= +0.53412237 \pm 8.6 \cdot 10^{-7} \) | \(a_{645}= -0.83983752 \pm 7.6 \cdot 10^{-7} \) |
\(a_{646}= +0.43255855 \pm 1.0 \cdot 10^{-6} \) | \(a_{647}= +1.36009995 \pm 1.1 \cdot 10^{-6} \) | \(a_{648}= +0.49338990 \pm 1.4 \cdot 10^{-6} \) |
\(a_{649}= +0.97972652 \pm 9.7 \cdot 10^{-7} \) | \(a_{650}= -0.15344444 \pm 9.8 \cdot 10^{-7} \) | \(a_{651}= -0.13034165 \pm 2.0 \cdot 10^{-6} \) |
\(a_{652}= +0.42762058 \pm 1.2 \cdot 10^{-6} \) | \(a_{653}= -0.84783046 \pm 9.8 \cdot 10^{-7} \) | \(a_{654}= -0.16126463 \pm 1.2 \cdot 10^{-6} \) |
\(a_{655}= -0.68893986 \pm 1.0 \cdot 10^{-6} \) | \(a_{656}= -0.16589961 \pm 1.6 \cdot 10^{-6} \) | \(a_{657}= -0.51935271 \pm 8.9 \cdot 10^{-7} \) |
\(a_{658}= -0.28017087 \pm 8.9 \cdot 10^{-7} \) | \(a_{659}= -1.35732802 \pm 1.0 \cdot 10^{-6} \) | \(a_{660}= +1.47674325 \pm 9.9 \cdot 10^{-7} \) |
\(a_{661}= -1.90180612 \pm 1.0 \cdot 10^{-6} \) | \(a_{662}= +0.63785824 \pm 9.9 \cdot 10^{-7} \) | \(a_{663}= -2.14213718 \pm 9.5 \cdot 10^{-7} \) |
\(a_{664}= +0.35136378 \pm 1.2 \cdot 10^{-6} \) | \(a_{665}= -0.39955813 \pm 9.4 \cdot 10^{-7} \) | \(a_{666}= +0.79370412 \pm 1.1 \cdot 10^{-6} \) |
\(a_{667}= -1.77267016 \pm 9.2 \cdot 10^{-7} \) | \(a_{668}= -0.41974265 \pm 1.2 \cdot 10^{-6} \) | \(a_{669}= +2.29374081 \pm 1.2 \cdot 10^{-6} \) |
\(a_{670}= +0.11841363 \pm 9.6 \cdot 10^{-7} \) | \(a_{671}= -0.57327629 \pm 8.7 \cdot 10^{-7} \) | \(a_{672}= -0.74164080 \pm 1.0 \cdot 10^{-6} \) |
\(a_{673}= +1.38364579 \pm 8.5 \cdot 10^{-7} \) | \(a_{674}= +0.51278043 \pm 1.2 \cdot 10^{-6} \) | \(a_{675}= +0.13444699 \pm 8.2 \cdot 10^{-7} \) |
\(a_{676}= -0.25213435 \pm 1.0 \cdot 10^{-6} \) | \(a_{677}= -0.01662576 \pm 9.2 \cdot 10^{-7} \) | \(a_{678}= -0.25846247 \pm 1.2 \cdot 10^{-6} \) |
\(a_{679}= +0.21175312 \pm 9.2 \cdot 10^{-7} \) | \(a_{680}= -1.16955749 \pm 1.4 \cdot 10^{-6} \) | \(a_{681}= -0.64508240 \pm 9.8 \cdot 10^{-7} \) |
\(a_{682}= -0.09538025 \pm 2.2 \cdot 10^{-6} \) | \(a_{683}= -0.29333625 \pm 9.3 \cdot 10^{-7} \) | \(a_{684}= -0.75308126 \pm 1.2 \cdot 10^{-6} \) |
\(a_{685}= +1.22715291 \pm 8.7 \cdot 10^{-7} \) | \(a_{686}= +0.40376769 \pm 9.1 \cdot 10^{-7} \) | \(a_{687}= +2.45707013 \pm 1.1 \cdot 10^{-6} \) |
\(a_{688}= -0.17926941 \pm 1.0 \cdot 10^{-6} \) | \(a_{689}= +0.98971319 \pm 9.9 \cdot 10^{-7} \) | \(a_{690}= +1.19358809 \pm 7.8 \cdot 10^{-7} \) |
\(a_{691}= +1.40667695 \pm 9.5 \cdot 10^{-7} \) | \(a_{692}= +1.01196866 \pm 1.6 \cdot 10^{-6} \) | \(a_{693}= +0.69789452 \pm 9.2 \cdot 10^{-7} \) |
\(a_{694}= -0.87021619 \pm 1.2 \cdot 10^{-6} \) | \(a_{695}= -0.53579384 \pm 6.7 \cdot 10^{-7} \) | \(a_{696}= +1.57337289 \pm 1.3 \cdot 10^{-6} \) |
\(a_{697}= -0.55170229 \pm 7.9 \cdot 10^{-7} \) | \(a_{698}= -0.89423105 \pm 1.1 \cdot 10^{-6} \) | \(a_{699}= +0.50070278 \pm 9.3 \cdot 10^{-7} \) |
\(a_{700}= +0.10261337 \pm 1.0 \cdot 10^{-6} \) | \(a_{701}= -0.75766098 \pm 1.0 \cdot 10^{-6} \) | \(a_{702}= -0.26529397 \pm 9.1 \cdot 10^{-7} \) |
\(a_{703}= +0.93501679 \pm 9.4 \cdot 10^{-7} \) | \(a_{704}= -0.13427589 \pm 1.1 \cdot 10^{-6} \) | \(a_{705}= +2.11724994 \pm 1.1 \cdot 10^{-6} \) |
\(a_{706}= +0.65794024 \pm 1.3 \cdot 10^{-6} \) | \(a_{707}= +0.81754014 \pm 9.2 \cdot 10^{-7} \) | \(a_{708}= +1.03532492 \pm 1.6 \cdot 10^{-6} \) |
\(a_{709}= -1.33328768 \pm 8.1 \cdot 10^{-7} \) | \(a_{710}= +0.12906353 \pm 6.6 \cdot 10^{-7} \) | \(a_{711}= +1.80595197 \pm 1.1 \cdot 10^{-6} \) |
\(a_{712}= +0.50419299 \pm 1.2 \cdot 10^{-6} \) | \(a_{713}= +0.26070142 \pm 9.5 \cdot 10^{-7} \) | \(a_{714}= -0.42360849 \pm 8.6 \cdot 10^{-7} \) |
\(a_{715}= +1.44796343 \pm 1.1 \cdot 10^{-6} \) | \(a_{716}= -1.24793279 \pm 1.4 \cdot 10^{-6} \) | \(a_{717}= +1.48480010 \pm 1.1 \cdot 10^{-6} \) |
\(a_{718}= -0.24691278 \pm 1.1 \cdot 10^{-6} \) | \(a_{719}= -0.68059735 \pm 8.3 \cdot 10^{-7} \) | \(a_{720}= +0.54711578 \pm 1.1 \cdot 10^{-6} \) |
\(a_{721}= -0.52448540 \pm 9.0 \cdot 10^{-7} \) | \(a_{722}= -0.21538402 \pm 1.3 \cdot 10^{-6} \) | \(a_{723}= -0.77809391 \pm 8.4 \cdot 10^{-7} \) |
\(a_{724}= -0.87706618 \pm 1.3 \cdot 10^{-6} \) | \(a_{725}= -0.34055804 \pm 8.9 \cdot 10^{-7} \) | \(a_{726}= +0.17140473 \pm 1.2 \cdot 10^{-6} \) |
\(a_{727}= -0.87488360 \pm 7.2 \cdot 10^{-7} \) | \(a_{728}= -0.46483315 \pm 1.0 \cdot 10^{-6} \) | \(a_{729}= -1.50139514 \pm 9.4 \cdot 10^{-7} \) |
\(a_{730}= -0.21308240 \pm 1.2 \cdot 10^{-6} \) | \(a_{731}= -0.59616382 \pm 7.4 \cdot 10^{-7} \) | \(a_{732}= -0.60580909 \pm 1.8 \cdot 10^{-6} \) |
\(a_{733}= +1.43168309 \pm 1.1 \cdot 10^{-6} \) | \(a_{734}= -0.59934361 \pm 1.3 \cdot 10^{-6} \) | \(a_{735}= -1.32998982 \pm 8.1 \cdot 10^{-7} \) |
\(a_{736}= +1.48338464 \pm 1.2 \cdot 10^{-6} \) | \(a_{737}= -0.24365329 \pm 9.5 \cdot 10^{-7} \) | \(a_{738}= -0.28403136 \pm 1.5 \cdot 10^{-6} \) |
\(a_{739}= -1.18723068 \pm 9.7 \cdot 10^{-7} \) | \(a_{740}= -1.10123306 \pm 1.0 \cdot 10^{-6} \) | \(a_{741}= -1.29918071 \pm 9.4 \cdot 10^{-7} \) |
\(a_{742}= +0.19571618 \pm 1.0 \cdot 10^{-6} \) | \(a_{743}= -0.12899719 \pm 1.0 \cdot 10^{-6} \) | \(a_{744}= -0.23139135 \pm 2.4 \cdot 10^{-6} \) |
\(a_{745}= +0.58474997 \pm 9.5 \cdot 10^{-7} \) | \(a_{746}= -0.00349886 \pm 1.1 \cdot 10^{-6} \) | \(a_{747}= -0.54660561 \pm 9.5 \cdot 10^{-7} \) |
\(a_{748}= +1.04827526 \pm 9.6 \cdot 10^{-7} \) | \(a_{749}= -0.56954411 \pm 7.4 \cdot 10^{-7} \) | \(a_{750}= -0.59299271 \pm 1.6 \cdot 10^{-6} \) |
\(a_{751}= -1.61260466 \pm 8.9 \cdot 10^{-7} \) | \(a_{752}= +0.45194235 \pm 1.6 \cdot 10^{-6} \) | \(a_{753}= -0.55466077 \pm 1.0 \cdot 10^{-6} \) |
\(a_{754}= +0.67199713 \pm 8.9 \cdot 10^{-7} \) | \(a_{755}= -0.34444570 \pm 1.0 \cdot 10^{-6} \) | \(a_{756}= +0.17741085 \pm 1.3 \cdot 10^{-6} \) |
\(a_{757}= +0.08496188 \pm 9.7 \cdot 10^{-7} \) | \(a_{758}= +0.17996556 \pm 9.3 \cdot 10^{-7} \) | \(a_{759}= -2.45598142 \pm 1.0 \cdot 10^{-6} \) |
\(a_{760}= -0.70932270 \pm 1.1 \cdot 10^{-6} \) | \(a_{761}= +1.76263958 \pm 1.1 \cdot 10^{-6} \) | \(a_{762}= -0.45379908 \pm 1.2 \cdot 10^{-6} \) |
\(a_{763}= +0.10574127 \pm 1.1 \cdot 10^{-6} \) | \(a_{764}= -0.01490028 \pm 1.4 \cdot 10^{-6} \) | \(a_{765}= +1.81944392 \pm 8.1 \cdot 10^{-7} \) |
\(a_{766}= -0.49399067 \pm 1.0 \cdot 10^{-6} \) | \(a_{767}= +1.01514777 \pm 1.0 \cdot 10^{-6} \) | \(a_{768}= -0.88499741 \pm 1.5 \cdot 10^{-6} \) |
\(a_{769}= +0.90008204 \pm 8.6 \cdot 10^{-7} \) | \(a_{770}= +0.28633535 \pm 8.6 \cdot 10^{-7} \) | \(a_{771}= -0.43606494 \pm 1.1 \cdot 10^{-6} \) |
\(a_{772}= +0.05587440 \pm 9.7 \cdot 10^{-7} \) | \(a_{773}= +0.42857265 \pm 8.2 \cdot 10^{-7} \) | \(a_{774}= -0.30692137 \pm 1.1 \cdot 10^{-6} \) |
\(a_{775}= +0.05008488 \pm 9.7 \cdot 10^{-7} \) | \(a_{776}= +0.37591851 \pm 1.4 \cdot 10^{-6} \) | \(a_{777}= -0.91567036 \pm 8.4 \cdot 10^{-7} \) |
\(a_{778}= -0.38229014 \pm 9.3 \cdot 10^{-7} \) | \(a_{779}= -0.33460088 \pm 9.3 \cdot 10^{-7} \) | \(a_{780}= +1.53013375 \pm 9.2 \cdot 10^{-7} \) |
\(a_{781}= -0.26556701 \pm 8.5 \cdot 10^{-7} \) | \(a_{782}= +0.84727583 \pm 7.5 \cdot 10^{-7} \) | \(a_{783}= -0.58879938 \pm 7.9 \cdot 10^{-7} \) |
\(a_{784}= -0.28389597 \pm 1.1 \cdot 10^{-6} \) | \(a_{785}= +1.54063337 \pm 8.0 \cdot 10^{-7} \) | \(a_{786}= -0.44298425 \pm 1.3 \cdot 10^{-6} \) |
\(a_{787}= +0.46169897 \pm 1.0 \cdot 10^{-6} \) | \(a_{788}= -0.51043328 \pm 9.4 \cdot 10^{-7} \) | \(a_{789}= -2.25741442 \pm 1.0 \cdot 10^{-6} \) |
\(a_{790}= +0.74095422 \pm 1.0 \cdot 10^{-6} \) | \(a_{791}= +0.16947393 \pm 7.6 \cdot 10^{-7} \) | \(a_{792}= +1.23894972 \pm 8.0 \cdot 10^{-7} \) |
\(a_{793}= -0.59400265 \pm 9.4 \cdot 10^{-7} \) | \(a_{794}= +0.48708485 \pm 1.2 \cdot 10^{-6} \) | \(a_{795}= -1.47902623 \pm 8.6 \cdot 10^{-7} \) |
\(a_{796}= -0.43202044 \pm 1.1 \cdot 10^{-6} \) | \(a_{797}= +1.67416368 \pm 1.0 \cdot 10^{-6} \) | \(a_{798}= -0.25691351 \pm 1.0 \cdot 10^{-6} \) |
\(a_{799}= +1.50294286 \pm 8.3 \cdot 10^{-7} \) | \(a_{800}= +0.28498171 \pm 9.6 \cdot 10^{-7} \) | \(a_{801}= -0.78435723 \pm 8.2 \cdot 10^{-7} \) |
\(a_{802}= +0.30680147 \pm 1.0 \cdot 10^{-6} \) | \(a_{803}= +0.43844809 \pm 7.7 \cdot 10^{-7} \) | \(a_{804}= -0.25748034 \pm 1.1 \cdot 10^{-6} \) |
\(a_{805}= -0.78263611 \pm 7.0 \cdot 10^{-7} \) | \(a_{806}= -0.09882865 \pm 2.2 \cdot 10^{-6} \) | \(a_{807}= +0.28119291 \pm 8.5 \cdot 10^{-7} \) |
\(a_{808}= +1.45135274 \pm 1.3 \cdot 10^{-6} \) | \(a_{809}= -0.47275258 \pm 1.0 \cdot 10^{-6} \) | \(a_{810}= -0.31491441 \pm 1.3 \cdot 10^{-6} \) |
\(a_{811}= -1.55040409 \pm 1.0 \cdot 10^{-6} \) | \(a_{812}= -0.44938671 \pm 1.0 \cdot 10^{-6} \) | \(a_{813}= +2.11119515 \pm 1.3 \cdot 10^{-6} \) |
\(a_{814}= -0.67006110 \pm 1.0 \cdot 10^{-6} \) | \(a_{815}= -0.62658171 \pm 9.3 \cdot 10^{-7} \) | \(a_{816}= +0.68332090 \pm 1.8 \cdot 10^{-6} \) |
\(a_{817}= -0.36156626 \pm 7.4 \cdot 10^{-7} \) | \(a_{818}= -0.08117293 \pm 9.9 \cdot 10^{-7} \) | \(a_{819}= +0.72312636 \pm 1.1 \cdot 10^{-6} \) |
\(a_{820}= +0.39408228 \pm 1.3 \cdot 10^{-6} \) | \(a_{821}= +1.39628778 \pm 1.0 \cdot 10^{-6} \) | \(a_{822}= +0.78905205 \pm 1.3 \cdot 10^{-6} \) |
\(a_{823}= -1.18223996 \pm 9.1 \cdot 10^{-7} \) | \(a_{824}= -0.93110208 \pm 1.0 \cdot 10^{-6} \) | \(a_{825}= -0.47183297 \pm 1.0 \cdot 10^{-6} \) |
\(a_{826}= +0.20074588 \pm 1.1 \cdot 10^{-6} \) | \(a_{827}= -0.14106206 \pm 1.0 \cdot 10^{-6} \) | \(a_{828}= -1.47510100 \pm 1.0 \cdot 10^{-6} \) |
\(a_{829}= -1.84417247 \pm 1.0 \cdot 10^{-6} \) | \(a_{830}= -0.22426384 \pm 1.2 \cdot 10^{-6} \) | \(a_{831}= -0.25198965 \pm 9.1 \cdot 10^{-7} \) |
\(a_{832}= -0.13913053 \pm 1.0 \cdot 10^{-6} \) | \(a_{833}= -0.94410144 \pm 8.8 \cdot 10^{-7} \) | \(a_{834}= -0.34451227 \pm 1.2 \cdot 10^{-6} \) |
\(a_{835}= +0.61503838 \pm 9.4 \cdot 10^{-7} \) | \(a_{836}= +0.63576647 \pm 1.2 \cdot 10^{-6} \) | \(a_{837}= +0.08659300 \pm 9.2 \cdot 10^{-7} \) |
\(a_{838}= +0.25154778 \pm 1.1 \cdot 10^{-6} \) | \(a_{839}= -0.15684705 \pm 8.6 \cdot 10^{-7} \) | \(a_{840}= +0.69464611 \pm 1.1 \cdot 10^{-6} \) |
\(a_{841}= +0.49144552 \pm 6.7 \cdot 10^{-7} \) | \(a_{842}= +0.46921597 \pm 1.3 \cdot 10^{-6} \) | \(a_{843}= +0.35145348 \pm 9.5 \cdot 10^{-7} \) |
\(a_{844}= +0.47822751 \pm 9.3 \cdot 10^{-7} \) | \(a_{845}= +0.36944614 \pm 1.0 \cdot 10^{-6} \) | \(a_{846}= +0.77375591 \pm 1.4 \cdot 10^{-6} \) |
\(a_{847}= -0.11239014 \pm 9.7 \cdot 10^{-7} \) | \(a_{848}= -0.31570887 \pm 8.8 \cdot 10^{-7} \) | \(a_{849}= +0.89994845 \pm 9.5 \cdot 10^{-7} \) |
\(a_{850}= +0.16277512 \pm 7.8 \cdot 10^{-7} \) | \(a_{851}= +1.83146795 \pm 9.3 \cdot 10^{-7} \) | \(a_{852}= -0.28063764 \pm 9.5 \cdot 10^{-7} \) |
\(a_{853}= -0.92516428 \pm 9.4 \cdot 10^{-7} \) | \(a_{854}= -0.11746426 \pm 7.6 \cdot 10^{-7} \) | \(a_{855}= +1.10347109 \pm 1.0 \cdot 10^{-6} \) |
\(a_{856}= -1.01109335 \pm 9.9 \cdot 10^{-7} \) | \(a_{857}= +0.62087630 \pm 8.9 \cdot 10^{-7} \) | \(a_{858}= +0.93103190 \pm 1.0 \cdot 10^{-6} \) |
\(a_{859}= +0.59504767 \pm 9.8 \cdot 10^{-7} \) | \(a_{860}= +0.42584125 \pm 9.1 \cdot 10^{-7} \) | \(a_{861}= +0.32767765 \pm 1.0 \cdot 10^{-6} \) |
\(a_{862}= +0.32490444 \pm 1.1 \cdot 10^{-6} \) | \(a_{863}= +1.06072170 \pm 9.8 \cdot 10^{-7} \) | \(a_{864}= +0.49271206 \pm 9.4 \cdot 10^{-7} \) |
\(a_{865}= -1.48281230 \pm 1.2 \cdot 10^{-6} \) | \(a_{866}= +0.64106381 \pm 1.2 \cdot 10^{-6} \) | \(a_{867}= +0.75030759 \pm 1.1 \cdot 10^{-6} \) |
\(a_{868}= +0.06608999 \pm 2.3 \cdot 10^{-6} \) | \(a_{869}= -1.52462127 \pm 1.0 \cdot 10^{-6} \) | \(a_{870}= -1.00423173 \pm 1.4 \cdot 10^{-6} \) |
\(a_{871}= -0.25246238 \pm 8.0 \cdot 10^{-7} \) | \(a_{872}= +0.18771908 \pm 1.2 \cdot 10^{-6} \) | \(a_{873}= -0.58480464 \pm 1.0 \cdot 10^{-6} \) |
\(a_{874}= +0.51386271 \pm 9.7 \cdot 10^{-7} \) | \(a_{875}= +0.38882552 \pm 1.0 \cdot 10^{-6} \) | \(a_{876}= +0.46332953 \pm 1.3 \cdot 10^{-6} \) |
\(a_{877}= +0.32270781 \pm 1.0 \cdot 10^{-6} \) | \(a_{878}= +0.19294352 \pm 1.2 \cdot 10^{-6} \) | \(a_{879}= -1.53691840 \pm 8.8 \cdot 10^{-7} \) |
\(a_{880}= -0.46188623 \pm 7.0 \cdot 10^{-7} \) | \(a_{881}= +0.23517363 \pm 9.9 \cdot 10^{-7} \) | \(a_{882}= -0.48604913 \pm 1.1 \cdot 10^{-6} \) |
\(a_{883}= +1.39765880 \pm 1.0 \cdot 10^{-6} \) | \(a_{884}= +1.08617483 \pm 1.0 \cdot 10^{-6} \) | \(a_{885}= -1.51703563 \pm 1.0 \cdot 10^{-6} \) |
\(a_{886}= -0.00545292 \pm 1.3 \cdot 10^{-6} \) | \(a_{887}= -0.49785853 \pm 8.9 \cdot 10^{-7} \) | \(a_{888}= -1.62556017 \pm 1.3 \cdot 10^{-6} \) |
\(a_{889}= +0.29755621 \pm 9.3 \cdot 10^{-7} \) | \(a_{890}= -0.32180967 \pm 9.8 \cdot 10^{-7} \) | \(a_{891}= +0.64798229 \pm 8.0 \cdot 10^{-7} \) |
\(a_{892}= -1.16304575 \pm 1.3 \cdot 10^{-6} \) | \(a_{893}= +0.91151696 \pm 6.7 \cdot 10^{-7} \) | \(a_{894}= +0.37599077 \pm 1.1 \cdot 10^{-6} \) |
\(a_{895}= +1.82856463 \pm 1.1 \cdot 10^{-6} \) | \(a_{896}= +0.45973879 \pm 9.4 \cdot 10^{-7} \) | \(a_{897}= -2.54477551 \pm 1.0 \cdot 10^{-6} \) |
\(a_{898}= -0.14858829 \pm 1.1 \cdot 10^{-6} \) | \(a_{899}= -0.21934253 \pm 9.4 \cdot 10^{-7} \) | \(a_{900}= -0.28339029 \pm 1.1 \cdot 10^{-6} \) |
\(a_{901}= -1.04989585 \pm 7.5 \cdot 10^{-7} \) | \(a_{902}= +0.23978503 \pm 8.1 \cdot 10^{-7} \) | \(a_{903}= +0.35408510 \pm 8.9 \cdot 10^{-7} \) |
\(a_{904}= +0.30086162 \pm 1.1 \cdot 10^{-6} \) | \(a_{905}= +1.28514307 \pm 7.9 \cdot 10^{-7} \) | \(a_{906}= -0.22147654 \pm 1.1 \cdot 10^{-6} \) |
\(a_{907}= -1.39436701 \pm 8.3 \cdot 10^{-7} \) | \(a_{908}= +0.32709029 \pm 1.3 \cdot 10^{-6} \) | \(a_{909}= -2.25782395 \pm 9.9 \cdot 10^{-7} \) |
\(a_{910}= +0.29668758 \pm 8.9 \cdot 10^{-7} \) | \(a_{911}= +0.88835289 \pm 9.6 \cdot 10^{-7} \) | \(a_{912}= +0.41442600 \pm 8.0 \cdot 10^{-7} \) |
\(a_{913}= +0.46145554 \pm 6.9 \cdot 10^{-7} \) | \(a_{914}= -0.73475375 \pm 1.1 \cdot 10^{-6} \) | \(a_{915}= +0.88767687 \pm 8.9 \cdot 10^{-7} \) |
\(a_{916}= -1.24586220 \pm 1.5 \cdot 10^{-6} \) | \(a_{917}= +0.29046492 \pm 1.1 \cdot 10^{-6} \) | \(a_{918}= +0.28142601 \pm 1.1 \cdot 10^{-6} \) |
\(a_{919}= +1.85285534 \pm 1.0 \cdot 10^{-6} \) | \(a_{920}= -1.38938874 \pm 1.0 \cdot 10^{-6} \) | \(a_{921}= +0.58726341 \pm 1.1 \cdot 10^{-6} \) |
\(a_{922}= -0.76037722 \pm 9.2 \cdot 10^{-7} \) | \(a_{923}= -0.27516838 \pm 9.5 \cdot 10^{-7} \) | \(a_{924}= -0.62261183 \pm 1.1 \cdot 10^{-6} \) |
\(a_{925}= +0.35185403 \pm 7.6 \cdot 10^{-7} \) | \(a_{926}= +0.03080717 \pm 1.2 \cdot 10^{-6} \) | \(a_{927}= +1.44848632 \pm 1.0 \cdot 10^{-6} \) |
\(a_{928}= -1.24805360 \pm 1.0 \cdot 10^{-6} \) | \(a_{929}= +1.85967337 \pm 9.5 \cdot 10^{-7} \) | \(a_{930}= +0.14768942 \pm 3.3 \cdot 10^{-6} \) |
\(a_{931}= -0.57258629 \pm 7.4 \cdot 10^{-7} \) | \(a_{932}= -0.25388232 \pm 1.4 \cdot 10^{-6} \) | \(a_{933}= +0.45197311 \pm 7.3 \cdot 10^{-7} \) |
\(a_{934}= -0.52845969 \pm 1.2 \cdot 10^{-6} \) | \(a_{935}= -1.53601144 \pm 6.7 \cdot 10^{-7} \) | \(a_{936}= +1.28374299 \pm 1.0 \cdot 10^{-6} \) |
\(a_{937}= -0.96801922 \pm 9.8 \cdot 10^{-7} \) | \(a_{938}= -0.04992454 \pm 8.9 \cdot 10^{-7} \) | \(a_{939}= -2.14529320 \pm 1.1 \cdot 10^{-6} \) |
\(a_{940}= -1.07355571 \pm 1.3 \cdot 10^{-6} \) | \(a_{941}= +1.77345126 \pm 9.5 \cdot 10^{-7} \) | \(a_{942}= +0.99061813 \pm 1.2 \cdot 10^{-6} \) |
\(a_{943}= -0.65540083 \pm 8.7 \cdot 10^{-7} \) | \(a_{944}= -0.32382225 \pm 1.1 \cdot 10^{-6} \) | \(a_{945}= -0.25995567 \pm 9.5 \cdot 10^{-7} \) |
\(a_{946}= +0.25910924 \pm 9.4 \cdot 10^{-7} \) | \(a_{947}= -1.39227618 \pm 1.0 \cdot 10^{-6} \) | \(a_{948}= -1.61114184 \pm 1.8 \cdot 10^{-6} \) |
\(a_{949}= +0.45429983 \pm 1.0 \cdot 10^{-6} \) | \(a_{950}= +0.09872117 \pm 1.5 \cdot 10^{-6} \) | \(a_{951}= +0.17488244 \pm 9.7 \cdot 10^{-7} \) |
\(a_{952}= +0.49309881 \pm 7.4 \cdot 10^{-7} \) | \(a_{953}= -1.44087822 \pm 1.1 \cdot 10^{-6} \) | \(a_{954}= -0.54051497 \pm 1.4 \cdot 10^{-6} \) |
\(a_{955}= +0.02183301 \pm 1.1 \cdot 10^{-6} \) | \(a_{956}= -0.75287078 \pm 1.2 \cdot 10^{-6} \) | \(a_{957}= +2.06635311 \pm 1.2 \cdot 10^{-6} \) |
\(a_{958}= -0.04651910 \pm 1.3 \cdot 10^{-6} \) | \(a_{959}= -0.51738169 \pm 1.0 \cdot 10^{-6} \) | \(a_{960}= +0.20791650 \pm 1.5 \cdot 10^{-6} \) |
\(a_{961}= +0.03225806 \pm 1.7 \cdot 10^{-6} \) | \(a_{962}= -0.69428664 \pm 1.0 \cdot 10^{-6} \) | \(a_{963}= +1.57292623 \pm 8.2 \cdot 10^{-7} \) |
\(a_{964}= +0.39453403 \pm 7.9 \cdot 10^{-7} \) | \(a_{965}= -0.08187135 \pm 8.6 \cdot 10^{-7} \) | \(a_{966}= -0.50323038 \pm 7.0 \cdot 10^{-7} \) |
\(a_{967}= +0.41046443 \pm 9.1 \cdot 10^{-7} \) | \(a_{968}= -0.19952260 \pm 1.3 \cdot 10^{-6} \) | \(a_{969}= +1.37818152 \pm 7.9 \cdot 10^{-7} \) |
\(a_{970}= -0.23993632 \pm 1.0 \cdot 10^{-6} \) | \(a_{971}= -1.23220841 \pm 1.0 \cdot 10^{-6} \) | \(a_{972}= +1.05685156 \pm 1.4 \cdot 10^{-6} \) |
\(a_{973}= +0.22589681 \pm 7.9 \cdot 10^{-7} \) | \(a_{974}= -0.72807767 \pm 1.4 \cdot 10^{-6} \) | \(a_{975}= -0.48889172 \pm 7.0 \cdot 10^{-7} \) |
\(a_{976}= +0.18948106 \pm 1.6 \cdot 10^{-6} \) | \(a_{977}= +1.74693876 \pm 1.1 \cdot 10^{-6} \) | \(a_{978}= -0.40288833 \pm 1.2 \cdot 10^{-6} \) |
\(a_{979}= +0.66217028 \pm 9.3 \cdot 10^{-7} \) | \(a_{980}= +0.67437393 \pm 1.0 \cdot 10^{-6} \) | \(a_{981}= -0.29202869 \pm 1.0 \cdot 10^{-6} \) |
\(a_{982}= +0.72946791 \pm 9.6 \cdot 10^{-7} \) | \(a_{983}= -0.42829518 \pm 7.4 \cdot 10^{-7} \) | \(a_{984}= +0.58171561 \pm 2.3 \cdot 10^{-6} \) |
\(a_{985}= +0.74792508 \pm 7.6 \cdot 10^{-7} \) | \(a_{986}= -0.71286005 \pm 1.2 \cdot 10^{-6} \) | \(a_{987}= -0.89265677 \pm 9.0 \cdot 10^{-7} \) |
\(a_{988}= +0.65875211 \pm 1.0 \cdot 10^{-6} \) | \(a_{989}= -0.70821939 \pm 7.6 \cdot 10^{-7} \) | \(a_{990}= -0.79078051 \pm 8.3 \cdot 10^{-7} \) |
\(a_{991}= -1.49628385 \pm 9.5 \cdot 10^{-7} \) | \(a_{992}= +0.18354759 \pm 1.3 \cdot 10^{-6} \) | \(a_{993}= +2.03229005 \pm 1.1 \cdot 10^{-6} \) |
\(a_{994}= -0.05441466 \pm 9.0 \cdot 10^{-7} \) | \(a_{995}= +0.63302872 \pm 8.7 \cdot 10^{-7} \) | \(a_{996}= +0.48764263 \pm 1.4 \cdot 10^{-6} \) |
\(a_{997}= -0.79495280 \pm 1.0 \cdot 10^{-6} \) | \(a_{998}= +0.31773853 \pm 1.2 \cdot 10^{-6} \) | \(a_{999}= +0.60832930 \pm 6.9 \cdot 10^{-7} \) |
\(a_{1000}= +0.69026945 \pm 1.4 \cdot 10^{-6} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000