The Maass form of level 31 with the smallest eigenvalue. This Maass form is even, and for all smaller prime levels the Maass form with the smallest eigenvalue is odd.
Maass form invariants
Level: | \( 31 \) |
Weight: | \( 0 \) |
Character: | 31.1 |
Symmetry: | even |
Fricke sign: | $+1$ |
Spectral parameter: | \(0.789356177738072661896459134574 \pm 3 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= -1.37431044 \pm 3.4 \cdot 10^{-8} \) | \(a_{3}= -0.90270409 \pm 3.1 \cdot 10^{-8} \) |
\(a_{4}= +0.88872919 \pm 3.5 \cdot 10^{-8} \) | \(a_{5}= -0.73004223 \pm 3.0 \cdot 10^{-8} \) | \(a_{6}= +1.24059565 \pm 3.5 \cdot 10^{-8} \) |
\(a_{7}= +1.12629679 \pm 3.0 \cdot 10^{-8} \) | \(a_{8}= +0.15292063 \pm 3.4 \cdot 10^{-8} \) | \(a_{9}= -0.18512533 \pm 2.9 \cdot 10^{-8} \) |
\(a_{10}= +1.00330466 \pm 2.9 \cdot 10^{-8} \) | \(a_{11}= -0.21446791 \pm 3.0 \cdot 10^{-8} \) | \(a_{12}= -0.80225948 \pm 3.3 \cdot 10^{-8} \) |
\(a_{13}= -0.75720569 \pm 2.4 \cdot 10^{-8} \) | \(a_{14}= -1.54788144 \pm 4.1 \cdot 10^{-8} \) | \(a_{15}= +0.65901211 \pm 3.2 \cdot 10^{-8} \) |
\(a_{16}= -1.09888961 \pm 3.6 \cdot 10^{-8} \) | \(a_{17}= +0.29447442 \pm 2.8 \cdot 10^{-8} \) | \(a_{18}= +0.25441968 \pm 2.6 \cdot 10^{-8} \) |
\(a_{19}= +1.66968382 \pm 2.7 \cdot 10^{-8} \) | \(a_{20}= -0.64880984 \pm 3.0 \cdot 10^{-8} \) | \(a_{21}= -1.01671271 \pm 3.0 \cdot 10^{-8} \) |
\(a_{22}= +0.29474549 \pm 3.5 \cdot 10^{-8} \) | \(a_{23}= -0.18660272 \pm 2.4 \cdot 10^{-8} \) | \(a_{24}= -0.13804208 \pm 3.6 \cdot 10^{-8} \) |
\(a_{25}= -0.46703834 \pm 3.2 \cdot 10^{-8} \) | \(a_{26}= +1.04063569 \pm 2.7 \cdot 10^{-8} \) | \(a_{27}= +1.06981748 \pm 3.1 \cdot 10^{-8} \) |
\(a_{28}= +1.00097284 \pm 4.3 \cdot 10^{-8} \) | \(a_{29}= +0.62388537 \pm 2.8 \cdot 10^{-8} \) | \(a_{30}= -0.90568722 \pm 3.2 \cdot 10^{-8} \) |
\(a_{31}= -0.17960530 \pm 1.0 \cdot 10^{-8} \) | \(a_{32}= +1.35729484 \pm 3.5 \cdot 10^{-8} \) | \(a_{33}= +0.19360106 \pm 3.4 \cdot 10^{-8} \) |
\(a_{34}= -0.40469928 \pm 3.0 \cdot 10^{-8} \) | \(a_{35}= -0.82224422 \pm 3.1 \cdot 10^{-8} \) | \(a_{36}= -0.16452629 \pm 2.6 \cdot 10^{-8} \) |
\(a_{37}= -0.55042516 \pm 3.0 \cdot 10^{-8} \) | \(a_{38}= -2.29466391 \pm 3.5 \cdot 10^{-8} \) | \(a_{39}= +0.68353267 \pm 3.0 \cdot 10^{-8} \) |
\(a_{40}= -0.11163852 \pm 2.8 \cdot 10^{-8} \) | \(a_{41}= +0.28216170 \pm 2.3 \cdot 10^{-8} \) | \(a_{42}= +1.39727890 \pm 4.0 \cdot 10^{-8} \) |
\(a_{43}= -1.75438082 \pm 3.0 \cdot 10^{-8} \) | \(a_{44}= -0.19060389 \pm 3.7 \cdot 10^{-8} \) | \(a_{45}= +0.13514931 \pm 3.0 \cdot 10^{-8} \) |
\(a_{46}= +0.25645006 \pm 3.0 \cdot 10^{-8} \) | \(a_{47}= +0.91350446 \pm 2.6 \cdot 10^{-8} \) | \(a_{48}= +0.99197215 \pm 3.3 \cdot 10^{-8} \) |
\(a_{49}= +0.26854446 \pm 2.6 \cdot 10^{-8} \) | \(a_{50}= +0.64185567 \pm 3.0 \cdot 10^{-8} \) | \(a_{51}= -0.26582327 \pm 2.7 \cdot 10^{-8} \) |
\(a_{52}= -0.67295080 \pm 2.6 \cdot 10^{-8} \) | \(a_{53}= -0.05436985 \pm 3.0 \cdot 10^{-8} \) | \(a_{54}= -1.47026134 \pm 3.3 \cdot 10^{-8} \) |
\(a_{55}= +0.15657063 \pm 3.1 \cdot 10^{-8} \) | \(a_{56}= +0.17223401 \pm 4.4 \cdot 10^{-8} \) | \(a_{57}= -1.50723041 \pm 2.5 \cdot 10^{-8} \) |
\(a_{58}= -0.85741218 \pm 3.5 \cdot 10^{-8} \) | \(a_{59}= +0.11224316 \pm 2.4 \cdot 10^{-8} \) | \(a_{60}= +0.58568330 \pm 3.0 \cdot 10^{-8} \) |
\(a_{61}= +0.98544145 \pm 2.6 \cdot 10^{-8} \) | \(a_{62}= +0.24683344 \pm 4.5 \cdot 10^{-8} \) | \(a_{63}= -0.20850607 \pm 2.2 \cdot 10^{-8} \) |
\(a_{64}= -0.76645486 \pm 3.6 \cdot 10^{-8} \) | \(a_{65}= +0.55279213 \pm 2.2 \cdot 10^{-8} \) | \(a_{66}= -0.26606796 \pm 4.0 \cdot 10^{-8} \) |
\(a_{67}= +0.97406360 \pm 2.6 \cdot 10^{-8} \) | \(a_{68}= +0.26170802 \pm 3.2 \cdot 10^{-8} \) | \(a_{69}= +0.16844704 \pm 2.8 \cdot 10^{-8} \) |
\(a_{70}= +1.13001882 \pm 3.4 \cdot 10^{-8} \) | \(a_{71}= -0.22590818 \pm 2.8 \cdot 10^{-8} \) | \(a_{72}= -0.02830948 \pm 2.8 \cdot 10^{-8} \) |
\(a_{73}= -0.27454192 \pm 2.4 \cdot 10^{-8} \) | \(a_{74}= +0.75645504 \pm 3.3 \cdot 10^{-8} \) | \(a_{75}= +0.42159742 \pm 3.1 \cdot 10^{-8} \) |
\(a_{76}= +1.48389676 \pm 3.1 \cdot 10^{-8} \) | \(a_{77}= -0.24155452 \pm 3.0 \cdot 10^{-8} \) | \(a_{78}= -0.93938609 \pm 2.9 \cdot 10^{-8} \) |
\(a_{79}= +0.67978887 \pm 2.6 \cdot 10^{-8} \) | \(a_{80}= +0.80223583 \pm 2.9 \cdot 10^{-8} \) | \(a_{81}= -0.78060328 \pm 2.8 \cdot 10^{-8} \) |
\(a_{82}= -0.38777777 \pm 2.9 \cdot 10^{-8} \) | \(a_{83}= -0.76160879 \pm 2.4 \cdot 10^{-8} \) | \(a_{84}= -0.90358227 \pm 4.1 \cdot 10^{-8} \) |
\(a_{85}= -0.21497877 \pm 3.2 \cdot 10^{-8} \) | \(a_{86}= +2.41106388 \pm 4.0 \cdot 10^{-8} \) | \(a_{87}= -0.56318388 \pm 3.0 \cdot 10^{-8} \) |
\(a_{88}= -0.03279657 \pm 3.4 \cdot 10^{-8} \) | \(a_{89}= -1.54984499 \pm 3.2 \cdot 10^{-8} \) | \(a_{90}= -0.18573711 \pm 2.4 \cdot 10^{-8} \) |
\(a_{91}= -0.85283834 \pm 2.1 \cdot 10^{-8} \) | \(a_{92}= -0.16583928 \pm 2.9 \cdot 10^{-8} \) | \(a_{93}= +0.16213044 \pm 4.1 \cdot 10^{-8} \) |
\(a_{94}= -1.25543872 \pm 3.0 \cdot 10^{-8} \) | \(a_{95}= -1.21893970 \pm 2.3 \cdot 10^{-8} \) | \(a_{96}= -1.22523560 \pm 2.9 \cdot 10^{-8} \) |
\(a_{97}= +0.98774791 \pm 2.7 \cdot 10^{-8} \) | \(a_{98}= -0.36906345 \pm 3.5 \cdot 10^{-8} \) | \(a_{99}= +0.03970344 \pm 3.2 \cdot 10^{-8} \) |
\(a_{100}= -0.41507061 \pm 3.5 \cdot 10^{-8} \) | \(a_{101}= -0.59566823 \pm 3.2 \cdot 10^{-8} \) | \(a_{102}= +0.36532369 \pm 2.7 \cdot 10^{-8} \) |
\(a_{103}= +1.37997698 \pm 2.7 \cdot 10^{-8} \) | \(a_{104}= -0.11579237 \pm 2.9 \cdot 10^{-8} \) | \(a_{105}= +0.74224322 \pm 3.4 \cdot 10^{-8} \) |
\(a_{106}= +0.07472105 \pm 3.2 \cdot 10^{-8} \) | \(a_{107}= -0.71719899 \pm 2.8 \cdot 10^{-8} \) | \(a_{108}= +0.95077803 \pm 3.2 \cdot 10^{-8} \) |
\(a_{109}= +0.71690764 \pm 2.8 \cdot 10^{-8} \) | \(a_{110}= -0.21517666 \pm 2.7 \cdot 10^{-8} \) | \(a_{111}= +0.49687104 \pm 3.5 \cdot 10^{-8} \) |
\(a_{112}= -1.23767584 \pm 4.3 \cdot 10^{-8} \) | \(a_{113}= +1.77519848 \pm 3.0 \cdot 10^{-8} \) | \(a_{114}= +2.07140249 \pm 3.1 \cdot 10^{-8} \) |
\(a_{115}= +0.13622786 \pm 2.7 \cdot 10^{-8} \) | \(a_{116}= +0.55446514 \pm 3.3 \cdot 10^{-8} \) | \(a_{117}= +0.14017795 \pm 3.4 \cdot 10^{-8} \) |
\(a_{118}= -0.15425695 \pm 2.6 \cdot 10^{-8} \) | \(a_{119}= +0.33166560 \pm 2.7 \cdot 10^{-8} \) | \(a_{120}= +0.10077655 \pm 3.4 \cdot 10^{-8} \) |
\(a_{121}= -0.95400351 \pm 2.8 \cdot 10^{-8} \) | \(a_{122}= -1.35430248 \pm 2.8 \cdot 10^{-8} \) | \(a_{123}= -0.25470852 \pm 2.1 \cdot 10^{-8} \) |
\(a_{124}= -0.15962048 \pm 4.5 \cdot 10^{-8} \) | \(a_{125}= +1.07099994 \pm 3.0 \cdot 10^{-8} \) | \(a_{126}= +0.28655206 \pm 2.2 \cdot 10^{-8} \) |
\(a_{127}= -0.44719934 \pm 2.6 \cdot 10^{-8} \) | \(a_{128}= -0.30394792 \pm 3.6 \cdot 10^{-8} \) | \(a_{129}= +1.58368673 \pm 2.9 \cdot 10^{-8} \) |
\(a_{130}= -0.75970800 \pm 2.4 \cdot 10^{-8} \) | \(a_{131}= +1.02848929 \pm 3.0 \cdot 10^{-8} \) | \(a_{132}= +0.17205891 \pm 3.9 \cdot 10^{-8} \) |
\(a_{133}= +1.88055953 \pm 2.8 \cdot 10^{-8} \) | \(a_{134}= -1.33866578 \pm 3.3 \cdot 10^{-8} \) | \(a_{135}= -0.78101194 \pm 2.7 \cdot 10^{-8} \) |
\(a_{136}= +0.04503121 \pm 2.9 \cdot 10^{-8} \) | \(a_{137}= -1.53477485 \pm 2.7 \cdot 10^{-8} \) | \(a_{138}= -0.23149852 \pm 3.4 \cdot 10^{-8} \) |
\(a_{139}= -1.39419130 \pm 3.2 \cdot 10^{-8} \) | \(a_{140}= -0.73075244 \pm 3.5 \cdot 10^{-8} \) | \(a_{141}= -0.82462421 \pm 2.6 \cdot 10^{-8} \) |
\(a_{142}= +0.31046797 \pm 3.3 \cdot 10^{-8} \) | \(a_{143}= +0.16239632 \pm 2.4 \cdot 10^{-8} \) | \(a_{144}= +0.20343230 \pm 2.5 \cdot 10^{-8} \) |
\(a_{145}= -0.45546267 \pm 2.4 \cdot 10^{-8} \) | \(a_{146}= +0.37730582 \pm 2.8 \cdot 10^{-8} \) | \(a_{147}= -0.24241618 \pm 2.8 \cdot 10^{-8} \) |
\(a_{148}= -0.48917891 \pm 3.1 \cdot 10^{-8} \) | \(a_{149}= +0.83226034 \pm 2.9 \cdot 10^{-8} \) | \(a_{150}= -0.57940573 \pm 3.1 \cdot 10^{-8} \) |
\(a_{151}= +0.88105731 \pm 2.4 \cdot 10^{-8} \) | \(a_{152}= +0.25532910 \pm 2.5 \cdot 10^{-8} \) | \(a_{153}= -0.05451468 \pm 2.8 \cdot 10^{-8} \) |
\(a_{154}= +0.33197090 \pm 4.3 \cdot 10^{-8} \) | \(a_{155}= +0.13111946 \pm 4.0 \cdot 10^{-8} \) | \(a_{156}= +0.60747544 \pm 2.6 \cdot 10^{-8} \) |
\(a_{157}= +0.39692125 \pm 2.6 \cdot 10^{-8} \) | \(a_{158}= -0.93424094 \pm 2.8 \cdot 10^{-8} \) | \(a_{159}= +0.04907988 \pm 3.2 \cdot 10^{-8} \) |
\(a_{160}= -0.99088256 \pm 2.2 \cdot 10^{-8} \) | \(a_{161}= -0.21017004 \pm 2.8 \cdot 10^{-8} \) | \(a_{162}= +1.07279124 \pm 3.2 \cdot 10^{-8} \) |
\(a_{163}= -0.61013671 \pm 2.8 \cdot 10^{-8} \) | \(a_{164}= +0.25076534 \pm 2.9 \cdot 10^{-8} \) | \(a_{165}= -0.14133695 \pm 3.3 \cdot 10^{-8} \) |
\(a_{166}= +1.04668691 \pm 2.3 \cdot 10^{-8} \) | \(a_{167}= +0.05101275 \pm 3.1 \cdot 10^{-8} \) | \(a_{168}= -0.15547635 \pm 4.3 \cdot 10^{-8} \) |
\(a_{169}= -0.42663955 \pm 2.4 \cdot 10^{-8} \) | \(a_{170}= +0.29544756 \pm 2.7 \cdot 10^{-8} \) | \(a_{171}= -0.30910077 \pm 2.0 \cdot 10^{-8} \) |
\(a_{172}= -1.55916945 \pm 3.4 \cdot 10^{-8} \) | \(a_{173}= -0.93330763 \pm 2.5 \cdot 10^{-8} \) | \(a_{174}= +0.77398948 \pm 3.3 \cdot 10^{-8} \) |
\(a_{175}= -0.52602378 \pm 3.0 \cdot 10^{-8} \) | \(a_{176}= +0.23567656 \pm 3.0 \cdot 10^{-8} \) | \(a_{177}= -0.10132236 \pm 2.3 \cdot 10^{-8} \) |
\(a_{178}= +2.12996815 \pm 4.1 \cdot 10^{-8} \) | \(a_{179}= -0.77071793 \pm 3.1 \cdot 10^{-8} \) | \(a_{180}= +0.12011114 \pm 2.6 \cdot 10^{-8} \) |
\(a_{181}= +0.33628763 \pm 2.7 \cdot 10^{-8} \) | \(a_{182}= +1.17206463 \pm 2.7 \cdot 10^{-8} \) | \(a_{183}= -0.88956203 \pm 3.2 \cdot 10^{-8} \) |
\(a_{184}= -0.02853541 \pm 2.9 \cdot 10^{-8} \) | \(a_{185}= +0.40183361 \pm 2.4 \cdot 10^{-8} \) | \(a_{186}= -0.22281756 \pm 7.6 \cdot 10^{-8} \) |
\(a_{187}= -0.06315531 \pm 2.7 \cdot 10^{-8} \) | \(a_{188}= +0.81185808 \pm 3.0 \cdot 10^{-8} \) | \(a_{189}= +1.20493199 \pm 2.7 \cdot 10^{-8} \) |
\(a_{190}= +1.67520157 \pm 2.6 \cdot 10^{-8} \) | \(a_{191}= -1.59863441 \pm 2.8 \cdot 10^{-8} \) | \(a_{192}= +0.69188194 \pm 3.4 \cdot 10^{-8} \) |
\(a_{193}= -0.73050780 \pm 3.5 \cdot 10^{-8} \) | \(a_{194}= -1.35747226 \pm 3.3 \cdot 10^{-8} \) | \(a_{195}= -0.49900772 \pm 2.4 \cdot 10^{-8} \) |
\(a_{196}= +0.23866330 \pm 3.8 \cdot 10^{-8} \) | \(a_{197}= -0.27735319 \pm 2.7 \cdot 10^{-8} \) | \(a_{198}= -0.05456486 \pm 2.7 \cdot 10^{-8} \) |
\(a_{199}= +1.77594370 \pm 3.2 \cdot 10^{-8} \) | \(a_{200}= -0.07141980 \pm 3.2 \cdot 10^{-8} \) | \(a_{201}= -0.87929119 \pm 2.3 \cdot 10^{-8} \) |
\(a_{202}= +0.81863307 \pm 4.1 \cdot 10^{-8} \) | \(a_{203}= +0.70268009 \pm 2.9 \cdot 10^{-8} \) | \(a_{204}= -0.23624490 \pm 2.8 \cdot 10^{-8} \) |
\(a_{205}= -0.20598995 \pm 2.4 \cdot 10^{-8} \) | \(a_{206}= -1.89651677 \pm 3.1 \cdot 10^{-8} \) | \(a_{207}= +0.03454489 \pm 2.2 \cdot 10^{-8} \) |
\(a_{208}= +0.83208547 \pm 2.9 \cdot 10^{-8} \) | \(a_{209}= -0.35809360 \pm 2.1 \cdot 10^{-8} \) | \(a_{210}= -1.02007261 \pm 3.8 \cdot 10^{-8} \) |
\(a_{211}= +0.38933490 \pm 2.4 \cdot 10^{-8} \) | \(a_{212}= -0.04832007 \pm 3.5 \cdot 10^{-8} \) | \(a_{213}= +0.20392824 \pm 3.2 \cdot 10^{-8} \) |
\(a_{214}= +0.98565407 \pm 2.7 \cdot 10^{-8} \) | \(a_{215}= +1.28077209 \pm 2.4 \cdot 10^{-8} \) | \(a_{216}= +0.16359716 \pm 3.6 \cdot 10^{-8} \) |
\(a_{217}= -0.20228887 \pm 4.0 \cdot 10^{-8} \) | \(a_{218}= -0.98525366 \pm 3.4 \cdot 10^{-8} \) | \(a_{219}= +0.24783011 \pm 2.5 \cdot 10^{-8} \) |
\(a_{220}= +0.13914889 \pm 2.9 \cdot 10^{-8} \) | \(a_{221}= -0.22297771 \pm 2.3 \cdot 10^{-8} \) | \(a_{222}= -0.68285506 \pm 3.3 \cdot 10^{-8} \) |
\(a_{223}= +0.97146337 \pm 3.2 \cdot 10^{-8} \) | \(a_{224}= +1.52871682 \pm 4.2 \cdot 10^{-8} \) | \(a_{225}= +0.08646063 \pm 3.2 \cdot 10^{-8} \) |
\(a_{226}= -2.43967380 \pm 3.4 \cdot 10^{-8} \) | \(a_{227}= +1.49297592 \pm 3.2 \cdot 10^{-8} \) | \(a_{228}= -1.33951967 \pm 2.7 \cdot 10^{-8} \) |
\(a_{229}= -0.53910951 \pm 3.2 \cdot 10^{-8} \) | \(a_{230}= -0.18721938 \pm 3.0 \cdot 10^{-8} \) | \(a_{231}= +0.21805225 \pm 3.2 \cdot 10^{-8} \) |
\(a_{232}= +0.09540494 \pm 2.7 \cdot 10^{-8} \) | \(a_{233}= -0.12830712 \pm 3.1 \cdot 10^{-8} \) | \(a_{234}= -0.19264803 \pm 2.8 \cdot 10^{-8} \) |
\(a_{235}= -0.66689683 \pm 2.7 \cdot 10^{-8} \) | \(a_{236}= +0.09975378 \pm 2.9 \cdot 10^{-8} \) | \(a_{237}= -0.61364819 \pm 2.6 \cdot 10^{-8} \) |
\(a_{238}= -0.45581149 \pm 3.4 \cdot 10^{-8} \) | \(a_{239}= -0.14135474 \pm 2.0 \cdot 10^{-8} \) | \(a_{240}= -0.72418156 \pm 3.0 \cdot 10^{-8} \) |
\(a_{241}= -0.99373208 \pm 3.2 \cdot 10^{-8} \) | \(a_{242}= +1.31109699 \pm 4.1 \cdot 10^{-8} \) | \(a_{243}= -0.36516371 \pm 2.3 \cdot 10^{-8} \) |
\(a_{244}= +0.87579059 \pm 2.0 \cdot 10^{-8} \) | \(a_{245}= -0.19604879 \pm 2.6 \cdot 10^{-8} \) | \(a_{246}= +0.35004857 \pm 2.6 \cdot 10^{-8} \) |
\(a_{247}= -1.26429409 \pm 2.0 \cdot 10^{-8} \) | \(a_{248}= -0.02746536 \pm 4.4 \cdot 10^{-8} \) | \(a_{249}= +0.68750737 \pm 2.2 \cdot 10^{-8} \) |
\(a_{250}= -1.47188641 \pm 2.6 \cdot 10^{-8} \) | \(a_{251}= +1.62981131 \pm 3.4 \cdot 10^{-8} \) | \(a_{252}= -0.18530543 \pm 2.2 \cdot 10^{-8} \) |
\(a_{253}= +0.04002029 \pm 2.6 \cdot 10^{-8} \) | \(a_{254}= +0.61459073 \pm 3.2 \cdot 10^{-8} \) | \(a_{255}= +0.19406221 \pm 3.0 \cdot 10^{-8} \) |
\(a_{256}= +1.18417366 \pm 3.9 \cdot 10^{-8} \) | \(a_{257}= -1.25117753 \pm 2.9 \cdot 10^{-8} \) | \(a_{258}= -2.17647722 \pm 3.8 \cdot 10^{-8} \) |
\(a_{259}= -0.61994209 \pm 2.3 \cdot 10^{-8} \) | \(a_{260}= +0.49128251 \pm 2.4 \cdot 10^{-8} \) | \(a_{261}= -0.11549699 \pm 2.7 \cdot 10^{-8} \) |
\(a_{262}= -1.41346357 \pm 3.2 \cdot 10^{-8} \) | \(a_{263}= +1.14177781 \pm 2.8 \cdot 10^{-8} \) | \(a_{264}= +0.02960560 \pm 4.0 \cdot 10^{-8} \) |
\(a_{265}= +0.03969228 \pm 3.6 \cdot 10^{-8} \) | \(a_{266}= -2.58447260 \pm 3.8 \cdot 10^{-8} \) | \(a_{267}= +1.39905140 \pm 3.3 \cdot 10^{-8} \) |
\(a_{268}= +0.86567876 \pm 3.4 \cdot 10^{-8} \) | \(a_{269}= +0.54831509 \pm 3.0 \cdot 10^{-8} \) | \(a_{270}= +1.07335287 \pm 2.7 \cdot 10^{-8} \) |
\(a_{271}= +1.41618293 \pm 2.9 \cdot 10^{-8} \) | \(a_{272}= -0.32359489 \pm 3.2 \cdot 10^{-8} \) | \(a_{273}= +0.76986065 \pm 2.1 \cdot 10^{-8} \) |
\(a_{274}= +2.10925711 \pm 3.4 \cdot 10^{-8} \) | \(a_{275}= +0.10016474 \pm 3.6 \cdot 10^{-8} \) | \(a_{276}= +0.14970380 \pm 3.4 \cdot 10^{-8} \) |
\(a_{277}= +0.21128734 \pm 2.7 \cdot 10^{-8} \) | \(a_{278}= +1.91605167 \pm 4.3 \cdot 10^{-8} \) | \(a_{279}= +0.03324949 \pm 4.0 \cdot 10^{-8} \) |
\(a_{280}= -0.12573810 \pm 3.6 \cdot 10^{-8} \) | \(a_{281}= +1.14219639 \pm 2.6 \cdot 10^{-8} \) | \(a_{282}= +1.13328966 \pm 2.8 \cdot 10^{-8} \) |
\(a_{283}= -0.44891138 \pm 3.1 \cdot 10^{-8} \) | \(a_{284}= -0.20077119 \pm 3.0 \cdot 10^{-8} \) | \(a_{285}= +1.10034185 \pm 2.4 \cdot 10^{-8} \) |
\(a_{286}= -0.22318296 \pm 2.5 \cdot 10^{-8} \) | \(a_{287}= +0.31779781 \pm 2.6 \cdot 10^{-8} \) | \(a_{288}= -0.25126966 \pm 2.7 \cdot 10^{-8} \) |
\(a_{289}= -0.91328481 \pm 2.1 \cdot 10^{-8} \) | \(a_{290}= +0.62594710 \pm 2.3 \cdot 10^{-8} \) | \(a_{291}= -0.89164407 \pm 2.6 \cdot 10^{-8} \) |
\(a_{292}= -0.24399342 \pm 2.6 \cdot 10^{-8} \) | \(a_{293}= +0.24015689 \pm 3.3 \cdot 10^{-8} \) | \(a_{294}= +0.33315509 \pm 3.6 \cdot 10^{-8} \) |
\(a_{295}= -0.08194225 \pm 2.7 \cdot 10^{-8} \) | \(a_{296}= -0.08417136 \pm 3.0 \cdot 10^{-8} \) | \(a_{297}= -0.22944152 \pm 3.2 \cdot 10^{-8} \) |
\(a_{298}= -1.14378407 \pm 3.7 \cdot 10^{-8} \) | \(a_{299}= +0.14129664 \pm 1.7 \cdot 10^{-8} \) | \(a_{300}= +0.37468593 \pm 2.9 \cdot 10^{-8} \) |
\(a_{301}= -1.97595348 \pm 3.1 \cdot 10^{-8} \) | \(a_{302}= -1.21084626 \pm 3.1 \cdot 10^{-8} \) | \(a_{303}= +0.53771214 \pm 3.0 \cdot 10^{-8} \) |
\(a_{304}= -1.83479821 \pm 3.4 \cdot 10^{-8} \) | \(a_{305}= -0.71941388 \pm 2.6 \cdot 10^{-8} \) | \(a_{306}= +0.07492009 \pm 2.3 \cdot 10^{-8} \) |
\(a_{307}= -0.41520886 \pm 2.3 \cdot 10^{-8} \) | \(a_{308}= -0.21467655 \pm 4.9 \cdot 10^{-8} \) | \(a_{309}= -1.24571086 \pm 2.4 \cdot 10^{-8} \) |
\(a_{310}= -0.18019884 \pm 7.5 \cdot 10^{-8} \) | \(a_{311}= -0.12067083 \pm 2.9 \cdot 10^{-8} \) | \(a_{312}= +0.10452625 \pm 3.4 \cdot 10^{-8} \) |
\(a_{313}= -0.78448922 \pm 3.0 \cdot 10^{-8} \) | \(a_{314}= -0.54549302 \pm 2.6 \cdot 10^{-8} \) | \(a_{315}= +0.15221823 \pm 2.6 \cdot 10^{-8} \) |
\(a_{316}= +0.60414821 \pm 2.6 \cdot 10^{-8} \) | \(a_{317}= -0.86055787 \pm 2.7 \cdot 10^{-8} \) | \(a_{318}= -0.06745099 \pm 3.5 \cdot 10^{-8} \) |
\(a_{319}= -0.13380339 \pm 2.9 \cdot 10^{-8} \) | \(a_{320}= +0.55954442 \pm 2.7 \cdot 10^{-8} \) | \(a_{321}= +0.64741846 \pm 3.4 \cdot 10^{-8} \) |
\(a_{322}= +0.28883888 \pm 3.8 \cdot 10^{-8} \) | \(a_{323}= +0.49167918 \pm 2.3 \cdot 10^{-8} \) | \(a_{324}= -0.69374492 \pm 3.0 \cdot 10^{-8} \) |
\(a_{325}= +0.35364409 \pm 2.0 \cdot 10^{-8} \) | \(a_{326}= +0.83851725 \pm 2.9 \cdot 10^{-8} \) | \(a_{327}= -0.64715546 \pm 2.9 \cdot 10^{-8} \) |
\(a_{328}= +0.04314834 \pm 2.9 \cdot 10^{-8} \) | \(a_{329}= +1.02887714 \pm 2.8 \cdot 10^{-8} \) | \(a_{330}= +0.19424085 \pm 3.5 \cdot 10^{-8} \) |
\(a_{331}= +0.11028370 \pm 2.7 \cdot 10^{-8} \) | \(a_{332}= -0.67686397 \pm 2.5 \cdot 10^{-8} \) | \(a_{333}= +0.10189764 \pm 4.0 \cdot 10^{-8} \) |
\(a_{334}= -0.07010736 \pm 3.0 \cdot 10^{-8} \) | \(a_{335}= -0.71110756 \pm 2.1 \cdot 10^{-8} \) | \(a_{336}= +1.11725504 \pm 3.7 \cdot 10^{-8} \) |
\(a_{337}= +1.68358652 \pm 3.5 \cdot 10^{-8} \) | \(a_{338}= +0.58633518 \pm 2.9 \cdot 10^{-8} \) | \(a_{339}= -1.60247892 \pm 2.8 \cdot 10^{-8} \) |
\(a_{340}= -0.19105790 \pm 3.4 \cdot 10^{-8} \) | \(a_{341}= +0.03851957 \pm 4.0 \cdot 10^{-8} \) | \(a_{342}= +0.42480042 \pm 2.2 \cdot 10^{-8} \) |
\(a_{343}= -0.82383603 \pm 2.6 \cdot 10^{-8} \) | \(a_{344}= -0.26828102 \pm 3.3 \cdot 10^{-8} \) | \(a_{345}= -0.12297345 \pm 3.4 \cdot 10^{-8} \) |
\(a_{346}= +1.28265442 \pm 2.5 \cdot 10^{-8} \) | \(a_{347}= +0.16429256 \pm 2.4 \cdot 10^{-8} \) | \(a_{348}= -0.50051795 \pm 3.3 \cdot 10^{-8} \) |
\(a_{349}= -0.83300918 \pm 2.3 \cdot 10^{-8} \) | \(a_{350}= +0.72291998 \pm 3.4 \cdot 10^{-8} \) | \(a_{351}= -0.81007188 \pm 3.4 \cdot 10^{-8} \) |
\(a_{352}= -0.29109619 \pm 2.0 \cdot 10^{-8} \) | \(a_{353}= +1.13360325 \pm 2.8 \cdot 10^{-8} \) | \(a_{354}= +0.13924838 \pm 2.7 \cdot 10^{-8} \) |
\(a_{355}= +0.16492251 \pm 2.8 \cdot 10^{-8} \) | \(a_{356}= -1.37739249 \pm 4.4 \cdot 10^{-8} \) | \(a_{357}= -0.29939589 \pm 2.5 \cdot 10^{-8} \) |
\(a_{358}= +1.05920570 \pm 3.7 \cdot 10^{-8} \) | \(a_{359}= +0.91924217 \pm 2.8 \cdot 10^{-8} \) | \(a_{360}= +0.02066712 \pm 2.6 \cdot 10^{-8} \) |
\(a_{361}= +1.78784407 \pm 2.6 \cdot 10^{-8} \) | \(a_{362}= -0.46216361 \pm 2.9 \cdot 10^{-8} \) | \(a_{363}= +0.86118287 \pm 3.0 \cdot 10^{-8} \) |
\(a_{364}= -0.75794233 \pm 2.9 \cdot 10^{-8} \) | \(a_{365}= +0.20042719 \pm 2.5 \cdot 10^{-8} \) | \(a_{366}= +1.22253439 \pm 3.2 \cdot 10^{-8} \) |
\(a_{367}= +0.03392971 \pm 2.4 \cdot 10^{-8} \) | \(a_{368}= +0.20505579 \pm 2.6 \cdot 10^{-8} \) | \(a_{369}= -0.05223528 \pm 1.8 \cdot 10^{-8} \) |
\(a_{370}= -0.55224413 \pm 2.6 \cdot 10^{-8} \) | \(a_{371}= -0.06123658 \pm 3.1 \cdot 10^{-8} \) | \(a_{372}= +0.14409006 \pm 7.7 \cdot 10^{-8} \) |
\(a_{373}= -0.40873397 \pm 2.3 \cdot 10^{-8} \) | \(a_{374}= +0.08679501 \pm 2.6 \cdot 10^{-8} \) | \(a_{375}= -0.96679603 \pm 3.2 \cdot 10^{-8} \) |
\(a_{376}= +0.13969368 \pm 2.7 \cdot 10^{-8} \) | \(a_{377}= -0.47240955 \pm 2.1 \cdot 10^{-8} \) | \(a_{378}= -1.65595062 \pm 3.8 \cdot 10^{-8} \) |
\(a_{379}= +0.38715132 \pm 2.5 \cdot 10^{-8} \) | \(a_{380}= -1.08330730 \pm 2.4 \cdot 10^{-8} \) | \(a_{381}= +0.40368867 \pm 2.3 \cdot 10^{-8} \) |
\(a_{382}= +2.19701996 \pm 3.5 \cdot 10^{-8} \) | \(a_{383}= -0.24228741 \pm 2.5 \cdot 10^{-8} \) | \(a_{384}= +0.27437503 \pm 3.3 \cdot 10^{-8} \) |
\(a_{385}= +0.17634500 \pm 2.9 \cdot 10^{-8} \) | \(a_{386}= +1.00394449 \pm 3.6 \cdot 10^{-8} \) | \(a_{387}= +0.32478033 \pm 1.7 \cdot 10^{-8} \) |
\(a_{388}= +0.87784040 \pm 3.2 \cdot 10^{-8} \) | \(a_{389}= -1.63930591 \pm 3.3 \cdot 10^{-8} \) | \(a_{390}= +0.68579152 \pm 2.5 \cdot 10^{-8} \) |
\(a_{391}= -0.05494973 \pm 2.2 \cdot 10^{-8} \) | \(a_{392}= +0.04106599 \pm 4.1 \cdot 10^{-8} \) | \(a_{393}= -0.92842148 \pm 2.9 \cdot 10^{-8} \) |
\(a_{394}= +0.38116939 \pm 2.9 \cdot 10^{-8} \) | \(a_{395}= -0.49627458 \pm 2.2 \cdot 10^{-8} \) | \(a_{396}= +0.03528561 \pm 2.7 \cdot 10^{-8} \) |
\(a_{397}= -0.81290855 \pm 2.9 \cdot 10^{-8} \) | \(a_{398}= -2.44069797 \pm 4.0 \cdot 10^{-8} \) | \(a_{399}= -1.69758877 \pm 2.5 \cdot 10^{-8} \) |
\(a_{400}= +0.51322358 \pm 3.6 \cdot 10^{-8} \) | \(a_{401}= +1.76943772 \pm 3.1 \cdot 10^{-8} \) | \(a_{402}= +1.20841907 \pm 2.7 \cdot 10^{-8} \) |
\(a_{403}= +0.13599816 \pm 3.4 \cdot 10^{-8} \) | \(a_{404}= -0.52938775 \pm 4.3 \cdot 10^{-8} \) | \(a_{405}= +0.56987336 \pm 2.5 \cdot 10^{-8} \) |
\(a_{406}= -0.96570059 \pm 3.8 \cdot 10^{-8} \) | \(a_{407}= +0.11804853 \pm 2.7 \cdot 10^{-8} \) | \(a_{408}= -0.04064986 \pm 3.0 \cdot 10^{-8} \) |
\(a_{409}= -0.81185755 \pm 2.8 \cdot 10^{-8} \) | \(a_{410}= +0.28309415 \pm 2.6 \cdot 10^{-8} \) | \(a_{411}= +1.38544753 \pm 2.8 \cdot 10^{-8} \) |
\(a_{412}= +1.22642583 \pm 3.0 \cdot 10^{-8} \) | \(a_{413}= +0.12641912 \pm 2.1 \cdot 10^{-8} \) | \(a_{414}= -0.04747540 \pm 2.3 \cdot 10^{-8} \) |
\(a_{415}= +0.55600658 \pm 3.3 \cdot 10^{-8} \) | \(a_{416}= -1.02775138 \pm 3.1 \cdot 10^{-8} \) | \(a_{417}= +1.25854219 \pm 3.7 \cdot 10^{-8} \) |
\(a_{418}= +0.49213178 \pm 2.5 \cdot 10^{-8} \) | \(a_{419}= -1.28433875 \pm 3.3 \cdot 10^{-8} \) | \(a_{420}= +0.65965322 \pm 3.6 \cdot 10^{-8} \) |
\(a_{421}= +1.06269432 \pm 3.0 \cdot 10^{-8} \) | \(a_{422}= -0.53506702 \pm 2.9 \cdot 10^{-8} \) | \(a_{423}= -0.16911282 \pm 2.4 \cdot 10^{-8} \) |
\(a_{424}= -0.00831427 \pm 3.2 \cdot 10^{-8} \) | \(a_{425}= -0.13753085 \pm 3.4 \cdot 10^{-8} \) | \(a_{426}= -0.28026071 \pm 3.2 \cdot 10^{-8} \) |
\(a_{427}= +1.10989955 \pm 2.7 \cdot 10^{-8} \) | \(a_{428}= -0.63739568 \pm 2.3 \cdot 10^{-8} \) | \(a_{429}= -0.14659582 \pm 3.0 \cdot 10^{-8} \) |
\(a_{430}= -1.76017846 \pm 3.0 \cdot 10^{-8} \) | \(a_{431}= -1.23497219 \pm 2.6 \cdot 10^{-8} \) | \(a_{432}= -1.17561132 \pm 3.6 \cdot 10^{-8} \) |
\(a_{433}= -0.13884144 \pm 2.8 \cdot 10^{-8} \) | \(a_{434}= +0.27800771 \pm 7.5 \cdot 10^{-8} \) | \(a_{435}= +0.41114801 \pm 3.0 \cdot 10^{-8} \) |
\(a_{436}= +0.63713675 \pm 3.4 \cdot 10^{-8} \) | \(a_{437}= -0.31156754 \pm 1.9 \cdot 10^{-8} \) | \(a_{438}= -0.34059551 \pm 2.8 \cdot 10^{-8} \) |
\(a_{439}= -0.21541518 \pm 3.0 \cdot 10^{-8} \) | \(a_{440}= +0.02394288 \pm 2.6 \cdot 10^{-8} \) | \(a_{441}= -0.04971438 \pm 2.2 \cdot 10^{-8} \) |
\(a_{442}= +0.30644059 \pm 2.5 \cdot 10^{-8} \) | \(a_{443}= +1.21298244 \pm 2.6 \cdot 10^{-8} \) | \(a_{444}= +0.44158380 \pm 2.8 \cdot 10^{-8} \) |
\(a_{445}= +1.13145229 \pm 2.4 \cdot 10^{-8} \) | \(a_{446}= -1.33509225 \pm 3.9 \cdot 10^{-8} \) | \(a_{447}= -0.75128481 \pm 3.0 \cdot 10^{-8} \) |
\(a_{448}= -0.86325565 \pm 4.4 \cdot 10^{-8} \) | \(a_{449}= -0.95036919 \pm 2.8 \cdot 10^{-8} \) | \(a_{450}= -0.11882374 \pm 2.4 \cdot 10^{-8} \) |
\(a_{451}= -0.06051463 \pm 2.1 \cdot 10^{-8} \) | \(a_{452}= +1.57767071 \pm 3.0 \cdot 10^{-8} \) | \(a_{453}= -0.79533403 \pm 2.4 \cdot 10^{-8} \) |
\(a_{454}= -2.05181240 \pm 3.6 \cdot 10^{-8} \) | \(a_{455}= +0.62260800 \pm 2.1 \cdot 10^{-8} \) | \(a_{456}= -0.23048662 \pm 2.4 \cdot 10^{-8} \) |
\(a_{457}= +1.15136662 \pm 2.8 \cdot 10^{-8} \) | \(a_{458}= +0.74090383 \pm 3.8 \cdot 10^{-8} \) | \(a_{459}= +0.31503389 \pm 2.8 \cdot 10^{-8} \) |
\(a_{460}= +0.12106968 \pm 2.7 \cdot 10^{-8} \) | \(a_{461}= -1.50179160 \pm 3.2 \cdot 10^{-8} \) | \(a_{462}= -0.29967149 \pm 4.7 \cdot 10^{-8} \) |
\(a_{463}= -0.62304045 \pm 2.8 \cdot 10^{-8} \) | \(a_{464}= -0.68558116 \pm 2.8 \cdot 10^{-8} \) | \(a_{465}= -0.11836207 \pm 7.2 \cdot 10^{-8} \) |
\(a_{466}= +0.17633382 \pm 3.3 \cdot 10^{-8} \) | \(a_{467}= -0.96323617 \pm 2.9 \cdot 10^{-8} \) | \(a_{468}= +0.12458024 \pm 2.5 \cdot 10^{-8} \) |
\(a_{469}= +1.09708470 \pm 2.5 \cdot 10^{-8} \) | \(a_{470}= +0.91652328 \pm 2.5 \cdot 10^{-8} \) | \(a_{471}= -0.35830244 \pm 2.7 \cdot 10^{-8} \) |
\(a_{472}= +0.01716430 \pm 3.0 \cdot 10^{-8} \) | \(a_{473}= +0.37625839 \pm 2.7 \cdot 10^{-8} \) | \(a_{474}= +0.84334312 \pm 2.6 \cdot 10^{-8} \) |
\(a_{475}= -0.77980636 \pm 2.3 \cdot 10^{-8} \) | \(a_{476}= +0.29476090 \pm 3.8 \cdot 10^{-8} \) | \(a_{477}= +0.01006524 \pm 2.8 \cdot 10^{-8} \) |
\(a_{478}= +0.19426530 \pm 2.6 \cdot 10^{-8} \) | \(a_{479}= +1.23506546 \pm 2.4 \cdot 10^{-8} \) | \(a_{480}= +0.89447373 \pm 2.2 \cdot 10^{-8} \) |
\(a_{481}= +0.41678506 \pm 2.9 \cdot 10^{-8} \) | \(a_{482}= +1.36569638 \pm 3.6 \cdot 10^{-8} \) | \(a_{483}= +0.18972136 \pm 3.1 \cdot 10^{-8} \) |
\(a_{484}= -0.84785078 \pm 4.4 \cdot 10^{-8} \) | \(a_{485}= -0.72109769 \pm 2.7 \cdot 10^{-8} \) | \(a_{486}= +0.50184830 \pm 2.4 \cdot 10^{-8} \) |
\(a_{487}= +0.25137811 \pm 2.9 \cdot 10^{-8} \) | \(a_{488}= +0.15069433 \pm 2.4 \cdot 10^{-8} \) | \(a_{489}= +0.55077290 \pm 3.7 \cdot 10^{-8} \) |
\(a_{490}= +0.26943191 \pm 3.2 \cdot 10^{-8} \) | \(a_{491}= -0.92469232 \pm 2.3 \cdot 10^{-8} \) | \(a_{492}= -0.22636689 \pm 2.6 \cdot 10^{-8} \) |
\(a_{493}= +0.18371829 \pm 2.6 \cdot 10^{-8} \) | \(a_{494}= +1.73753257 \pm 2.6 \cdot 10^{-8} \) | \(a_{495}= -0.02898519 \pm 3.4 \cdot 10^{-8} \) |
\(a_{496}= +0.19736640 \pm 4.6 \cdot 10^{-8} \) | \(a_{497}= -0.25443966 \pm 2.7 \cdot 10^{-8} \) | \(a_{498}= -0.94484855 \pm 2.3 \cdot 10^{-8} \) |
\(a_{499}= -0.13646514 \pm 3.1 \cdot 10^{-8} \) | \(a_{500}= +0.95182892 \pm 2.8 \cdot 10^{-8} \) | \(a_{501}= -0.04604942 \pm 3.3 \cdot 10^{-8} \) |
\(a_{502}= -2.23986670 \pm 4.1 \cdot 10^{-8} \) | \(a_{503}= +0.26966043 \pm 2.3 \cdot 10^{-8} \) | \(a_{504}= -0.03188488 \pm 2.4 \cdot 10^{-8} \) |
\(a_{505}= +0.43486296 \pm 3.1 \cdot 10^{-8} \) | \(a_{506}= -0.05500031 \pm 3.8 \cdot 10^{-8} \) | \(a_{507}= +0.38512926 \pm 2.8 \cdot 10^{-8} \) |
\(a_{508}= -0.39743911 \pm 2.9 \cdot 10^{-8} \) | \(a_{509}= +1.00271500 \pm 2.8 \cdot 10^{-8} \) | \(a_{510}= -0.26670172 \pm 2.8 \cdot 10^{-8} \) |
\(a_{511}= -0.30921568 \pm 2.2 \cdot 10^{-8} \) | \(a_{512}= -1.32347431 \pm 3.8 \cdot 10^{-8} \) | \(a_{513}= +1.78625694 \pm 2.5 \cdot 10^{-8} \) |
\(a_{514}= +1.71950635 \pm 3.4 \cdot 10^{-8} \) | \(a_{515}= -1.00744147 \pm 2.9 \cdot 10^{-8} \) | \(a_{516}= +1.40746864 \pm 3.1 \cdot 10^{-8} \) |
\(a_{517}= -0.19591739 \pm 2.1 \cdot 10^{-8} \) | \(a_{518}= +0.85199288 \pm 3.0 \cdot 10^{-8} \) | \(a_{519}= +0.84250061 \pm 2.8 \cdot 10^{-8} \) |
\(a_{520}= +0.08453332 \pm 2.4 \cdot 10^{-8} \) | \(a_{521}= -0.64432619 \pm 2.4 \cdot 10^{-8} \) | \(a_{522}= +0.15872871 \pm 2.8 \cdot 10^{-8} \) |
\(a_{523}= -0.73991531 \pm 2.9 \cdot 10^{-8} \) | \(a_{524}= +0.91404846 \pm 3.2 \cdot 10^{-8} \) | \(a_{525}= +0.47484382 \pm 3.2 \cdot 10^{-8} \) |
\(a_{526}= -1.56915717 \pm 3.7 \cdot 10^{-8} \) | \(a_{527}= -0.05288917 \pm 3.8 \cdot 10^{-8} \) | \(a_{528}= -0.21274619 \pm 3.2 \cdot 10^{-8} \) |
\(a_{529}= -0.96517943 \pm 2.4 \cdot 10^{-8} \) | \(a_{530}= -0.05454952 \pm 2.9 \cdot 10^{-8} \) | \(a_{531}= -0.02077905 \pm 2.3 \cdot 10^{-8} \) |
\(a_{532}= +1.67130815 \pm 3.4 \cdot 10^{-8} \) | \(a_{533}= -0.21365444 \pm 1.8 \cdot 10^{-8} \) | \(a_{534}= -1.92273095 \pm 4.1 \cdot 10^{-8} \) |
\(a_{535}= +0.52358555 \pm 2.8 \cdot 10^{-8} \) | \(a_{536}= +0.14895442 \pm 3.4 \cdot 10^{-8} \) | \(a_{537}= +0.69573023 \pm 2.8 \cdot 10^{-8} \) |
\(a_{538}= -0.75355515 \pm 3.6 \cdot 10^{-8} \) | \(a_{539}= -0.05759417 \pm 2.8 \cdot 10^{-8} \) | \(a_{540}= -0.69410811 \pm 2.7 \cdot 10^{-8} \) |
\(a_{541}= -0.02060370 \pm 2.8 \cdot 10^{-8} \) | \(a_{542}= -1.94627498 \pm 3.1 \cdot 10^{-8} \) | \(a_{543}= -0.30356822 \pm 3.2 \cdot 10^{-8} \) |
\(a_{544}= +0.39968862 \pm 3.0 \cdot 10^{-8} \) | \(a_{545}= -0.52337285 \pm 3.2 \cdot 10^{-8} \) | \(a_{546}= -1.05802753 \pm 2.6 \cdot 10^{-8} \) |
\(a_{547}= -0.18446663 \pm 2.6 \cdot 10^{-8} \) | \(a_{548}= -1.36399922 \pm 3.1 \cdot 10^{-8} \) | \(a_{549}= -0.18243018 \pm 3.0 \cdot 10^{-8} \) |
\(a_{550}= -0.13765744 \pm 3.3 \cdot 10^{-8} \) | \(a_{551}= +1.04169131 \pm 2.8 \cdot 10^{-8} \) | \(a_{552}= +0.02575903 \pm 3.4 \cdot 10^{-8} \) |
\(a_{553}= +0.76564402 \pm 2.3 \cdot 10^{-8} \) | \(a_{554}= -0.29037440 \pm 2.8 \cdot 10^{-8} \) | \(a_{555}= -0.36273684 \pm 3.1 \cdot 10^{-8} \) |
\(a_{556}= -1.23905851 \pm 4.5 \cdot 10^{-8} \) | \(a_{557}= +1.36419925 \pm 3.3 \cdot 10^{-8} \) | \(a_{558}= -0.04569512 \pm 7.5 \cdot 10^{-8} \) |
\(a_{559}= +1.32842714 \pm 2.2 \cdot 10^{-8} \) | \(a_{560}= +0.90355563 \pm 3.2 \cdot 10^{-8} \) | \(a_{561}= +0.05701056 \pm 2.6 \cdot 10^{-8} \) |
\(a_{562}= -1.56973243 \pm 3.5 \cdot 10^{-8} \) | \(a_{563}= -0.01172774 \pm 2.7 \cdot 10^{-8} \) | \(a_{564}= -0.73286761 \pm 2.7 \cdot 10^{-8} \) |
\(a_{565}= -1.29596986 \pm 3.4 \cdot 10^{-8} \) | \(a_{566}= +0.61694360 \pm 3.6 \cdot 10^{-8} \) | \(a_{567}= -0.87919097 \pm 2.7 \cdot 10^{-8} \) |
\(a_{568}= -0.03454602 \pm 2.8 \cdot 10^{-8} \) | \(a_{569}= -0.26248484 \pm 2.6 \cdot 10^{-8} \) | \(a_{570}= -1.51221130 \pm 2.7 \cdot 10^{-8} \) |
\(a_{571}= -1.88099337 \pm 2.9 \cdot 10^{-8} \) | \(a_{572}= +0.14432635 \pm 2.4 \cdot 10^{-8} \) | \(a_{573}= +1.44309381 \pm 3.1 \cdot 10^{-8} \) |
\(a_{574}= -0.43675285 \pm 3.4 \cdot 10^{-8} \) | \(a_{575}= +0.08715062 \pm 2.4 \cdot 10^{-8} \) | \(a_{576}= +0.14189021 \pm 3.3 \cdot 10^{-8} \) |
\(a_{577}= +1.52499756 \pm 2.8 \cdot 10^{-8} \) | \(a_{578}= +1.25513686 \pm 2.2 \cdot 10^{-8} \) | \(a_{579}= +0.65943237 \pm 2.9 \cdot 10^{-8} \) |
\(a_{580}= -0.40478297 \pm 2.3 \cdot 10^{-8} \) | \(a_{581}= -0.85779753 \pm 2.3 \cdot 10^{-8} \) | \(a_{582}= +1.22539576 \pm 3.3 \cdot 10^{-8} \) |
\(a_{583}= +0.01166059 \pm 3.4 \cdot 10^{-8} \) | \(a_{584}= -0.04198312 \pm 2.8 \cdot 10^{-8} \) | \(a_{585}= -0.10233583 \pm 2.6 \cdot 10^{-8} \) |
\(a_{586}= -0.33005013 \pm 3.9 \cdot 10^{-8} \) | \(a_{587}= +0.22901750 \pm 3.0 \cdot 10^{-8} \) | \(a_{588}= -0.21544233 \pm 3.8 \cdot 10^{-8} \) |
\(a_{589}= -0.29988407 \pm 3.8 \cdot 10^{-8} \) | \(a_{590}= +0.11261409 \pm 2.6 \cdot 10^{-8} \) | \(a_{591}= +0.25036786 \pm 2.5 \cdot 10^{-8} \) |
\(a_{592}= +0.60485649 \pm 3.0 \cdot 10^{-8} \) | \(a_{593}= -0.98368475 \pm 3.4 \cdot 10^{-8} \) | \(a_{594}= +0.31532388 \pm 3.3 \cdot 10^{-8} \) |
\(a_{595}= -0.24212989 \pm 3.1 \cdot 10^{-8} \) | \(a_{596}= +0.73965406 \pm 3.7 \cdot 10^{-8} \) | \(a_{597}= -1.60315164 \pm 3.3 \cdot 10^{-8} \) |
\(a_{598}= -0.19418545 \pm 2.0 \cdot 10^{-8} \) | \(a_{599}= +0.70441614 \pm 3.1 \cdot 10^{-8} \) | \(a_{600}= +0.06447094 \pm 3.4 \cdot 10^{-8} \) |
\(a_{601}= +0.45557817 \pm 2.9 \cdot 10^{-8} \) | \(a_{602}= +2.71557350 \pm 4.3 \cdot 10^{-8} \) | \(a_{603}= -0.18032385 \pm 2.2 \cdot 10^{-8} \) |
\(a_{604}= +0.78302135 \pm 3.2 \cdot 10^{-8} \) | \(a_{605}= +0.69646286 \pm 2.2 \cdot 10^{-8} \) | \(a_{606}= -0.73898342 \pm 3.7 \cdot 10^{-8} \) |
\(a_{607}= -0.69828041 \pm 2.6 \cdot 10^{-8} \) | \(a_{608}= +2.26625324 \pm 3.7 \cdot 10^{-8} \) | \(a_{609}= -0.63431219 \pm 3.0 \cdot 10^{-8} \) |
\(a_{610}= +0.98869801 \pm 2.4 \cdot 10^{-8} \) | \(a_{611}= -0.69171077 \pm 2.0 \cdot 10^{-8} \) | \(a_{612}= -0.04844878 \pm 2.6 \cdot 10^{-8} \) |
\(a_{613}= -1.32456341 \pm 2.9 \cdot 10^{-8} \) | \(a_{614}= +0.57062587 \pm 3.1 \cdot 10^{-8} \) | \(a_{615}= +0.18594797 \pm 2.3 \cdot 10^{-8} \) |
\(a_{616}= -0.03693867 \pm 4.6 \cdot 10^{-8} \) | \(a_{617}= +1.14830333 \pm 2.6 \cdot 10^{-8} \) | \(a_{618}= +1.71199344 \pm 2.8 \cdot 10^{-8} \) |
\(a_{619}= +1.60144616 \pm 3.5 \cdot 10^{-8} \) | \(a_{620}= +0.11652969 \pm 7.5 \cdot 10^{-8} \) | \(a_{621}= -0.19963085 \pm 2.2 \cdot 10^{-8} \) |
\(a_{622}= +0.16583918 \pm 2.9 \cdot 10^{-8} \) | \(a_{623}= -1.74558543 \pm 3.5 \cdot 10^{-8} \) | \(a_{624}= -0.75112695 \pm 2.7 \cdot 10^{-8} \) |
\(a_{625}= -0.31483685 \pm 2.6 \cdot 10^{-8} \) | \(a_{626}= +1.07813172 \pm 3.4 \cdot 10^{-8} \) | \(a_{627}= +0.32325256 \pm 2.3 \cdot 10^{-8} \) |
\(a_{628}= +0.35275551 \pm 2.6 \cdot 10^{-8} \) | \(a_{629}= -0.16208613 \pm 2.8 \cdot 10^{-8} \) | \(a_{630}= -0.20919511 \pm 2.1 \cdot 10^{-8} \) |
\(a_{631}= +1.42897396 \pm 3.0 \cdot 10^{-8} \) | \(a_{632}= +0.10395374 \pm 2.6 \cdot 10^{-8} \) | \(a_{633}= -0.35145421 \pm 2.7 \cdot 10^{-8} \) |
\(a_{634}= +1.18267367 \pm 3.0 \cdot 10^{-8} \) | \(a_{635}= +0.32647441 \pm 2.2 \cdot 10^{-8} \) | \(a_{636}= +0.04361872 \pm 3.6 \cdot 10^{-8} \) |
\(a_{637}= -0.20334339 \pm 2.1 \cdot 10^{-8} \) | \(a_{638}= +0.18388740 \pm 3.8 \cdot 10^{-8} \) | \(a_{639}= +0.04182133 \pm 3.6 \cdot 10^{-8} \) |
\(a_{640}= +0.22189482 \pm 2.5 \cdot 10^{-8} \) | \(a_{641}= -1.11395497 \pm 2.7 \cdot 10^{-8} \) | \(a_{642}= -0.88975396 \pm 3.1 \cdot 10^{-8} \) |
\(a_{643}= -0.93836676 \pm 2.7 \cdot 10^{-8} \) | \(a_{644}= -0.18678425 \pm 3.9 \cdot 10^{-8} \) | \(a_{645}= -1.15615820 \pm 2.6 \cdot 10^{-8} \) |
\(a_{646}= -0.67571983 \pm 2.7 \cdot 10^{-8} \) | \(a_{647}= -0.28223332 \pm 3.2 \cdot 10^{-8} \) | \(a_{648}= -0.11937035 \pm 3.0 \cdot 10^{-8} \) |
\(a_{649}= -0.02407256 \pm 2.5 \cdot 10^{-8} \) | \(a_{650}= -0.48601676 \pm 2.1 \cdot 10^{-8} \) | \(a_{651}= +0.18260699 \pm 7.2 \cdot 10^{-8} \) |
\(a_{652}= -0.54224631 \pm 3.0 \cdot 10^{-8} \) | \(a_{653}= +1.06787626 \pm 2.7 \cdot 10^{-8} \) | \(a_{654}= +0.88939250 \pm 3.7 \cdot 10^{-8} \) |
\(a_{655}= -0.75084062 \pm 3.4 \cdot 10^{-8} \) | \(a_{656}= -0.31006456 \pm 3.0 \cdot 10^{-8} \) | \(a_{657}= +0.05082466 \pm 2.2 \cdot 10^{-8} \) |
\(a_{658}= -1.41399660 \pm 3.6 \cdot 10^{-8} \) | \(a_{659}= -0.08982535 \pm 2.8 \cdot 10^{-8} \) | \(a_{660}= -0.12561027 \pm 2.8 \cdot 10^{-8} \) |
\(a_{661}= -1.10113724 \pm 2.5 \cdot 10^{-8} \) | \(a_{662}= -0.15156404 \pm 3.1 \cdot 10^{-8} \) | \(a_{663}= +0.20128289 \pm 2.6 \cdot 10^{-8} \) |
\(a_{664}= -0.11646570 \pm 2.1 \cdot 10^{-8} \) | \(a_{665}= -1.37288787 \pm 2.5 \cdot 10^{-8} \) | \(a_{666}= -0.14003899 \pm 3.5 \cdot 10^{-8} \) |
\(a_{667}= -0.11641871 \pm 2.5 \cdot 10^{-8} \) | \(a_{668}= +0.04533652 \pm 3.1 \cdot 10^{-8} \) | \(a_{669}= -0.87694395 \pm 3.3 \cdot 10^{-8} \) |
\(a_{670}= +0.97728255 \pm 2.3 \cdot 10^{-8} \) | \(a_{671}= -0.21134557 \pm 2.6 \cdot 10^{-8} \) | \(a_{672}= -1.37997892 \pm 3.2 \cdot 10^{-8} \) |
\(a_{673}= +0.13854539 \pm 2.6 \cdot 10^{-8} \) | \(a_{674}= -2.31377054 \pm 4.4 \cdot 10^{-8} \) | \(a_{675}= -0.49964578 \pm 2.6 \cdot 10^{-8} \) |
\(a_{676}= -0.37916702 \pm 2.8 \cdot 10^{-8} \) | \(a_{677}= +1.78119404 \pm 3.4 \cdot 10^{-8} \) | \(a_{678}= +2.20230351 \pm 3.3 \cdot 10^{-8} \) |
\(a_{679}= +1.11249729 \pm 2.8 \cdot 10^{-8} \) | \(a_{680}= -0.03287469 \pm 2.8 \cdot 10^{-8} \) | \(a_{681}= -1.34771547 \pm 3.9 \cdot 10^{-8} \) |
\(a_{682}= -0.05293785 \pm 7.5 \cdot 10^{-8} \) | \(a_{683}= -1.08234481 \pm 3.2 \cdot 10^{-8} \) | \(a_{684}= -0.27470688 \pm 2.4 \cdot 10^{-8} \) |
\(a_{685}= +1.12045046 \pm 2.3 \cdot 10^{-8} \) | \(a_{686}= +1.13220646 \pm 3.0 \cdot 10^{-8} \) | \(a_{687}= +0.48665636 \pm 3.2 \cdot 10^{-8} \) |
\(a_{688}= +1.92787086 \pm 4.0 \cdot 10^{-8} \) | \(a_{689}= +0.04116916 \pm 2.1 \cdot 10^{-8} \) | \(a_{690}= +0.16900370 \pm 3.7 \cdot 10^{-8} \) |
\(a_{691}= +0.95564959 \pm 2.9 \cdot 10^{-8} \) | \(a_{692}= -0.82945774 \pm 2.4 \cdot 10^{-8} \) | \(a_{693}= +0.04471786 \pm 2.1 \cdot 10^{-8} \) |
\(a_{694}= -0.22578899 \pm 2.5 \cdot 10^{-8} \) | \(a_{695}= +1.01781853 \pm 2.9 \cdot 10^{-8} \) | \(a_{696}= -0.08612243 \pm 3.0 \cdot 10^{-8} \) |
\(a_{697}= +0.08308940 \pm 2.5 \cdot 10^{-8} \) | \(a_{698}= +1.14481322 \pm 2.5 \cdot 10^{-8} \) | \(a_{699}= +0.11582337 \pm 3.7 \cdot 10^{-8} \) |
\(a_{700}= -0.46749269 \pm 4.1 \cdot 10^{-8} \) | \(a_{701}= -0.21041195 \pm 2.9 \cdot 10^{-8} \) | \(a_{702}= +1.11329025 \pm 3.0 \cdot 10^{-8} \) |
\(a_{703}= -0.91903598 \pm 2.6 \cdot 10^{-8} \) | \(a_{704}= +0.16437997 \pm 2.8 \cdot 10^{-8} \) | \(a_{705}= +0.60201050 \pm 2.9 \cdot 10^{-8} \) |
\(a_{706}= -1.55792278 \pm 3.7 \cdot 10^{-8} \) | \(a_{707}= -0.67089921 \pm 3.3 \cdot 10^{-8} \) | \(a_{708}= -0.09004814 \pm 2.8 \cdot 10^{-8} \) |
\(a_{709}= +1.41333063 \pm 3.3 \cdot 10^{-8} \) | \(a_{710}= -0.22665473 \pm 2.6 \cdot 10^{-8} \) | \(a_{711}= -0.12584614 \pm 2.7 \cdot 10^{-8} \) |
\(a_{712}= -0.23700327 \pm 4.3 \cdot 10^{-8} \) | \(a_{713}= +0.03351484 \pm 3.4 \cdot 10^{-8} \) | \(a_{714}= +0.41146290 \pm 3.2 \cdot 10^{-8} \) |
\(a_{715}= -0.11855617 \pm 2.1 \cdot 10^{-8} \) | \(a_{716}= -0.68495953 \pm 4.1 \cdot 10^{-8} \) | \(a_{717}= +0.12760151 \pm 2.3 \cdot 10^{-8} \) |
\(a_{718}= -1.26332411 \pm 3.4 \cdot 10^{-8} \) | \(a_{719}= +0.43357114 \pm 3.0 \cdot 10^{-8} \) | \(a_{720}= -0.14851417 \pm 2.6 \cdot 10^{-8} \) |
\(a_{721}= +1.55426364 \pm 2.6 \cdot 10^{-8} \) | \(a_{722}= -2.45705277 \pm 3.2 \cdot 10^{-8} \) | \(a_{723}= +0.89704601 \pm 3.6 \cdot 10^{-8} \) |
\(a_{724}= +0.29886864 \pm 2.6 \cdot 10^{-8} \) | \(a_{725}= -0.29137839 \pm 2.8 \cdot 10^{-8} \) | \(a_{726}= -1.18353261 \pm 4.0 \cdot 10^{-8} \) |
\(a_{727}= +0.15290919 \pm 2.8 \cdot 10^{-8} \) | \(a_{728}= -0.13041658 \pm 3.2 \cdot 10^{-8} \) | \(a_{729}= +1.11023805 \pm 2.5 \cdot 10^{-8} \) |
\(a_{730}= -0.27544919 \pm 2.6 \cdot 10^{-8} \) | \(a_{731}= -0.51662028 \pm 2.5 \cdot 10^{-8} \) | \(a_{732}= -0.79057975 \pm 2.0 \cdot 10^{-8} \) |
\(a_{733}= -0.40277518 \pm 2.8 \cdot 10^{-8} \) | \(a_{734}= -0.04662996 \pm 2.9 \cdot 10^{-8} \) | \(a_{735}= +0.17697405 \pm 2.8 \cdot 10^{-8} \) |
\(a_{736}= -0.25327491 \pm 2.1 \cdot 10^{-8} \) | \(a_{737}= -0.20890539 \pm 2.2 \cdot 10^{-8} \) | \(a_{738}= +0.07178749 \pm 2.1 \cdot 10^{-8} \) |
\(a_{739}= -0.10426552 \pm 2.6 \cdot 10^{-8} \) | \(a_{740}= +0.35712126 \pm 2.5 \cdot 10^{-8} \) | \(a_{741}= +1.14128344 \pm 1.9 \cdot 10^{-8} \) |
\(a_{742}= +0.08415807 \pm 4.1 \cdot 10^{-8} \) | \(a_{743}= -0.54805344 \pm 3.0 \cdot 10^{-8} \) | \(a_{744}= +0.02479309 \pm 7.6 \cdot 10^{-8} \) |
\(a_{745}= -0.60758519 \pm 2.6 \cdot 10^{-8} \) | \(a_{746}= +0.56172736 \pm 2.7 \cdot 10^{-8} \) | \(a_{747}= +0.14099308 \pm 2.2 \cdot 10^{-8} \) |
\(a_{748}= -0.05612797 \pm 2.8 \cdot 10^{-8} \) | \(a_{749}= -0.80777892 \pm 2.6 \cdot 10^{-8} \) | \(a_{750}= +1.32867788 \pm 2.9 \cdot 10^{-8} \) |
\(a_{751}= +1.88561142 \pm 3.5 \cdot 10^{-8} \) | \(a_{752}= -1.00384056 \pm 3.1 \cdot 10^{-8} \) | \(a_{753}= -1.47123733 \pm 3.3 \cdot 10^{-8} \) |
\(a_{754}= +0.64923738 \pm 2.4 \cdot 10^{-8} \) | \(a_{755}= -0.64320904 \pm 2.0 \cdot 10^{-8} \) | \(a_{756}= +1.07085824 \pm 4.1 \cdot 10^{-8} \) |
\(a_{757}= +0.05897278 \pm 2.8 \cdot 10^{-8} \) | \(a_{758}= -0.53206611 \pm 3.1 \cdot 10^{-8} \) | \(a_{759}= -0.03612648 \pm 3.2 \cdot 10^{-8} \) |
\(a_{760}= -0.18640103 \pm 1.9 \cdot 10^{-8} \) | \(a_{761}= -0.01201292 \pm 2.4 \cdot 10^{-8} \) | \(a_{762}= -0.55479356 \pm 2.8 \cdot 10^{-8} \) |
\(a_{763}= +0.80745077 \pm 3.0 \cdot 10^{-8} \) | \(a_{764}= -1.42075307 \pm 3.5 \cdot 10^{-8} \) | \(a_{765}= +0.03979802 \pm 3.1 \cdot 10^{-8} \) |
\(a_{766}= +0.33297811 \pm 3.4 \cdot 10^{-8} \) | \(a_{767}= -0.08499116 \pm 2.1 \cdot 10^{-8} \) | \(a_{768}= -1.06895841 \pm 3.8 \cdot 10^{-8} \) |
\(a_{769}= +0.69337666 \pm 2.6 \cdot 10^{-8} \) | \(a_{770}= -0.24235278 \pm 2.9 \cdot 10^{-8} \) | \(a_{771}= +1.12944307 \pm 3.5 \cdot 10^{-8} \) |
\(a_{772}= -0.64922361 \pm 3.4 \cdot 10^{-8} \) | \(a_{773}= -0.10311275 \pm 2.9 \cdot 10^{-8} \) | \(a_{774}= -0.44634900 \pm 2.0 \cdot 10^{-8} \) |
\(a_{775}= +0.08388256 \pm 4.2 \cdot 10^{-8} \) | \(a_{776}= +0.15104703 \pm 3.2 \cdot 10^{-8} \) | \(a_{777}= +0.55962426 \pm 2.4 \cdot 10^{-8} \) |
\(a_{778}= +2.25291523 \pm 4.1 \cdot 10^{-8} \) | \(a_{779}= +0.47112082 \pm 2.2 \cdot 10^{-8} \) | \(a_{780}= -0.44348273 \pm 2.3 \cdot 10^{-8} \) |
\(a_{781}= +0.04845006 \pm 2.6 \cdot 10^{-8} \) | \(a_{782}= +0.07551798 \pm 2.6 \cdot 10^{-8} \) | \(a_{783}= +0.66744348 \pm 2.5 \cdot 10^{-8} \) |
\(a_{784}= -0.29510071 \pm 3.7 \cdot 10^{-8} \) | \(a_{785}= -0.28976928 \pm 2.8 \cdot 10^{-8} \) | \(a_{786}= +1.27593934 \pm 3.1 \cdot 10^{-8} \) |
\(a_{787}= -0.21930509 \pm 2.8 \cdot 10^{-8} \) | \(a_{788}= -0.24649188 \pm 3.6 \cdot 10^{-8} \) | \(a_{789}= -1.03068750 \pm 3.0 \cdot 10^{-8} \) |
\(a_{790}= +0.68203534 \pm 2.3 \cdot 10^{-8} \) | \(a_{791}= +1.99940034 \pm 3.1 \cdot 10^{-8} \) | \(a_{792}= +0.00607148 \pm 2.8 \cdot 10^{-8} \) |
\(a_{793}= -0.74618188 \pm 2.6 \cdot 10^{-8} \) | \(a_{794}= +1.11718871 \pm 3.8 \cdot 10^{-8} \) | \(a_{795}= -0.03583039 \pm 3.7 \cdot 10^{-8} \) |
\(a_{796}= +1.57833301 \pm 3.4 \cdot 10^{-8} \) | \(a_{797}= +1.08948253 \pm 2.4 \cdot 10^{-8} \) | \(a_{798}= +2.33301398 \pm 3.4 \cdot 10^{-8} \) |
\(a_{799}= +0.26900370 \pm 2.8 \cdot 10^{-8} \) | \(a_{800}= -0.63390873 \pm 3.1 \cdot 10^{-8} \) | \(a_{801}= +0.28691557 \pm 2.7 \cdot 10^{-8} \) |
\(a_{802}= -2.43175674 \pm 4.1 \cdot 10^{-8} \) | \(a_{803}= +0.05888043 \pm 2.6 \cdot 10^{-8} \) | \(a_{804}= -0.78145175 \pm 2.7 \cdot 10^{-8} \) |
\(a_{805}= +0.15343301 \pm 3.3 \cdot 10^{-8} \) | \(a_{806}= -0.18690369 \pm 6.9 \cdot 10^{-8} \) | \(a_{807}= -0.49496627 \pm 3.5 \cdot 10^{-8} \) |
\(a_{808}= -0.09108996 \pm 3.6 \cdot 10^{-8} \) | \(a_{809}= +0.68218712 \pm 2.5 \cdot 10^{-8} \) | \(a_{810}= -0.78318291 \pm 2.6 \cdot 10^{-8} \) |
\(a_{811}= +0.90405886 \pm 3.0 \cdot 10^{-8} \) | \(a_{812}= +0.62449231 \pm 3.7 \cdot 10^{-8} \) | \(a_{813}= -1.27839411 \pm 2.9 \cdot 10^{-8} \) |
\(a_{814}= -0.16223533 \pm 2.7 \cdot 10^{-8} \) | \(a_{815}= +0.44542556 \pm 2.7 \cdot 10^{-8} \) | \(a_{816}= +0.29211043 \pm 2.8 \cdot 10^{-8} \) |
\(a_{817}= -2.92926127 \pm 3.5 \cdot 10^{-8} \) | \(a_{818}= +1.11574431 \pm 3.3 \cdot 10^{-8} \) | \(a_{819}= +0.15788198 \pm 2.0 \cdot 10^{-8} \) |
\(a_{820}= -0.18306929 \pm 2.7 \cdot 10^{-8} \) | \(a_{821}= +1.38893571 \pm 2.6 \cdot 10^{-8} \) | \(a_{822}= -1.90403501 \pm 3.3 \cdot 10^{-8} \) |
\(a_{823}= -0.84043537 \pm 2.9 \cdot 10^{-8} \) | \(a_{824}= +0.21102695 \pm 2.8 \cdot 10^{-8} \) | \(a_{825}= -0.09041912 \pm 3.5 \cdot 10^{-8} \) |
\(a_{826}= -0.17373911 \pm 2.6 \cdot 10^{-8} \) | \(a_{827}= +0.81105823 \pm 2.8 \cdot 10^{-8} \) | \(a_{828}= +0.03070105 \pm 2.3 \cdot 10^{-8} \) |
\(a_{829}= -1.04318291 \pm 3.1 \cdot 10^{-8} \) | \(a_{830}= -0.76412565 \pm 1.9 \cdot 10^{-8} \) | \(a_{831}= -0.19072994 \pm 2.1 \cdot 10^{-8} \) |
\(a_{832}= +0.58036398 \pm 3.2 \cdot 10^{-8} \) | \(a_{833}= +0.07907947 \pm 2.5 \cdot 10^{-8} \) | \(a_{834}= -1.72962767 \pm 4.4 \cdot 10^{-8} \) |
\(a_{835}= -0.03724146 \pm 3.5 \cdot 10^{-8} \) | \(a_{836}= -0.31824824 \pm 2.4 \cdot 10^{-8} \) | \(a_{837}= -0.19214489 \pm 4.1 \cdot 10^{-8} \) |
\(a_{838}= +1.76508016 \pm 4.3 \cdot 10^{-8} \) | \(a_{839}= -0.59645907 \pm 2.6 \cdot 10^{-8} \) | \(a_{840}= +0.11350430 \pm 4.1 \cdot 10^{-8} \) |
\(a_{841}= -0.61076704 \pm 2.6 \cdot 10^{-8} \) | \(a_{842}= -1.46047190 \pm 3.5 \cdot 10^{-8} \) | \(a_{843}= -1.03106535 \pm 3.1 \cdot 10^{-8} \) |
\(a_{844}= +0.34601330 \pm 3.2 \cdot 10^{-8} \) | \(a_{845}= +0.31146489 \pm 2.3 \cdot 10^{-8} \) | \(a_{846}= +0.23241351 \pm 2.2 \cdot 10^{-8} \) |
\(a_{847}= -1.07449110 \pm 3.4 \cdot 10^{-8} \) | \(a_{848}= +0.05974646 \pm 2.9 \cdot 10^{-8} \) | \(a_{849}= +0.40523414 \pm 4.2 \cdot 10^{-8} \) |
\(a_{850}= +0.18901008 \pm 2.4 \cdot 10^{-8} \) | \(a_{851}= +0.10271083 \pm 2.1 \cdot 10^{-8} \) | \(a_{852}= +0.18123698 \pm 2.7 \cdot 10^{-8} \) |
\(a_{853}= -1.85083667 \pm 3.6 \cdot 10^{-8} \) | \(a_{854}= -1.52534654 \pm 2.7 \cdot 10^{-8} \) | \(a_{855}= +0.22565662 \pm 2.1 \cdot 10^{-8} \) |
\(a_{856}= -0.10967452 \pm 2.8 \cdot 10^{-8} \) | \(a_{857}= -0.84497342 \pm 2.9 \cdot 10^{-8} \) | \(a_{858}= +0.20146817 \pm 2.6 \cdot 10^{-8} \) |
\(a_{859}= +1.09194178 \pm 2.8 \cdot 10^{-8} \) | \(a_{860}= +1.13825955 \pm 2.2 \cdot 10^{-8} \) | \(a_{861}= -0.28687738 \pm 2.3 \cdot 10^{-8} \) |
\(a_{862}= +1.69723518 \pm 3.6 \cdot 10^{-8} \) | \(a_{863}= -0.49617307 \pm 2.4 \cdot 10^{-8} \) | \(a_{864}= +1.45205775 \pm 3.6 \cdot 10^{-8} \) |
\(a_{865}= +0.68135399 \pm 1.9 \cdot 10^{-8} \) | \(a_{866}= +0.19081125 \pm 2.7 \cdot 10^{-8} \) | \(a_{867}= +0.82442593 \pm 1.9 \cdot 10^{-8} \) |
\(a_{868}= -0.17978003 \pm 7.5 \cdot 10^{-8} \) | \(a_{869}= -0.14579290 \pm 2.4 \cdot 10^{-8} \) | \(a_{870}= -0.56504501 \pm 2.6 \cdot 10^{-8} \) |
\(a_{871}= -0.73756650 \pm 2.1 \cdot 10^{-8} \) | \(a_{872}= +0.10962997 \pm 3.3 \cdot 10^{-8} \) | \(a_{873}= -0.18285716 \pm 2.0 \cdot 10^{-8} \) |
\(a_{874}= +0.42819052 \pm 2.4 \cdot 10^{-8} \) | \(a_{875}= +1.20626380 \pm 2.7 \cdot 10^{-8} \) | \(a_{876}= +0.22025386 \pm 2.5 \cdot 10^{-8} \) |
\(a_{877}= -1.66169319 \pm 3.4 \cdot 10^{-8} \) | \(a_{878}= +0.29604733 \pm 3.5 \cdot 10^{-8} \) | \(a_{879}= -0.21679061 \pm 3.9 \cdot 10^{-8} \) |
\(a_{880}= -0.17205384 \pm 2.9 \cdot 10^{-8} \) | \(a_{881}= -0.87407143 \pm 2.3 \cdot 10^{-8} \) | \(a_{882}= +0.06832299 \pm 1.9 \cdot 10^{-8} \) |
\(a_{883}= -0.94307101 \pm 2.5 \cdot 10^{-8} \) | \(a_{884}= -0.19816680 \pm 2.6 \cdot 10^{-8} \) | \(a_{885}= +0.07396960 \pm 2.4 \cdot 10^{-8} \) |
\(a_{886}= -1.66701444 \pm 3.3 \cdot 10^{-8} \) | \(a_{887}= -1.93836049 \pm 3.2 \cdot 10^{-8} \) | \(a_{888}= +0.07598183 \pm 3.8 \cdot 10^{-8} \) |
\(a_{889}= -0.50367918 \pm 2.7 \cdot 10^{-8} \) | \(a_{890}= -1.55496670 \pm 3.3 \cdot 10^{-8} \) | \(a_{891}= +0.16741436 \pm 3.2 \cdot 10^{-8} \) |
\(a_{892}= +0.86336786 \pm 3.9 \cdot 10^{-8} \) | \(a_{893}= +1.52526362 \pm 2.6 \cdot 10^{-8} \) | \(a_{894}= +1.03249856 \pm 3.7 \cdot 10^{-8} \) |
\(a_{895}= +0.56265664 \pm 3.2 \cdot 10^{-8} \) | \(a_{896}= -0.34233557 \pm 4.6 \cdot 10^{-8} \) | \(a_{897}= -0.12754905 \pm 2.1 \cdot 10^{-8} \) |
\(a_{898}= +1.30610231 \pm 3.6 \cdot 10^{-8} \) | \(a_{899}= -0.11205312 \pm 3.9 \cdot 10^{-8} \) | \(a_{900}= +0.07684008 \pm 2.8 \cdot 10^{-8} \) |
\(a_{901}= -0.01601053 \pm 2.9 \cdot 10^{-8} \) | \(a_{902}= +0.08316589 \pm 2.4 \cdot 10^{-8} \) | \(a_{903}= +1.78370128 \pm 2.8 \cdot 10^{-8} \) |
\(a_{904}= +0.27146447 \pm 2.3 \cdot 10^{-8} \) | \(a_{905}= -0.24550417 \pm 2.4 \cdot 10^{-8} \) | \(a_{906}= +1.09303586 \pm 2.9 \cdot 10^{-8} \) |
\(a_{907}= -1.77526477 \pm 2.8 \cdot 10^{-8} \) | \(a_{908}= +1.32685129 \pm 2.8 \cdot 10^{-8} \) | \(a_{909}= +0.11027328 \pm 2.8 \cdot 10^{-8} \) |
\(a_{910}= -0.85565668 \pm 2.3 \cdot 10^{-8} \) | \(a_{911}= -1.44446677 \pm 3.8 \cdot 10^{-8} \) | \(a_{912}= +1.65627984 \pm 3.0 \cdot 10^{-8} \) |
\(a_{913}= +0.16334065 \pm 2.7 \cdot 10^{-8} \) | \(a_{914}= -1.58233516 \pm 3.4 \cdot 10^{-8} \) | \(a_{915}= +0.64941785 \pm 3.0 \cdot 10^{-8} \) |
\(a_{916}= -0.47912236 \pm 4.2 \cdot 10^{-8} \) | \(a_{917}= +1.15838418 \pm 3.3 \cdot 10^{-8} \) | \(a_{918}= -0.43295436 \pm 2.7 \cdot 10^{-8} \) |
\(a_{919}= +0.28528871 \pm 2.8 \cdot 10^{-8} \) | \(a_{920}= +0.02083205 \pm 2.9 \cdot 10^{-8} \) | \(a_{921}= +0.37481073 \pm 2.4 \cdot 10^{-8} \) |
\(a_{922}= +2.06392787 \pm 4.1 \cdot 10^{-8} \) | \(a_{923}= +0.17105896 \pm 2.3 \cdot 10^{-8} \) | \(a_{924}= +0.19378940 \pm 5.1 \cdot 10^{-8} \) |
\(a_{925}= +0.25706965 \pm 2.6 \cdot 10^{-8} \) | \(a_{926}= +0.85625100 \pm 2.9 \cdot 10^{-8} \) | \(a_{927}= -0.25546869 \pm 2.1 \cdot 10^{-8} \) |
\(a_{928}= +0.84679640 \pm 2.9 \cdot 10^{-8} \) | \(a_{929}= +0.13062238 \pm 2.6 \cdot 10^{-8} \) | \(a_{930}= +0.16266623 \pm 1.0 \cdot 10^{-7} \) |
\(a_{931}= +0.44838433 \pm 1.9 \cdot 10^{-8} \) | \(a_{932}= -0.11403029 \pm 2.9 \cdot 10^{-8} \) | \(a_{933}= +0.10893005 \pm 3.8 \cdot 10^{-8} \) |
\(a_{934}= +1.32378553 \pm 3.7 \cdot 10^{-8} \) | \(a_{935}= +0.04610605 \pm 3.3 \cdot 10^{-8} \) | \(a_{936}= +0.02143610 \pm 3.5 \cdot 10^{-8} \) |
\(a_{937}= +1.17545206 \pm 2.5 \cdot 10^{-8} \) | \(a_{938}= -1.50773497 \pm 3.7 \cdot 10^{-8} \) | \(a_{939}= +0.70816162 \pm 2.8 \cdot 10^{-8} \) |
\(a_{940}= -0.59269069 \pm 2.8 \cdot 10^{-8} \) | \(a_{941}= +1.09773765 \pm 3.0 \cdot 10^{-8} \) | \(a_{942}= +0.49241878 \pm 2.7 \cdot 10^{-8} \) |
\(a_{943}= -0.05265214 \pm 1.8 \cdot 10^{-8} \) | \(a_{944}= -0.12334285 \pm 3.4 \cdot 10^{-8} \) | \(a_{945}= -0.87965124 \pm 2.5 \cdot 10^{-8} \) |
\(a_{946}= -0.51709583 \pm 3.7 \cdot 10^{-8} \) | \(a_{947}= +1.58440582 \pm 2.8 \cdot 10^{-8} \) | \(a_{948}= -0.54536706 \pm 2.2 \cdot 10^{-8} \) |
\(a_{949}= +0.20788470 \pm 2.0 \cdot 10^{-8} \) | \(a_{950}= +1.07169602 \pm 2.5 \cdot 10^{-8} \) | \(a_{951}= +0.77682911 \pm 2.8 \cdot 10^{-8} \) |
\(a_{952}= +0.05071851 \pm 3.9 \cdot 10^{-8} \) | \(a_{953}= +0.52880105 \pm 2.3 \cdot 10^{-8} \) | \(a_{954}= -0.01383276 \pm 2.1 \cdot 10^{-8} \) |
\(a_{955}= +1.16707063 \pm 2.5 \cdot 10^{-8} \) | \(a_{956}= -0.12562609 \pm 2.6 \cdot 10^{-8} \) | \(a_{957}= +0.12078487 \pm 3.3 \cdot 10^{-8} \) |
\(a_{958}= -1.69736337 \pm 2.7 \cdot 10^{-8} \) | \(a_{959}= -1.72861199 \pm 2.6 \cdot 10^{-8} \) | \(a_{960}= -0.50510303 \pm 3.1 \cdot 10^{-8} \) |
\(a_{961}= +0.03225806 \pm 1.7 \cdot 10^{-6} \) | \(a_{962}= -0.57279206 \pm 2.7 \cdot 10^{-8} \) | \(a_{963}= +0.13277170 \pm 3.5 \cdot 10^{-8} \) |
\(a_{964}= -0.88315871 \pm 3.2 \cdot 10^{-8} \) | \(a_{965}= +0.53330154 \pm 3.7 \cdot 10^{-8} \) | \(a_{966}= -0.26073604 \pm 4.1 \cdot 10^{-8} \) |
\(a_{967}= -1.69187897 \pm 3.1 \cdot 10^{-8} \) | \(a_{968}= -0.14588682 \pm 4.0 \cdot 10^{-8} \) | \(a_{969}= -0.44384081 \pm 1.9 \cdot 10^{-8} \) |
\(a_{970}= +0.99101208 \pm 3.4 \cdot 10^{-8} \) | \(a_{971}= -1.13057500 \pm 3.1 \cdot 10^{-8} \) | \(a_{972}= -0.32453165 \pm 2.6 \cdot 10^{-8} \) |
\(a_{973}= -1.57027319 \pm 3.6 \cdot 10^{-8} \) | \(a_{974}= -0.34547157 \pm 3.5 \cdot 10^{-8} \) | \(a_{975}= -0.31923596 \pm 2.0 \cdot 10^{-8} \) |
\(a_{976}= -1.08289138 \pm 2.4 \cdot 10^{-8} \) | \(a_{977}= +0.91697985 \pm 3.0 \cdot 10^{-8} \) | \(a_{978}= -0.75693295 \pm 3.4 \cdot 10^{-8} \) |
\(a_{979}= +0.33239202 \pm 3.1 \cdot 10^{-8} \) | \(a_{980}= -0.17423429 \pm 3.5 \cdot 10^{-8} \) | \(a_{981}= -0.13271776 \pm 2.3 \cdot 10^{-8} \) |
\(a_{982}= +1.27081431 \pm 3.1 \cdot 10^{-8} \) | \(a_{983}= -0.83784700 \pm 2.5 \cdot 10^{-8} \) | \(a_{984}= -0.03895019 \pm 2.7 \cdot 10^{-8} \) |
\(a_{985}= +0.20247954 \pm 3.3 \cdot 10^{-8} \) | \(a_{986}= -0.25248596 \pm 3.0 \cdot 10^{-8} \) | \(a_{987}= -0.92877160 \pm 2.8 \cdot 10^{-8} \) |
\(a_{988}= -1.12361507 \pm 2.4 \cdot 10^{-8} \) | \(a_{989}= +0.32737223 \pm 2.3 \cdot 10^{-8} \) | \(a_{990}= +0.03983465 \pm 2.9 \cdot 10^{-8} \) |
\(a_{991}= +1.41240239 \pm 3.3 \cdot 10^{-8} \) | \(a_{992}= -0.24377735 \pm 4.5 \cdot 10^{-8} \) | \(a_{993}= -0.09955355 \pm 3.1 \cdot 10^{-8} \) |
\(a_{994}= +0.34967908 \pm 3.5 \cdot 10^{-8} \) | \(a_{995}= -1.29651390 \pm 3.0 \cdot 10^{-8} \) | \(a_{996}= +0.61100787 \pm 2.1 \cdot 10^{-8} \) |
\(a_{997}= +1.59010454 \pm 2.8 \cdot 10^{-8} \) | \(a_{998}= +0.18754547 \pm 4.0 \cdot 10^{-8} \) | \(a_{999}= -0.58885445 \pm 3.7 \cdot 10^{-8} \) |
\(a_{1000}= +0.16377799 \pm 2.2 \cdot 10^{-8} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000