Maass form invariants
Level: | \( 31 \) |
Weight: | \( 0 \) |
Character: | 31.1 |
Symmetry: | odd |
Fricke sign: | $-1$ |
Spectral parameter: | \(1.06284037123837548152868977754 \pm 4 \cdot 10^{-10}\) |
Maass form coefficients
The coefficients here are shown to at most $8$ digits of precision. Full precision coefficients are available in the downloads.
\(a_{1}= +1 \) | \(a_{2}= +0.59084640 \pm 2.6 \cdot 10^{-7} \) | \(a_{3}= +0.38840372 \pm 2.3 \cdot 10^{-7} \) |
\(a_{4}= -0.65090053 \pm 2.8 \cdot 10^{-7} \) | \(a_{5}= -0.87900136 \pm 2.1 \cdot 10^{-7} \) | \(a_{6}= +0.22948694 \pm 2.9 \cdot 10^{-7} \) |
\(a_{7}= +1.67973048 \pm 2.1 \cdot 10^{-7} \) | \(a_{8}= -0.97542864 \pm 2.9 \cdot 10^{-7} \) | \(a_{9}= -0.84914255 \pm 2.2 \cdot 10^{-7} \) |
\(a_{10}= -0.51935479 \pm 2.6 \cdot 10^{-7} \) | \(a_{11}= -0.08882498 \pm 2.1 \cdot 10^{-7} \) | \(a_{12}= -0.25281219 \pm 3.4 \cdot 10^{-7} \) |
\(a_{13}= +1.08207949 \pm 2.2 \cdot 10^{-7} \) | \(a_{14}= +0.99246271 \pm 2.2 \cdot 10^{-7} \) | \(a_{15}= -0.34140740 \pm 2.2 \cdot 10^{-7} \) |
\(a_{16}= +0.07457203 \pm 2.6 \cdot 10^{-7} \) | \(a_{17}= +0.79742751 \pm 2.0 \cdot 10^{-7} \) | \(a_{18}= -0.50171282 \pm 2.8 \cdot 10^{-7} \) |
\(a_{19}= -0.75784964 \pm 2.2 \cdot 10^{-7} \) | \(a_{20}= +0.57214245 \pm 2.7 \cdot 10^{-7} \) | \(a_{21}= +0.65241356 \pm 2.3 \cdot 10^{-7} \) |
\(a_{22}= -0.05248192 \pm 2.3 \cdot 10^{-7} \) | \(a_{23}= +0.49492738 \pm 2.0 \cdot 10^{-7} \) | \(a_{24}= -0.37886011 \pm 3.5 \cdot 10^{-7} \) |
\(a_{25}= -0.22735661 \pm 2.0 \cdot 10^{-7} \) | \(a_{26}= +0.63934277 \pm 2.2 \cdot 10^{-7} \) | \(a_{27}= -0.71821384 \pm 1.9 \cdot 10^{-7} \) |
\(a_{28}= -1.09333746 \pm 2.2 \cdot 10^{-7} \) | \(a_{29}= -0.94335057 \pm 2.0 \cdot 10^{-7} \) | \(a_{30}= -0.20171933 \pm 3.0 \cdot 10^{-7} \) |
\(a_{31}= +0.17960530 \pm 1.0 \cdot 10^{-8} \) | \(a_{32}= +1.01948925 \pm 2.8 \cdot 10^{-7} \) | \(a_{33}= -0.03449995 \pm 2.2 \cdot 10^{-7} \) |
\(a_{34}= +0.47115718 \pm 2.7 \cdot 10^{-7} \) | \(a_{35}= -1.47648537 \pm 1.9 \cdot 10^{-7} \) | \(a_{36}= +0.55270734 \pm 3.0 \cdot 10^{-7} \) |
\(a_{37}= -1.21565202 \pm 1.9 \cdot 10^{-7} \) | \(a_{38}= -0.44777273 \pm 2.7 \cdot 10^{-7} \) | \(a_{39}= +0.42028370 \pm 2.1 \cdot 10^{-7} \) |
\(a_{40}= +0.85740310 \pm 2.8 \cdot 10^{-7} \) | \(a_{41}= -0.26938096 \pm 1.9 \cdot 10^{-7} \) | \(a_{42}= +0.38547620 \pm 2.6 \cdot 10^{-7} \) |
\(a_{43}= +0.37786146 \pm 1.8 \cdot 10^{-7} \) | \(a_{44}= +0.05781622 \pm 2.2 \cdot 10^{-7} \) | \(a_{45}= +0.74639746 \pm 2.1 \cdot 10^{-7} \) |
\(a_{46}= +0.29242606 \pm 1.9 \cdot 10^{-7} \) | \(a_{47}= +0.11991544 \pm 1.9 \cdot 10^{-7} \) | \(a_{48}= +0.02896405 \pm 3.3 \cdot 10^{-7} \) |
\(a_{49}= +1.82149447 \pm 2.0 \cdot 10^{-7} \) | \(a_{50}= -0.13433283 \pm 2.6 \cdot 10^{-7} \) | \(a_{51}= +0.30972381 \pm 2.3 \cdot 10^{-7} \) |
\(a_{52}= -0.70432611 \pm 2.3 \cdot 10^{-7} \) | \(a_{53}= +0.80890806 \pm 2.0 \cdot 10^{-7} \) | \(a_{54}= -0.42435406 \pm 2.5 \cdot 10^{-7} \) |
\(a_{55}= +0.07807727 \pm 2.3 \cdot 10^{-7} \) | \(a_{56}= -1.63845721 \pm 2.2 \cdot 10^{-7} \) | \(a_{57}= -0.29435162 \pm 2.2 \cdot 10^{-7} \) |
\(a_{58}= -0.55737529 \pm 2.3 \cdot 10^{-7} \) | \(a_{59}= +1.23064715 \pm 2.3 \cdot 10^{-7} \) | \(a_{60}= +0.22222226 \pm 3.4 \cdot 10^{-7} \) |
\(a_{61}= -0.46992058 \pm 2.0 \cdot 10^{-7} \) | \(a_{62}= +0.10611915 \pm 2.7 \cdot 10^{-7} \) | \(a_{63}= -1.42633062 \pm 2.5 \cdot 10^{-7} \) |
\(a_{64}= +0.52778953 \pm 2.8 \cdot 10^{-7} \) | \(a_{65}= -0.95114934 \pm 2.1 \cdot 10^{-7} \) | \(a_{66}= -0.02038417 \pm 2.3 \cdot 10^{-7} \) |
\(a_{67}= -0.63071606 \pm 1.7 \cdot 10^{-7} \) | \(a_{68}= -0.51904599 \pm 3.3 \cdot 10^{-7} \) | \(a_{69}= +0.19223163 \pm 2.3 \cdot 10^{-7} \) |
\(a_{70}= -0.87237607 \pm 2.2 \cdot 10^{-7} \) | \(a_{71}= +0.03523570 \pm 1.7 \cdot 10^{-7} \) | \(a_{72}= +0.82827796 \pm 2.9 \cdot 10^{-7} \) |
\(a_{73}= +1.09811782 \pm 1.9 \cdot 10^{-7} \) | \(a_{74}= -0.71826362 \pm 2.4 \cdot 10^{-7} \) | \(a_{75}= -0.08830615 \pm 2.0 \cdot 10^{-7} \) |
\(a_{76}= +0.49328473 \pm 2.6 \cdot 10^{-7} \) | \(a_{77}= -0.14920202 \pm 1.8 \cdot 10^{-7} \) | \(a_{78}= +0.24832311 \pm 2.2 \cdot 10^{-7} \) |
\(a_{79}= +1.51209507 \pm 2.2 \cdot 10^{-7} \) | \(a_{80}= -0.06554892 \pm 2.4 \cdot 10^{-7} \) | \(a_{81}= +0.57018563 \pm 2.2 \cdot 10^{-7} \) |
\(a_{82}= -0.15916277 \pm 2.6 \cdot 10^{-7} \) | \(a_{83}= -0.43885214 \pm 1.8 \cdot 10^{-7} \) | \(a_{84}= -0.42465633 \pm 2.8 \cdot 10^{-7} \) |
\(a_{85}= -0.70093987 \pm 1.8 \cdot 10^{-7} \) | \(a_{86}= +0.22325808 \pm 2.1 \cdot 10^{-7} \) | \(a_{87}= -0.36640087 \pm 2.4 \cdot 10^{-7} \) |
\(a_{88}= +0.08664242 \pm 2.2 \cdot 10^{-7} \) | \(a_{89}= -1.17672148 \pm 1.8 \cdot 10^{-7} \) | \(a_{90}= +0.44100625 \pm 2.7 \cdot 10^{-7} \) |
\(a_{91}= +1.81760189 \pm 2.3 \cdot 10^{-7} \) | \(a_{92}= -0.32214849 \pm 2.2 \cdot 10^{-7} \) | \(a_{93}= +0.06975937 \pm 2.4 \cdot 10^{-7} \) |
\(a_{94}= +0.07085161 \pm 2.5 \cdot 10^{-7} \) | \(a_{95}= +0.66615087 \pm 2.3 \cdot 10^{-7} \) | \(a_{96}= +0.39597342 \pm 3.5 \cdot 10^{-7} \) |
\(a_{97}= -0.58982707 \pm 2.1 \cdot 10^{-7} \) | \(a_{98}= +1.07622345 \pm 2.1 \cdot 10^{-7} \) | \(a_{99}= +0.07542507 \pm 1.9 \cdot 10^{-7} \) |
\(a_{100}= +0.14798654 \pm 2.5 \cdot 10^{-7} \) | \(a_{101}= +0.95587532 \pm 2.3 \cdot 10^{-7} \) | \(a_{102}= +0.18299920 \pm 3.3 \cdot 10^{-7} \) |
\(a_{103}= -0.38368901 \pm 1.8 \cdot 10^{-7} \) | \(a_{104}= -1.05549132 \pm 2.4 \cdot 10^{-7} \) | \(a_{105}= -0.57347241 \pm 2.0 \cdot 10^{-7} \) |
\(a_{106}= +0.47794041 \pm 2.4 \cdot 10^{-7} \) | \(a_{107}= -0.56626148 \pm 1.9 \cdot 10^{-7} \) | \(a_{108}= +0.46748577 \pm 2.6 \cdot 10^{-7} \) |
\(a_{109}= -1.51534139 \pm 2.1 \cdot 10^{-7} \) | \(a_{110}= +0.04613168 \pm 2.1 \cdot 10^{-7} \) | \(a_{111}= -0.47216376 \pm 2.0 \cdot 10^{-7} \) |
\(a_{112}= +0.12526091 \pm 1.7 \cdot 10^{-7} \) | \(a_{113}= +0.23664124 \pm 1.9 \cdot 10^{-7} \) | \(a_{114}= -0.17391659 \pm 2.4 \cdot 10^{-7} \) |
\(a_{115}= -0.43504184 \pm 1.9 \cdot 10^{-7} \) | \(a_{116}= +0.61402738 \pm 2.5 \cdot 10^{-7} \) | \(a_{117}= -0.91883974 \pm 2.2 \cdot 10^{-7} \) |
\(a_{118}= +0.72712344 \pm 3.0 \cdot 10^{-7} \) | \(a_{119}= +1.33946330 \pm 1.6 \cdot 10^{-7} \) | \(a_{120}= +0.33301855 \pm 3.3 \cdot 10^{-7} \) |
\(a_{121}= -0.99211012 \pm 2.2 \cdot 10^{-7} \) | \(a_{122}= -0.27765088 \pm 2.9 \cdot 10^{-7} \) | \(a_{123}= -0.10462857 \pm 2.4 \cdot 10^{-7} \) |
\(a_{124}= -0.11690519 \pm 2.9 \cdot 10^{-7} \) | \(a_{125}= +1.07884813 \pm 2.2 \cdot 10^{-7} \) | \(a_{126}= -0.84274232 \pm 3.1 \cdot 10^{-7} \) |
\(a_{127}= +0.79593675 \pm 2.1 \cdot 10^{-7} \) | \(a_{128}= -0.70764671 \pm 2.6 \cdot 10^{-7} \) | \(a_{129}= +0.14676280 \pm 1.7 \cdot 10^{-7} \) |
\(a_{130}= -0.56198317 \pm 2.2 \cdot 10^{-7} \) | \(a_{131}= -1.61905857 \pm 2.2 \cdot 10^{-7} \) | \(a_{132}= +0.02245604 \pm 2.3 \cdot 10^{-7} \) |
\(a_{133}= -1.27298314 \pm 2.0 \cdot 10^{-7} \) | \(a_{134}= -0.37265632 \pm 1.9 \cdot 10^{-7} \) | \(a_{135}= +0.63131094 \pm 1.9 \cdot 10^{-7} \) |
\(a_{136}= -0.77783363 \pm 3.5 \cdot 10^{-7} \) | \(a_{137}= +0.44256190 \pm 2.1 \cdot 10^{-7} \) | \(a_{138}= +0.11357937 \pm 1.9 \cdot 10^{-7} \) |
\(a_{139}= -0.06451605 \pm 1.6 \cdot 10^{-7} \) | \(a_{140}= +0.96104511 \pm 2.0 \cdot 10^{-7} \) | \(a_{141}= +0.04657560 \pm 2.3 \cdot 10^{-7} \) |
\(a_{142}= +0.02081889 \pm 1.8 \cdot 10^{-7} \) | \(a_{143}= -0.09611568 \pm 2.2 \cdot 10^{-7} \) | \(a_{144}= -0.06332228 \pm 2.7 \cdot 10^{-7} \) |
\(a_{145}= +0.82920643 \pm 1.9 \cdot 10^{-7} \) | \(a_{146}= +0.64881896 \pm 2.3 \cdot 10^{-7} \) | \(a_{147}= +0.70747522 \pm 2.1 \cdot 10^{-7} \) |
\(a_{148}= +0.79126855 \pm 2.7 \cdot 10^{-7} \) | \(a_{149}= -0.11278707 \pm 1.8 \cdot 10^{-7} \) | \(a_{150}= -0.05217537 \pm 2.7 \cdot 10^{-7} \) |
\(a_{151}= +0.60401978 \pm 2.0 \cdot 10^{-7} \) | \(a_{152}= +0.73922824 \pm 2.4 \cdot 10^{-7} \) | \(a_{153}= -0.67712963 \pm 1.9 \cdot 10^{-7} \) |
\(a_{154}= -0.08815548 \pm 2.0 \cdot 10^{-7} \) | \(a_{155}= -0.15787330 \pm 2.2 \cdot 10^{-7} \) | \(a_{156}= -0.27356288 \pm 2.4 \cdot 10^{-7} \) |
\(a_{157}= +0.17950975 \pm 1.8 \cdot 10^{-7} \) | \(a_{158}= +0.89341593 \pm 2.7 \cdot 10^{-7} \) | \(a_{159}= +0.31418290 \pm 2.0 \cdot 10^{-7} \) |
\(a_{160}= -0.89613244 \pm 2.6 \cdot 10^{-7} \) | \(a_{161}= +0.83134460 \pm 1.8 \cdot 10^{-7} \) | \(a_{162}= +0.33689213 \pm 3.0 \cdot 10^{-7} \) |
\(a_{163}= -0.60722416 \pm 2.1 \cdot 10^{-7} \) | \(a_{164}= +0.17534021 \pm 3.1 \cdot 10^{-7} \) | \(a_{165}= +0.03032550 \pm 2.1 \cdot 10^{-7} \) |
\(a_{166}= -0.25929420 \pm 2.4 \cdot 10^{-7} \) | \(a_{167}= +1.65863709 \pm 2.1 \cdot 10^{-7} \) | \(a_{168}= -0.63638287 \pm 2.4 \cdot 10^{-7} \) |
\(a_{169}= +0.17089602 \pm 2.0 \cdot 10^{-7} \) | \(a_{170}= -0.41414780 \pm 2.4 \cdot 10^{-7} \) | \(a_{171}= +0.64352238 \pm 2.0 \cdot 10^{-7} \) |
\(a_{172}= -0.24595022 \pm 2.1 \cdot 10^{-7} \) | \(a_{173}= -0.85027751 \pm 2.2 \cdot 10^{-7} \) | \(a_{174}= -0.21648663 \pm 2.8 \cdot 10^{-7} \) |
\(a_{175}= -0.38189782 \pm 1.9 \cdot 10^{-7} \) | \(a_{176}= -0.00662386 \pm 1.4 \cdot 10^{-7} \) | \(a_{177}= +0.47798793 \pm 2.3 \cdot 10^{-7} \) |
\(a_{178}= -0.69526165 \pm 2.1 \cdot 10^{-7} \) | \(a_{179}= -1.20522994 \pm 2.3 \cdot 10^{-7} \) | \(a_{180}= -0.48583050 \pm 2.9 \cdot 10^{-7} \) |
\(a_{181}= -1.13143959 \pm 1.9 \cdot 10^{-7} \) | \(a_{182}= +1.07392354 \pm 2.1 \cdot 10^{-7} \) | \(a_{183}= -0.18251890 \pm 2.1 \cdot 10^{-7} \) |
\(a_{184}= -0.48276634 \pm 2.5 \cdot 10^{-7} \) | \(a_{185}= +1.06855978 \pm 1.8 \cdot 10^{-7} \) | \(a_{186}= +0.04121707 \pm 5.0 \cdot 10^{-7} \) |
\(a_{187}= -0.07083148 \pm 1.5 \cdot 10^{-7} \) | \(a_{188}= -0.07805303 \pm 3.0 \cdot 10^{-7} \) | \(a_{189}= -1.20640568 \pm 2.3 \cdot 10^{-7} \) |
\(a_{190}= +0.39359284 \pm 2.9 \cdot 10^{-7} \) | \(a_{191}= -0.75832664 \pm 2.1 \cdot 10^{-7} \) | \(a_{192}= +0.20499541 \pm 3.4 \cdot 10^{-7} \) |
\(a_{193}= +1.76193270 \pm 2.0 \cdot 10^{-7} \) | \(a_{194}= -0.34849720 \pm 2.6 \cdot 10^{-7} \) | \(a_{195}= -0.36942994 \pm 1.8 \cdot 10^{-7} \) |
\(a_{196}= -1.18561172 \pm 2.5 \cdot 10^{-7} \) | \(a_{197}= -0.13581152 \pm 1.6 \cdot 10^{-7} \) | \(a_{198}= +0.04456463 \pm 2.2 \cdot 10^{-7} \) |
\(a_{199}= +0.61281227 \pm 1.9 \cdot 10^{-7} \) | \(a_{200}= +0.22177015 \pm 2.2 \cdot 10^{-7} \) | \(a_{201}= -0.24497246 \pm 1.9 \cdot 10^{-7} \) |
\(a_{202}= +0.56477549 \pm 2.6 \cdot 10^{-7} \) | \(a_{203}= -1.58457469 \pm 2.0 \cdot 10^{-7} \) | \(a_{204}= -0.20159939 \pm 4.0 \cdot 10^{-7} \) |
\(a_{205}= +0.23678623 \pm 1.8 \cdot 10^{-7} \) | \(a_{206}= -0.22670127 \pm 2.2 \cdot 10^{-7} \) | \(a_{207}= -0.42026389 \pm 1.8 \cdot 10^{-7} \) |
\(a_{208}= +0.08069286 \pm 2.2 \cdot 10^{-7} \) | \(a_{209}= +0.06731598 \pm 2.4 \cdot 10^{-7} \) | \(a_{210}= -0.33883411 \pm 2.7 \cdot 10^{-7} \) |
\(a_{211}= +1.65870717 \pm 2.1 \cdot 10^{-7} \) | \(a_{212}= -0.52651868 \pm 2.5 \cdot 10^{-7} \) | \(a_{213}= +0.01368568 \pm 2.0 \cdot 10^{-7} \) |
\(a_{214}= -0.33457356 \pm 2.1 \cdot 10^{-7} \) | \(a_{215}= -0.33214074 \pm 2.0 \cdot 10^{-7} \) | \(a_{216}= +0.70056635 \pm 2.2 \cdot 10^{-7} \) |
\(a_{217}= +0.30168850 \pm 2.2 \cdot 10^{-7} \) | \(a_{218}= -0.89533401 \pm 2.6 \cdot 10^{-7} \) | \(a_{219}= +0.42651304 \pm 1.9 \cdot 10^{-7} \) |
\(a_{220}= -0.05082054 \pm 1.9 \cdot 10^{-7} \) | \(a_{221}= +0.86287996 \pm 1.9 \cdot 10^{-7} \) | \(a_{222}= -0.27897626 \pm 2.5 \cdot 10^{-7} \) |
\(a_{223}= +0.79655993 \pm 2.4 \cdot 10^{-7} \) | \(a_{224}= +1.71246717 \pm 2.1 \cdot 10^{-7} \) | \(a_{225}= +0.19305817 \pm 1.8 \cdot 10^{-7} \) |
\(a_{226}= +0.13981862 \pm 2.3 \cdot 10^{-7} \) | \(a_{227}= +1.14771549 \pm 2.0 \cdot 10^{-7} \) | \(a_{228}= +0.19159362 \pm 2.6 \cdot 10^{-7} \) |
\(a_{229}= +0.69683028 \pm 2.1 \cdot 10^{-7} \) | \(a_{230}= -0.25704290 \pm 2.0 \cdot 10^{-7} \) | \(a_{231}= -0.05795062 \pm 2.3 \cdot 10^{-7} \) |
\(a_{232}= +0.92017116 \pm 2.4 \cdot 10^{-7} \) | \(a_{233}= -0.35866782 \pm 1.6 \cdot 10^{-7} \) | \(a_{234}= -0.54289315 \pm 2.4 \cdot 10^{-7} \) |
\(a_{235}= -0.10540584 \pm 2.0 \cdot 10^{-7} \) | \(a_{236}= -0.80102888 \pm 3.4 \cdot 10^{-7} \) | \(a_{237}= +0.58730335 \pm 2.4 \cdot 10^{-7} \) |
\(a_{238}= +0.79141707 \pm 1.5 \cdot 10^{-7} \) | \(a_{239}= -1.26265709 \pm 2.1 \cdot 10^{-7} \) | \(a_{240}= -0.02545944 \pm 2.9 \cdot 10^{-7} \) |
\(a_{241}= -0.11933586 \pm 1.7 \cdot 10^{-7} \) | \(a_{242}= -0.58618470 \pm 2.5 \cdot 10^{-7} \) | \(a_{243}= +0.93967606 \pm 2.4 \cdot 10^{-7} \) |
\(a_{244}= +0.30587155 \pm 3.4 \cdot 10^{-7} \) | \(a_{245}= -1.60109612 \pm 1.9 \cdot 10^{-7} \) | \(a_{246}= -0.06181941 \pm 3.5 \cdot 10^{-7} \) |
\(a_{247}= -0.82005355 \pm 2.2 \cdot 10^{-7} \) | \(a_{248}= -0.17519215 \pm 3.0 \cdot 10^{-7} \) | \(a_{249}= -0.17045180 \pm 1.9 \cdot 10^{-7} \) |
\(a_{250}= +0.63743353 \pm 2.9 \cdot 10^{-7} \) | \(a_{251}= -0.17877199 \pm 2.0 \cdot 10^{-7} \) | \(a_{252}= +0.92839936 \pm 3.1 \cdot 10^{-7} \) |
\(a_{253}= -0.04396191 \pm 1.8 \cdot 10^{-7} \) | \(a_{254}= +0.47027637 \pm 2.6 \cdot 10^{-7} \) | \(a_{255}= -0.27224765 \pm 2.1 \cdot 10^{-7} \) |
\(a_{256}= -0.94590004 \pm 2.5 \cdot 10^{-7} \) | \(a_{257}= +1.13842934 \pm 2.1 \cdot 10^{-7} \) | \(a_{258}= +0.08671427 \pm 2.3 \cdot 10^{-7} \) |
\(a_{259}= -2.04196775 \pm 2.0 \cdot 10^{-7} \) | \(a_{260}= +0.61910361 \pm 2.0 \cdot 10^{-7} \) | \(a_{261}= +0.80103911 \pm 2.0 \cdot 10^{-7} \) |
\(a_{262}= -0.95661493 \pm 2.5 \cdot 10^{-7} \) | \(a_{263}= -1.73141334 \pm 2.2 \cdot 10^{-7} \) | \(a_{264}= +0.03365224 \pm 2.1 \cdot 10^{-7} \) |
\(a_{265}= -0.71103128 \pm 1.8 \cdot 10^{-7} \) | \(a_{266}= -0.75213751 \pm 2.3 \cdot 10^{-7} \) | \(a_{267}= -0.45704300 \pm 1.8 \cdot 10^{-7} \) |
\(a_{268}= +0.41053342 \pm 1.9 \cdot 10^{-7} \) | \(a_{269}= +1.36039162 \pm 1.9 \cdot 10^{-7} \) | \(a_{270}= +0.37300780 \pm 2.3 \cdot 10^{-7} \) |
\(a_{271}= +1.84408801 \pm 2.5 \cdot 10^{-7} \) | \(a_{272}= +0.05946579 \pm 3.2 \cdot 10^{-7} \) | \(a_{273}= +0.70596333 \pm 2.2 \cdot 10^{-7} \) |
\(a_{274}= +0.26148611 \pm 2.5 \cdot 10^{-7} \) | \(a_{275}= +0.02019495 \pm 2.4 \cdot 10^{-7} \) | \(a_{276}= -0.12512367 \pm 2.4 \cdot 10^{-7} \) |
\(a_{277}= -1.37979000 \pm 2.0 \cdot 10^{-7} \) | \(a_{278}= -0.03811907 \pm 2.0 \cdot 10^{-7} \) | \(a_{279}= -0.15251050 \pm 2.3 \cdot 10^{-7} \) |
\(a_{280}= +1.44020612 \pm 2.0 \cdot 10^{-7} \) | \(a_{281}= -1.84736264 \pm 2.1 \cdot 10^{-7} \) | \(a_{282}= +0.02751903 \pm 3.3 \cdot 10^{-7} \) |
\(a_{283}= -0.47412504 \pm 2.0 \cdot 10^{-7} \) | \(a_{284}= -0.02293494 \pm 1.7 \cdot 10^{-7} \) | \(a_{285}= +0.25873547 \pm 2.3 \cdot 10^{-7} \) |
\(a_{286}= -0.05678961 \pm 2.3 \cdot 10^{-7} \) | \(a_{287}= -0.45248741 \pm 1.8 \cdot 10^{-7} \) | \(a_{288}= -0.86569171 \pm 3.0 \cdot 10^{-7} \) |
\(a_{289}= -0.36410936 \pm 2.1 \cdot 10^{-7} \) | \(a_{290}= +0.48993364 \pm 2.4 \cdot 10^{-7} \) | \(a_{291}= -0.22909103 \pm 2.5 \cdot 10^{-7} \) |
\(a_{292}= -0.71476547 \pm 2.4 \cdot 10^{-7} \) | \(a_{293}= +0.08408066 \pm 1.8 \cdot 10^{-7} \) | \(a_{294}= +0.41800919 \pm 2.4 \cdot 10^{-7} \) |
\(a_{295}= -1.08174052 \pm 2.0 \cdot 10^{-7} \) | \(a_{296}= +1.18578180 \pm 2.7 \cdot 10^{-7} \) | \(a_{297}= +0.06379533 \pm 1.7 \cdot 10^{-7} \) |
\(a_{298}= -0.06663984 \pm 2.3 \cdot 10^{-7} \) | \(a_{299}= +0.53555076 \pm 2.1 \cdot 10^{-7} \) | \(a_{300}= +0.05747852 \pm 2.7 \cdot 10^{-7} \) |
\(a_{301}= +0.63470541 \pm 1.8 \cdot 10^{-7} \) | \(a_{302}= +0.35688291 \pm 2.2 \cdot 10^{-7} \) | \(a_{303}= +0.37126553 \pm 2.6 \cdot 10^{-7} \) |
\(a_{304}= -0.05651439 \pm 1.7 \cdot 10^{-7} \) | \(a_{305}= +0.41306083 \pm 2.0 \cdot 10^{-7} \) | \(a_{306}= -0.40007961 \pm 2.4 \cdot 10^{-7} \) |
\(a_{307}= +0.19759437 \pm 2.2 \cdot 10^{-7} \) | \(a_{308}= +0.09711567 \pm 2.1 \cdot 10^{-7} \) | \(a_{309}= -0.14902624 \pm 2.1 \cdot 10^{-7} \) |
\(a_{310}= -0.09327887 \pm 4.9 \cdot 10^{-7} \) | \(a_{311}= -0.57210307 \pm 1.7 \cdot 10^{-7} \) | \(a_{312}= -0.40995675 \pm 2.5 \cdot 10^{-7} \) |
\(a_{313}= +0.70911183 \pm 2.1 \cdot 10^{-7} \) | \(a_{314}= +0.10606269 \pm 2.2 \cdot 10^{-7} \) | \(a_{315}= +1.25374656 \pm 2.1 \cdot 10^{-7} \) |
\(a_{316}= -0.98422348 \pm 3.2 \cdot 10^{-7} \) | \(a_{317}= +0.38869948 \pm 2.0 \cdot 10^{-7} \) | \(a_{318}= +0.18563383 \pm 2.6 \cdot 10^{-7} \) |
\(a_{319}= +0.08379309 \pm 2.1 \cdot 10^{-7} \) | \(a_{320}= -0.46392771 \pm 2.7 \cdot 10^{-7} \) | \(a_{321}= -0.21993806 \pm 1.8 \cdot 10^{-7} \) |
\(a_{322}= +0.49119696 \pm 1.6 \cdot 10^{-7} \) | \(a_{323}= -0.60433015 \pm 1.7 \cdot 10^{-7} \) | \(a_{324}= -0.37113413 \pm 3.1 \cdot 10^{-7} \) |
\(a_{325}= -0.24601792 \pm 1.8 \cdot 10^{-7} \) | \(a_{326}= -0.35877621 \pm 2.5 \cdot 10^{-7} \) | \(a_{327}= -0.58856423 \pm 1.9 \cdot 10^{-7} \) |
\(a_{328}= +0.26276190 \pm 3.5 \cdot 10^{-7} \) | \(a_{329}= +0.20142563 \pm 1.5 \cdot 10^{-7} \) | \(a_{330}= +0.01791771 \pm 2.1 \cdot 10^{-7} \) |
\(a_{331}= +0.67153434 \pm 1.9 \cdot 10^{-7} \) | \(a_{332}= +0.28564909 \pm 2.7 \cdot 10^{-7} \) | \(a_{333}= +1.03226186 \pm 1.9 \cdot 10^{-7} \) |
\(a_{334}= +0.97999975 \pm 2.4 \cdot 10^{-7} \) | \(a_{335}= +0.55440028 \pm 1.8 \cdot 10^{-7} \) | \(a_{336}= +0.04865180 \pm 2.0 \cdot 10^{-7} \) |
\(a_{337}= +0.60725582 \pm 2.2 \cdot 10^{-7} \) | \(a_{338}= +0.10097330 \pm 2.1 \cdot 10^{-7} \) | \(a_{339}= +0.09191234 \pm 2.0 \cdot 10^{-7} \) |
\(a_{340}= +0.45624213 \pm 2.9 \cdot 10^{-7} \) | \(a_{341}= -0.01595344 \pm 2.2 \cdot 10^{-7} \) | \(a_{342}= +0.38022288 \pm 2.6 \cdot 10^{-7} \) |
\(a_{343}= +1.37988930 \pm 2.0 \cdot 10^{-7} \) | \(a_{344}= -0.36857689 \pm 2.2 \cdot 10^{-7} \) | \(a_{345}= -0.16897187 \pm 1.9 \cdot 10^{-7} \) |
\(a_{346}= -0.50238340 \pm 3.0 \cdot 10^{-7} \) | \(a_{347}= -0.18528467 \pm 2.2 \cdot 10^{-7} \) | \(a_{348}= +0.23849052 \pm 3.1 \cdot 10^{-7} \) |
\(a_{349}= +0.52032563 \pm 2.2 \cdot 10^{-7} \) | \(a_{350}= -0.22564295 \pm 2.3 \cdot 10^{-7} \) | \(a_{351}= -0.77716447 \pm 1.8 \cdot 10^{-7} \) |
\(a_{352}= -0.09055611 \pm 2.0 \cdot 10^{-7} \) | \(a_{353}= -1.61320880 \pm 2.4 \cdot 10^{-7} \) | \(a_{354}= +0.28241745 \pm 3.1 \cdot 10^{-7} \) |
\(a_{355}= -0.03097223 \pm 1.4 \cdot 10^{-7} \) | \(a_{356}= +0.76592863 \pm 2.2 \cdot 10^{-7} \) | \(a_{357}= +0.52025252 \pm 1.6 \cdot 10^{-7} \) |
\(a_{358}= -0.71210577 \pm 2.7 \cdot 10^{-7} \) | \(a_{359}= +0.07161929 \pm 2.0 \cdot 10^{-7} \) | \(a_{360}= -0.72805746 \pm 2.8 \cdot 10^{-7} \) |
\(a_{361}= -0.42566392 \pm 2.2 \cdot 10^{-7} \) | \(a_{362}= -0.66850701 \pm 2.2 \cdot 10^{-7} \) | \(a_{363}= -0.38533926 \pm 2.1 \cdot 10^{-7} \) |
\(a_{364}= -1.18307804 \pm 2.1 \cdot 10^{-7} \) | \(a_{365}= -0.96524706 \pm 2.2 \cdot 10^{-7} \) | \(a_{366}= -0.10784063 \pm 3.2 \cdot 10^{-7} \) |
\(a_{367}= -1.46270475 \pm 2.3 \cdot 10^{-7} \) | \(a_{368}= +0.03690774 \pm 2.2 \cdot 10^{-7} \) | \(a_{369}= +0.22874284 \pm 2.2 \cdot 10^{-7} \) |
\(a_{370}= +0.63135470 \pm 2.2 \cdot 10^{-7} \) | \(a_{371}= +1.35874751 \pm 2.0 \cdot 10^{-7} \) | \(a_{372}= -0.04540641 \pm 5.3 \cdot 10^{-7} \) |
\(a_{373}= -0.05250224 \pm 1.9 \cdot 10^{-7} \) | \(a_{374}= -0.04185052 \pm 1.9 \cdot 10^{-7} \) | \(a_{375}= +0.41902862 \pm 2.5 \cdot 10^{-7} \) |
\(a_{376}= -0.11696896 \pm 3.5 \cdot 10^{-7} \) | \(a_{377}= -1.02078030 \pm 1.9 \cdot 10^{-7} \) | \(a_{378}= -0.71280045 \pm 3.0 \cdot 10^{-7} \) |
\(a_{379}= -0.40142949 \pm 2.1 \cdot 10^{-7} \) | \(a_{380}= -0.43359795 \pm 2.7 \cdot 10^{-7} \) | \(a_{381}= +0.30914479 \pm 2.2 \cdot 10^{-7} \) |
\(a_{382}= -0.44805456 \pm 2.8 \cdot 10^{-7} \) | \(a_{383}= +1.43066250 \pm 2.0 \cdot 10^{-7} \) | \(a_{384}= -0.27485261 \pm 3.2 \cdot 10^{-7} \) |
\(a_{385}= +0.13114878 \pm 1.7 \cdot 10^{-7} \) | \(a_{386}= +1.04103159 \pm 2.1 \cdot 10^{-7} \) | \(a_{387}= -0.32085824 \pm 1.9 \cdot 10^{-7} \) |
\(a_{388}= +0.38391875 \pm 2.9 \cdot 10^{-7} \) | \(a_{389}= +1.63801524 \pm 1.8 \cdot 10^{-7} \) | \(a_{390}= -0.21827635 \pm 1.7 \cdot 10^{-7} \) |
\(a_{391}= +0.39466871 \pm 1.6 \cdot 10^{-7} \) | \(a_{392}= -1.77673787 \pm 2.6 \cdot 10^{-7} \) | \(a_{393}= -0.62884837 \pm 2.2 \cdot 10^{-7} \) |
\(a_{394}= -0.08024375 \pm 1.9 \cdot 10^{-7} \) | \(a_{395}= -1.32913362 \pm 2.0 \cdot 10^{-7} \) | \(a_{396}= -0.04909422 \pm 2.2 \cdot 10^{-7} \) |
\(a_{397}= -0.61077061 \pm 2.1 \cdot 10^{-7} \) | \(a_{398}= +0.36207792 \pm 2.2 \cdot 10^{-7} \) | \(a_{399}= -0.49443138 \pm 2.0 \cdot 10^{-7} \) |
\(a_{400}= -0.01695444 \pm 1.5 \cdot 10^{-7} \) | \(a_{401}= +1.38761798 \pm 2.1 \cdot 10^{-7} \) | \(a_{402}= -0.14474110 \pm 2.4 \cdot 10^{-7} \) |
\(a_{403}= +0.19434721 \pm 2.3 \cdot 10^{-7} \) | \(a_{404}= -0.62217975 \pm 2.9 \cdot 10^{-7} \) | \(a_{405}= -0.50119394 \pm 2.1 \cdot 10^{-7} \) |
\(a_{406}= -0.93624026 \pm 2.0 \cdot 10^{-7} \) | \(a_{407}= +0.10798026 \pm 1.9 \cdot 10^{-7} \) | \(a_{408}= -0.30211347 \pm 4.2 \cdot 10^{-7} \) |
\(a_{409}= +0.66233591 \pm 1.7 \cdot 10^{-7} \) | \(a_{410}= +0.13990429 \pm 2.5 \cdot 10^{-7} \) | \(a_{411}= +0.17189269 \pm 2.3 \cdot 10^{-7} \) |
\(a_{412}= +0.24974338 \pm 2.3 \cdot 10^{-7} \) | \(a_{413}= +2.06715552 \pm 2.2 \cdot 10^{-7} \) | \(a_{414}= -0.24831141 \pm 1.9 \cdot 10^{-7} \) |
\(a_{415}= +0.38575162 \pm 1.8 \cdot 10^{-7} \) | \(a_{416}= +1.10316841 \pm 2.3 \cdot 10^{-7} \) | \(a_{417}= -0.02505827 \pm 1.9 \cdot 10^{-7} \) |
\(a_{418}= +0.03977340 \pm 2.8 \cdot 10^{-7} \) | \(a_{419}= +1.03297127 \pm 2.0 \cdot 10^{-7} \) | \(a_{420}= +0.37327349 \pm 2.8 \cdot 10^{-7} \) |
\(a_{421}= +0.63920601 \pm 2.4 \cdot 10^{-7} \) | \(a_{422}= +0.98004116 \pm 2.0 \cdot 10^{-7} \) | \(a_{423}= -0.10182531 \pm 2.1 \cdot 10^{-7} \) |
\(a_{424}= -0.78903208 \pm 2.3 \cdot 10^{-7} \) | \(a_{425}= -0.18130041 \pm 1.3 \cdot 10^{-7} \) | \(a_{426}= +0.00808613 \pm 2.2 \cdot 10^{-7} \) |
\(a_{427}= -0.78933992 \pm 1.6 \cdot 10^{-7} \) | \(a_{428}= +0.36857990 \pm 2.1 \cdot 10^{-7} \) | \(a_{429}= -0.03733169 \pm 2.2 \cdot 10^{-7} \) |
\(a_{430}= -0.19624416 \pm 2.3 \cdot 10^{-7} \) | \(a_{431}= +1.39188891 \pm 2.0 \cdot 10^{-7} \) | \(a_{432}= -0.05355866 \pm 1.9 \cdot 10^{-7} \) |
\(a_{433}= -1.84511920 \pm 2.4 \cdot 10^{-7} \) | \(a_{434}= +0.17825156 \pm 4.8 \cdot 10^{-7} \) | \(a_{435}= +0.32206686 \pm 2.3 \cdot 10^{-7} \) |
\(a_{436}= +0.98633651 \pm 2.7 \cdot 10^{-7} \) | \(a_{437}= -0.37508053 \pm 2.1 \cdot 10^{-7} \) | \(a_{438}= +0.25200370 \pm 2.6 \cdot 10^{-7} \) |
\(a_{439}= +0.87276039 \pm 2.1 \cdot 10^{-7} \) | \(a_{440}= -0.07615881 \pm 2.4 \cdot 10^{-7} \) | \(a_{441}= -1.54670846 \pm 2.3 \cdot 10^{-7} \) |
\(a_{442}= +0.50982952 \pm 1.9 \cdot 10^{-7} \) | \(a_{443}= -0.72165521 \pm 2.0 \cdot 10^{-7} \) | \(a_{444}= +0.30733164 \pm 2.8 \cdot 10^{-7} \) |
\(a_{445}= +1.03433978 \pm 2.0 \cdot 10^{-7} \) | \(a_{446}= +0.47064457 \pm 2.5 \cdot 10^{-7} \) | \(a_{447}= -0.04380692 \pm 1.9 \cdot 10^{-7} \) |
\(a_{448}= +0.88654415 \pm 2.1 \cdot 10^{-7} \) | \(a_{449}= -0.35862892 \pm 1.8 \cdot 10^{-7} \) | \(a_{450}= +0.11406773 \pm 2.4 \cdot 10^{-7} \) |
\(a_{451}= +0.02392776 \pm 1.8 \cdot 10^{-7} \) | \(a_{452}= -0.15402991 \pm 2.5 \cdot 10^{-7} \) | \(a_{453}= +0.23460353 \pm 2.0 \cdot 10^{-7} \) |
\(a_{454}= +0.67812357 \pm 2.5 \cdot 10^{-7} \) | \(a_{455}= -1.59767454 \pm 1.9 \cdot 10^{-7} \) | \(a_{456}= +0.28711900 \pm 2.6 \cdot 10^{-7} \) |
\(a_{457}= -1.12517008 \pm 2.3 \cdot 10^{-7} \) | \(a_{458}= +0.41171966 \pm 2.8 \cdot 10^{-7} \) | \(a_{459}= -0.57272348 \pm 1.7 \cdot 10^{-7} \) |
\(a_{460}= +0.28316896 \pm 2.1 \cdot 10^{-7} \) | \(a_{461}= -0.36708497 \pm 1.9 \cdot 10^{-7} \) | \(a_{462}= -0.03423991 \pm 2.2 \cdot 10^{-7} \) |
\(a_{463}= +0.36846336 \pm 2.1 \cdot 10^{-7} \) | \(a_{464}= -0.07034757 \pm 1.8 \cdot 10^{-7} \) | \(a_{465}= -0.06131858 \pm 4.6 \cdot 10^{-7} \) |
\(a_{466}= -0.21191759 \pm 2.4 \cdot 10^{-7} \) | \(a_{467}= +0.30582367 \pm 2.0 \cdot 10^{-7} \) | \(a_{468}= +0.59807327 \pm 2.4 \cdot 10^{-7} \) |
\(a_{469}= -1.05943300 \pm 1.7 \cdot 10^{-7} \) | \(a_{470}= -0.06227866 \pm 2.5 \cdot 10^{-7} \) | \(a_{471}= +0.06972225 \pm 2.2 \cdot 10^{-7} \) |
\(a_{472}= -1.20040847 \pm 3.2 \cdot 10^{-7} \) | \(a_{473}= -0.03356353 \pm 1.8 \cdot 10^{-7} \) | \(a_{474}= +0.34700607 \pm 3.1 \cdot 10^{-7} \) |
\(a_{475}= +0.17230212 \pm 2.4 \cdot 10^{-7} \) | \(a_{476}= -0.87185737 \pm 1.6 \cdot 10^{-7} \) | \(a_{477}= -0.68687825 \pm 2.2 \cdot 10^{-7} \) |
\(a_{478}= -0.74603640 \pm 2.3 \cdot 10^{-7} \) | \(a_{479}= +0.07270557 \pm 2.0 \cdot 10^{-7} \) | \(a_{480}= -0.34806117 \pm 3.1 \cdot 10^{-7} \) |
\(a_{481}= -1.31543212 \pm 1.9 \cdot 10^{-7} \) | \(a_{482}= -0.07050916 \pm 1.9 \cdot 10^{-7} \) | \(a_{483}= +0.32289733 \pm 2.0 \cdot 10^{-7} \) |
\(a_{484}= +0.64576501 \pm 2.5 \cdot 10^{-7} \) | \(a_{485}= +0.51845879 \pm 1.8 \cdot 10^{-7} \) | \(a_{486}= +0.55520422 \pm 2.9 \cdot 10^{-7} \) |
\(a_{487}= +0.55847946 \pm 2.2 \cdot 10^{-7} \) | \(a_{488}= +0.45837399 \pm 3.7 \cdot 10^{-7} \) | \(a_{489}= -0.23584812 \pm 2.3 \cdot 10^{-7} \) |
\(a_{490}= -0.94600188 \pm 2.2 \cdot 10^{-7} \) | \(a_{491}= -0.69673255 \pm 1.8 \cdot 10^{-7} \) | \(a_{492}= +0.06810279 \pm 4.4 \cdot 10^{-7} \) |
\(a_{493}= -0.75225369 \pm 2.0 \cdot 10^{-7} \) | \(a_{494}= -0.48452569 \pm 2.4 \cdot 10^{-7} \) | \(a_{495}= -0.06629874 \pm 1.8 \cdot 10^{-7} \) |
\(a_{496}= +0.01339353 \pm 2.7 \cdot 10^{-7} \) | \(a_{497}= +0.05918649 \pm 1.9 \cdot 10^{-7} \) | \(a_{498}= -0.10071083 \pm 2.6 \cdot 10^{-7} \) |
\(a_{499}= +1.69052865 \pm 2.1 \cdot 10^{-7} \) | \(a_{500}= -0.70222282 \pm 3.1 \cdot 10^{-7} \) | \(a_{501}= +0.64422081 \pm 2.1 \cdot 10^{-7} \) |
\(a_{502}= -0.10562679 \pm 2.4 \cdot 10^{-7} \) | \(a_{503}= -0.64182688 \pm 2.6 \cdot 10^{-7} \) | \(a_{504}= +1.39128374 \pm 2.6 \cdot 10^{-7} \) |
\(a_{505}= -0.84021571 \pm 2.5 \cdot 10^{-7} \) | \(a_{506}= -0.02597474 \pm 1.3 \cdot 10^{-7} \) | \(a_{507}= +0.06637665 \pm 1.9 \cdot 10^{-7} \) |
\(a_{508}= -0.51807566 \pm 2.5 \cdot 10^{-7} \) | \(a_{509}= +0.04656385 \pm 2.1 \cdot 10^{-7} \) | \(a_{510}= -0.16085654 \pm 2.9 \cdot 10^{-7} \) |
\(a_{511}= +1.84454197 \pm 1.9 \cdot 10^{-7} \) | \(a_{512}= +0.14876508 \pm 2.3 \cdot 10^{-7} \) | \(a_{513}= +0.54429810 \pm 1.7 \cdot 10^{-7} \) |
\(a_{514}= +0.67263688 \pm 2.6 \cdot 10^{-7} \) | \(a_{515}= +0.33726316 \pm 2.0 \cdot 10^{-7} \) | \(a_{516}= -0.09552798 \pm 2.5 \cdot 10^{-7} \) |
\(a_{517}= -0.01065149 \pm 1.7 \cdot 10^{-7} \) | \(a_{518}= -1.20648930 \pm 2.1 \cdot 10^{-7} \) | \(a_{519}= -0.33025094 \pm 2.5 \cdot 10^{-7} \) |
\(a_{520}= +0.92777831 \pm 2.5 \cdot 10^{-7} \) | \(a_{521}= -1.26112536 \pm 2.1 \cdot 10^{-7} \) | \(a_{522}= +0.47329107 \pm 2.4 \cdot 10^{-7} \) |
\(a_{523}= -0.95461514 \pm 1.9 \cdot 10^{-7} \) | \(a_{524}= +1.05384608 \pm 2.9 \cdot 10^{-7} \) | \(a_{525}= -0.14833053 \pm 2.1 \cdot 10^{-7} \) |
\(a_{526}= -1.02299934 \pm 2.5 \cdot 10^{-7} \) | \(a_{527}= +0.14322221 \pm 2.1 \cdot 10^{-7} \) | \(a_{528}= -0.00257273 \pm 1.4 \cdot 10^{-7} \) |
\(a_{529}= -0.75504689 \pm 2.1 \cdot 10^{-7} \) | \(a_{530}= -0.42011027 \pm 2.4 \cdot 10^{-7} \) | \(a_{531}= -1.04499486 \pm 2.2 \cdot 10^{-7} \) |
\(a_{532}= +0.82858540 \pm 2.3 \cdot 10^{-7} \) | \(a_{533}= -0.29149161 \pm 1.9 \cdot 10^{-7} \) | \(a_{534}= -0.27004221 \pm 2.4 \cdot 10^{-7} \) |
\(a_{535}= +0.49774461 \pm 2.0 \cdot 10^{-7} \) | \(a_{536}= +0.61521851 \pm 1.8 \cdot 10^{-7} \) | \(a_{537}= -0.46811579 \pm 2.6 \cdot 10^{-7} \) |
\(a_{538}= +0.80378249 \pm 2.4 \cdot 10^{-7} \) | \(a_{539}= -0.16179420 \pm 1.7 \cdot 10^{-7} \) | \(a_{540}= -0.41092063 \pm 2.4 \cdot 10^{-7} \) |
\(a_{541}= -1.76713219 \pm 2.1 \cdot 10^{-7} \) | \(a_{542}= +1.08957277 \pm 2.5 \cdot 10^{-7} \) | \(a_{543}= -0.43945534 \pm 2.3 \cdot 10^{-7} \) |
\(a_{544}= +0.81296878 \pm 2.9 \cdot 10^{-7} \) | \(a_{545}= +1.33198714 \pm 2.1 \cdot 10^{-7} \) | \(a_{546}= +0.41711589 \pm 2.1 \cdot 10^{-7} \) |
\(a_{547}= +1.34999302 \pm 2.0 \cdot 10^{-7} \) | \(a_{548}= -0.28806378 \pm 2.8 \cdot 10^{-7} \) | \(a_{549}= +0.39902956 \pm 1.8 \cdot 10^{-7} \) |
\(a_{550}= +0.01193211 \pm 2.6 \cdot 10^{-7} \) | \(a_{551}= +0.71491789 \pm 2.1 \cdot 10^{-7} \) | \(a_{552}= -0.18750824 \pm 2.9 \cdot 10^{-7} \) |
\(a_{553}= +2.53991217 \pm 2.4 \cdot 10^{-7} \) | \(a_{554}= -0.81524396 \pm 2.1 \cdot 10^{-7} \) | \(a_{555}= +0.41503259 \pm 1.7 \cdot 10^{-7} \) |
\(a_{556}= +0.04199353 \pm 2.2 \cdot 10^{-7} \) | \(a_{557}= +0.19877701 \pm 1.8 \cdot 10^{-7} \) | \(a_{558}= -0.09011028 \pm 4.9 \cdot 10^{-7} \) |
\(a_{559}= +0.40887613 \pm 2.3 \cdot 10^{-7} \) | \(a_{560}= -0.11010451 \pm 1.5 \cdot 10^{-7} \) | \(a_{561}= -0.02751121 \pm 1.9 \cdot 10^{-7} \) |
\(a_{562}= -1.09150757 \pm 2.3 \cdot 10^{-7} \) | \(a_{563}= +0.92666697 \pm 1.9 \cdot 10^{-7} \) | \(a_{564}= -0.03031609 \pm 4.1 \cdot 10^{-7} \) |
\(a_{565}= -0.20800797 \pm 1.9 \cdot 10^{-7} \) | \(a_{566}= -0.28013507 \pm 2.7 \cdot 10^{-7} \) | \(a_{567}= +0.95775817 \pm 2.3 \cdot 10^{-7} \) |
\(a_{568}= -0.03436991 \pm 1.6 \cdot 10^{-7} \) | \(a_{569}= +0.54408977 \pm 1.9 \cdot 10^{-7} \) | \(a_{570}= +0.15287292 \pm 3.0 \cdot 10^{-7} \) |
\(a_{571}= -1.14345579 \pm 2.1 \cdot 10^{-7} \) | \(a_{572}= +0.06256175 \pm 2.1 \cdot 10^{-7} \) | \(a_{573}= -0.29453688 \pm 2.3 \cdot 10^{-7} \) |
\(a_{574}= -0.26735056 \pm 2.1 \cdot 10^{-7} \) | \(a_{575}= -0.11252501 \pm 1.6 \cdot 10^{-7} \) | \(a_{576}= -0.44816855 \pm 3.0 \cdot 10^{-7} \) |
\(a_{577}= -1.03001373 \pm 1.9 \cdot 10^{-7} \) | \(a_{578}= -0.21513271 \pm 3.3 \cdot 10^{-7} \) | \(a_{579}= +0.68434121 \pm 1.8 \cdot 10^{-7} \) |
\(a_{580}= -0.53973091 \pm 2.6 \cdot 10^{-7} \) | \(a_{581}= -0.73715331 \pm 1.7 \cdot 10^{-7} \) | \(a_{582}= -0.13535761 \pm 3.2 \cdot 10^{-7} \) |
\(a_{583}= -0.07185124 \pm 1.5 \cdot 10^{-7} \) | \(a_{584}= -1.07113557 \pm 2.6 \cdot 10^{-7} \) | \(a_{585}= +0.80766138 \pm 2.1 \cdot 10^{-7} \) |
\(a_{586}= +0.04967876 \pm 2.0 \cdot 10^{-7} \) | \(a_{587}= +1.21307956 \pm 2.0 \cdot 10^{-7} \) | \(a_{588}= -0.46049600 \pm 3.0 \cdot 10^{-7} \) |
\(a_{589}= -0.13611381 \pm 2.3 \cdot 10^{-7} \) | \(a_{590}= -0.63914249 \pm 2.5 \cdot 10^{-7} \) | \(a_{591}= -0.05274970 \pm 1.8 \cdot 10^{-7} \) |
\(a_{592}= -0.09065364 \pm 2.4 \cdot 10^{-7} \) | \(a_{593}= +0.61236302 \pm 2.3 \cdot 10^{-7} \) | \(a_{594}= +0.03769324 \pm 1.9 \cdot 10^{-7} \) |
\(a_{595}= -1.17739006 \pm 1.4 \cdot 10^{-7} \) | \(a_{596}= +0.07341317 \pm 2.4 \cdot 10^{-7} \) | \(a_{597}= +0.23801856 \pm 2.1 \cdot 10^{-7} \) |
\(a_{598}= +0.31642824 \pm 2.0 \cdot 10^{-7} \) | \(a_{599}= -1.16869670 \pm 2.3 \cdot 10^{-7} \) | \(a_{600}= +0.08613635 \pm 2.0 \cdot 10^{-7} \) |
\(a_{601}= +0.47096655 \pm 2.3 \cdot 10^{-7} \) | \(a_{602}= +0.37501341 \pm 1.9 \cdot 10^{-7} \) | \(a_{603}= +0.53556785 \pm 1.7 \cdot 10^{-7} \) |
\(a_{604}= -0.39315679 \pm 2.0 \cdot 10^{-7} \) | \(a_{605}= +0.87206615 \pm 2.5 \cdot 10^{-7} \) | \(a_{606}= +0.21936090 \pm 2.9 \cdot 10^{-7} \) |
\(a_{607}= -0.33365838 \pm 2.0 \cdot 10^{-7} \) | \(a_{608}= -0.77261956 \pm 2.2 \cdot 10^{-7} \) | \(a_{609}= -0.61545470 \pm 2.3 \cdot 10^{-7} \) |
\(a_{610}= +0.24405550 \pm 2.7 \cdot 10^{-7} \) | \(a_{611}= +0.12975804 \pm 1.6 \cdot 10^{-7} \) | \(a_{612}= +0.44074404 \pm 2.5 \cdot 10^{-7} \) |
\(a_{613}= +1.49412441 \pm 2.2 \cdot 10^{-7} \) | \(a_{614}= +0.11674792 \pm 3.1 \cdot 10^{-7} \) | \(a_{615}= +0.09196865 \pm 2.2 \cdot 10^{-7} \) |
\(a_{616}= +0.14553592 \pm 1.6 \cdot 10^{-7} \) | \(a_{617}= +1.19802154 \pm 2.1 \cdot 10^{-7} \) | \(a_{618}= -0.08805162 \pm 2.6 \cdot 10^{-7} \) |
\(a_{619}= +0.43299101 \pm 2.1 \cdot 10^{-7} \) | \(a_{620}= +0.10275982 \pm 5.1 \cdot 10^{-7} \) | \(a_{621}= -0.35546369 \pm 1.3 \cdot 10^{-7} \) |
\(a_{622}= -0.33802504 \pm 1.8 \cdot 10^{-7} \) | \(a_{623}= -1.97657492 \pm 1.7 \cdot 10^{-7} \) | \(a_{624}= +0.03134141 \pm 2.1 \cdot 10^{-7} \) |
\(a_{625}= -0.72095237 \pm 2.0 \cdot 10^{-7} \) | \(a_{626}= +0.41897617 \pm 2.8 \cdot 10^{-7} \) | \(a_{627}= +0.02614578 \pm 2.4 \cdot 10^{-7} \) |
\(a_{628}= -0.11684299 \pm 2.5 \cdot 10^{-7} \) | \(a_{629}= -0.96939437 \pm 1.9 \cdot 10^{-7} \) | \(a_{630}= +0.74077164 \pm 2.9 \cdot 10^{-7} \) |
\(a_{631}= -1.10847903 \pm 2.2 \cdot 10^{-7} \) | \(a_{632}= -1.47494083 \pm 3.4 \cdot 10^{-7} \) | \(a_{633}= +0.64424803 \pm 1.6 \cdot 10^{-7} \) |
\(a_{634}= +0.22966169 \pm 2.5 \cdot 10^{-7} \) | \(a_{635}= -0.69962949 \pm 2.2 \cdot 10^{-7} \) | \(a_{636}= -0.20450181 \pm 3.0 \cdot 10^{-7} \) |
\(a_{637}= +1.97100181 \pm 2.0 \cdot 10^{-7} \) | \(a_{638}= +0.04950885 \pm 2.4 \cdot 10^{-7} \) | \(a_{639}= -0.02992014 \pm 2.2 \cdot 10^{-7} \) |
\(a_{640}= +0.62202242 \pm 2.5 \cdot 10^{-7} \) | \(a_{641}= -1.95005456 \pm 2.3 \cdot 10^{-7} \) | \(a_{642}= -0.12994961 \pm 1.7 \cdot 10^{-7} \) |
\(a_{643}= -0.95620028 \pm 2.1 \cdot 10^{-7} \) | \(a_{644}= -0.54112264 \pm 1.8 \cdot 10^{-7} \) | \(a_{645}= -0.12900470 \pm 1.6 \cdot 10^{-7} \) |
\(a_{646}= -0.35706630 \pm 2.1 \cdot 10^{-7} \) | \(a_{647}= -1.75744004 \pm 2.4 \cdot 10^{-7} \) | \(a_{648}= -0.55617539 \pm 3.0 \cdot 10^{-7} \) |
\(a_{649}= -0.10931220 \pm 2.1 \cdot 10^{-7} \) | \(a_{650}= -0.14535880 \pm 2.1 \cdot 10^{-7} \) | \(a_{651}= +0.11717693 \pm 4.6 \cdot 10^{-7} \) |
\(a_{652}= +0.39524253 \pm 2.6 \cdot 10^{-7} \) | \(a_{653}= +1.55445977 \pm 2.1 \cdot 10^{-7} \) | \(a_{654}= -0.34775106 \pm 2.6 \cdot 10^{-7} \) |
\(a_{655}= +1.42315469 \pm 2.3 \cdot 10^{-7} \) | \(a_{656}= -0.02008829 \pm 3.6 \cdot 10^{-7} \) | \(a_{657}= -0.93245857 \pm 1.9 \cdot 10^{-7} \) |
\(a_{658}= +0.11901161 \pm 1.9 \cdot 10^{-7} \) | \(a_{659}= -0.84583339 \pm 2.2 \cdot 10^{-7} \) | \(a_{660}= -0.01973889 \pm 2.1 \cdot 10^{-7} \) |
\(a_{661}= +1.19455383 \pm 2.2 \cdot 10^{-7} \) | \(a_{662}= +0.39677365 \pm 2.1 \cdot 10^{-7} \) | \(a_{663}= +0.33514578 \pm 2.0 \cdot 10^{-7} \) |
\(a_{664}= +0.42806894 \pm 2.7 \cdot 10^{-7} \) | \(a_{665}= +1.11895391 \pm 2.0 \cdot 10^{-7} \) | \(a_{666}= +0.60990821 \pm 2.4 \cdot 10^{-7} \) |
\(a_{667}= -0.46689002 \pm 2.0 \cdot 10^{-7} \) | \(a_{668}= -1.07960776 \pm 2.6 \cdot 10^{-7} \) | \(a_{669}= +0.30938684 \pm 2.7 \cdot 10^{-7} \) |
\(a_{670}= +0.32756541 \pm 2.0 \cdot 10^{-7} \) | \(a_{671}= +0.04174068 \pm 1.8 \cdot 10^{-7} \) | \(a_{672}= +0.66512861 \pm 2.2 \cdot 10^{-7} \) |
\(a_{673}= +0.41125176 \pm 1.8 \cdot 10^{-7} \) | \(a_{674}= +0.35879492 \pm 2.6 \cdot 10^{-7} \) | \(a_{675}= +0.16329066 \pm 1.7 \cdot 10^{-7} \) |
\(a_{676}= -0.11123631 \pm 2.3 \cdot 10^{-7} \) | \(a_{677}= -1.25726702 \pm 2.0 \cdot 10^{-7} \) | \(a_{678}= +0.05430607 \pm 2.6 \cdot 10^{-7} \) |
\(a_{679}= -0.99075050 \pm 2.0 \cdot 10^{-7} \) | \(a_{680}= +0.68371682 \pm 3.1 \cdot 10^{-7} \) | \(a_{681}= +0.44577696 \pm 2.1 \cdot 10^{-7} \) |
\(a_{682}= -0.00942603 \pm 4.8 \cdot 10^{-7} \) | \(a_{683}= -0.53045910 \pm 2.0 \cdot 10^{-7} \) | \(a_{684}= -0.41886906 \pm 2.7 \cdot 10^{-7} \) |
\(a_{685}= -0.38901251 \pm 1.9 \cdot 10^{-7} \) | \(a_{686}= +0.81530263 \pm 1.9 \cdot 10^{-7} \) | \(a_{687}= +0.27065147 \pm 2.4 \cdot 10^{-7} \) |
\(a_{688}= +0.02817790 \pm 2.2 \cdot 10^{-7} \) | \(a_{689}= +0.87530282 \pm 2.1 \cdot 10^{-7} \) | \(a_{690}= -0.09983642 \pm 1.6 \cdot 10^{-7} \) |
\(a_{691}= +1.56562946 \pm 2.0 \cdot 10^{-7} \) | \(a_{692}= +0.55344608 \pm 3.4 \cdot 10^{-7} \) | \(a_{693}= +0.12669378 \pm 1.9 \cdot 10^{-7} \) |
\(a_{694}= -0.10947478 \pm 2.7 \cdot 10^{-7} \) | \(a_{695}= +0.05670969 \pm 1.4 \cdot 10^{-7} \) | \(a_{696}= +0.35739790 \pm 2.8 \cdot 10^{-7} \) |
\(a_{697}= -0.21481179 \pm 1.7 \cdot 10^{-7} \) | \(a_{698}= +0.30743253 \pm 2.3 \cdot 10^{-7} \) | \(a_{699}= -0.13930792 \pm 2.0 \cdot 10^{-7} \) |
\(a_{700}= +0.24857750 \pm 2.2 \cdot 10^{-7} \) | \(a_{701}= +1.40210960 \pm 2.3 \cdot 10^{-7} \) | \(a_{702}= -0.45918483 \pm 1.9 \cdot 10^{-7} \) |
\(a_{703}= +0.92128145 \pm 2.0 \cdot 10^{-7} \) | \(a_{704}= -0.04688089 \pm 2.4 \cdot 10^{-7} \) | \(a_{705}= -0.04094002 \pm 2.3 \cdot 10^{-7} \) |
\(a_{706}= -0.95315862 \pm 3.0 \cdot 10^{-7} \) | \(a_{707}= +1.60561291 \pm 1.9 \cdot 10^{-7} \) | \(a_{708}= -0.31112260 \pm 3.5 \cdot 10^{-7} \) |
\(a_{709}= +0.50764212 \pm 1.7 \cdot 10^{-7} \) | \(a_{710}= -0.01829983 \pm 1.4 \cdot 10^{-7} \) | \(a_{711}= -1.28398427 \pm 2.4 \cdot 10^{-7} \) |
\(a_{712}= +1.14780783 \pm 2.7 \cdot 10^{-7} \) | \(a_{713}= +0.08889158 \pm 2.1 \cdot 10^{-7} \) | \(a_{714}= +0.30738933 \pm 1.8 \cdot 10^{-7} \) |
\(a_{715}= +0.08448582 \pm 2.4 \cdot 10^{-7} \) | \(a_{716}= +0.78448481 \pm 3.2 \cdot 10^{-7} \) | \(a_{717}= -0.49042071 \pm 2.4 \cdot 10^{-7} \) |
\(a_{718}= +0.04231600 \pm 2.5 \cdot 10^{-7} \) | \(a_{719}= +0.06279378 \pm 1.8 \cdot 10^{-7} \) | \(a_{720}= +0.05566037 \pm 2.5 \cdot 10^{-7} \) |
\(a_{721}= -0.64449412 \pm 1.9 \cdot 10^{-7} \) | \(a_{722}= -0.25150200 \pm 2.8 \cdot 10^{-7} \) | \(a_{723}= -0.04635049 \pm 1.8 \cdot 10^{-7} \) |
\(a_{724}= +0.73645463 \pm 2.8 \cdot 10^{-7} \) | \(a_{725}= +0.21447698 \pm 1.9 \cdot 10^{-7} \) | \(a_{726}= -0.22767632 \pm 2.7 \cdot 10^{-7} \) |
\(a_{727}= +0.59408879 \pm 1.5 \cdot 10^{-7} \) | \(a_{728}= -1.77294094 \pm 2.2 \cdot 10^{-7} \) | \(a_{729}= -0.20521195 \pm 2.0 \cdot 10^{-7} \) |
\(a_{730}= -0.57031275 \pm 2.8 \cdot 10^{-7} \) | \(a_{731}= +0.30131712 \pm 1.6 \cdot 10^{-7} \) | \(a_{732}= +0.11880165 \pm 4.0 \cdot 10^{-7} \) |
\(a_{733}= -1.92670827 \pm 2.3 \cdot 10^{-7} \) | \(a_{734}= -0.86423384 \pm 2.8 \cdot 10^{-7} \) | \(a_{735}= -0.62187168 \pm 1.7 \cdot 10^{-7} \) |
\(a_{736}= +0.50457314 \pm 2.6 \cdot 10^{-7} \) | \(a_{737}= +0.05602334 \pm 2.0 \cdot 10^{-7} \) | \(a_{738}= +0.13515188 \pm 3.3 \cdot 10^{-7} \) |
\(a_{739}= -1.26999816 \pm 2.1 \cdot 10^{-7} \) | \(a_{740}= -0.69552613 \pm 2.3 \cdot 10^{-7} \) | \(a_{741}= -0.31851185 \pm 2.0 \cdot 10^{-7} \) |
\(a_{742}= +0.80281108 \pm 2.3 \cdot 10^{-7} \) | \(a_{743}= +0.55869298 \pm 2.1 \cdot 10^{-7} \) | \(a_{744}= -0.06804528 \pm 5.4 \cdot 10^{-7} \) |
\(a_{745}= +0.09913999 \pm 2.0 \cdot 10^{-7} \) | \(a_{746}= -0.03102076 \pm 2.4 \cdot 10^{-7} \) | \(a_{747}= +0.37264802 \pm 2.0 \cdot 10^{-7} \) |
\(a_{748}= +0.04610425 \pm 2.0 \cdot 10^{-7} \) | \(a_{749}= -0.95116666 \pm 1.6 \cdot 10^{-7} \) | \(a_{750}= +0.24758155 \pm 3.5 \cdot 10^{-7} \) |
\(a_{751}= -0.36418616 \pm 1.9 \cdot 10^{-7} \) | \(a_{752}= +0.00894234 \pm 3.6 \cdot 10^{-7} \) | \(a_{753}= -0.06943571 \pm 2.3 \cdot 10^{-7} \) |
\(a_{754}= -0.60312437 \pm 1.9 \cdot 10^{-7} \) | \(a_{755}= -0.53093420 \pm 2.2 \cdot 10^{-7} \) | \(a_{756}= +0.78525009 \pm 2.9 \cdot 10^{-7} \) |
\(a_{757}= +0.78612118 \pm 2.1 \cdot 10^{-7} \) | \(a_{758}= -0.23718317 \pm 2.0 \cdot 10^{-7} \) | \(a_{759}= -0.01707497 \pm 2.3 \cdot 10^{-7} \) |
\(a_{760}= -0.64978263 \pm 2.4 \cdot 10^{-7} \) | \(a_{761}= -1.45312813 \pm 2.5 \cdot 10^{-7} \) | \(a_{762}= +0.18265709 \pm 2.7 \cdot 10^{-7} \) |
\(a_{763}= -2.54536511 \pm 2.3 \cdot 10^{-7} \) | \(a_{764}= +0.49359521 \pm 3.1 \cdot 10^{-7} \) | \(a_{765}= +0.59519787 \pm 1.7 \cdot 10^{-7} \) |
\(a_{766}= +0.84530179 \pm 2.3 \cdot 10^{-7} \) | \(a_{767}= +1.33165804 \pm 2.2 \cdot 10^{-7} \) | \(a_{768}= -0.36739109 \pm 3.2 \cdot 10^{-7} \) |
\(a_{769}= +0.66483619 \pm 1.8 \cdot 10^{-7} \) | \(a_{770}= +0.07748878 \pm 1.8 \cdot 10^{-7} \) | \(a_{771}= +0.44217019 \pm 2.4 \cdot 10^{-7} \) |
\(a_{772}= -1.14684293 \pm 2.1 \cdot 10^{-7} \) | \(a_{773}= -0.70203727 \pm 1.7 \cdot 10^{-7} \) | \(a_{774}= -0.18957794 \pm 2.5 \cdot 10^{-7} \) |
\(a_{775}= -0.04083445 \pm 2.1 \cdot 10^{-7} \) | \(a_{776}= +0.57533421 \pm 3.2 \cdot 10^{-7} \) | \(a_{777}= -0.79310786 \pm 1.8 \cdot 10^{-7} \) |
\(a_{778}= +0.96781541 \pm 2.0 \cdot 10^{-7} \) | \(a_{779}= +0.20415027 \pm 2.0 \cdot 10^{-7} \) | \(a_{780}= +0.24046214 \pm 1.9 \cdot 10^{-7} \) |
\(a_{781}= -0.00312981 \pm 1.8 \cdot 10^{-7} \) | \(a_{782}= +0.23318858 \pm 1.6 \cdot 10^{-7} \) | \(a_{783}= +0.67752743 \pm 1.7 \cdot 10^{-7} \) |
\(a_{784}= +0.13583254 \pm 2.4 \cdot 10^{-7} \) | \(a_{785}= -0.15778931 \pm 1.7 \cdot 10^{-7} \) | \(a_{786}= -0.37155280 \pm 3.0 \cdot 10^{-7} \) |
\(a_{787}= +0.12815687 \pm 2.1 \cdot 10^{-7} \) | \(a_{788}= +0.08839979 \pm 2.0 \cdot 10^{-7} \) | \(a_{789}= -0.67248738 \pm 2.3 \cdot 10^{-7} \) |
\(a_{790}= -0.78531382 \pm 2.3 \cdot 10^{-7} \) | \(a_{791}= +0.39749350 \pm 1.6 \cdot 10^{-7} \) | \(a_{792}= -0.07357177 \pm 1.7 \cdot 10^{-7} \) |
\(a_{793}= -0.50849142 \pm 2.0 \cdot 10^{-7} \) | \(a_{794}= -0.36087162 \pm 2.6 \cdot 10^{-7} \) | \(a_{795}= -0.27616719 \pm 1.8 \cdot 10^{-7} \) |
\(a_{796}= -0.39887983 \pm 2.4 \cdot 10^{-7} \) | \(a_{797}= +0.32921764 \pm 2.2 \cdot 10^{-7} \) | \(a_{798}= -0.29213300 \pm 2.3 \cdot 10^{-7} \) |
\(a_{799}= +0.09562387 \pm 1.8 \cdot 10^{-7} \) | \(a_{800}= -0.23178762 \pm 2.0 \cdot 10^{-7} \) | \(a_{801}= +0.99920428 \pm 1.7 \cdot 10^{-7} \) |
\(a_{802}= +0.81986909 \pm 2.1 \cdot 10^{-7} \) | \(a_{803}= -0.09754029 \pm 1.6 \cdot 10^{-7} \) | \(a_{804}= +0.15945271 \pm 2.4 \cdot 10^{-7} \) |
\(a_{805}= -0.73075303 \pm 1.5 \cdot 10^{-7} \) | \(a_{806}= +0.11482935 \pm 4.9 \cdot 10^{-7} \) | \(a_{807}= +0.52838116 \pm 1.8 \cdot 10^{-7} \) |
\(a_{808}= -0.93238816 \pm 2.9 \cdot 10^{-7} \) | \(a_{809}= -0.28495688 \pm 2.1 \cdot 10^{-7} \) | \(a_{810}= -0.29612864 \pm 2.9 \cdot 10^{-7} \) |
\(a_{811}= -1.27643784 \pm 2.3 \cdot 10^{-7} \) | \(a_{812}= +1.03140051 \pm 2.2 \cdot 10^{-7} \) | \(a_{813}= +0.71625064 \pm 2.9 \cdot 10^{-7} \) |
\(a_{814}= +0.06379975 \pm 2.2 \cdot 10^{-7} \) | \(a_{815}= +0.53375086 \pm 2.0 \cdot 10^{-7} \) | \(a_{816}= +0.02309673 \pm 4.0 \cdot 10^{-7} \) |
\(a_{817}= -0.28636217 \pm 1.6 \cdot 10^{-7} \) | \(a_{818}= +0.39133879 \pm 2.1 \cdot 10^{-7} \) | \(a_{819}= -1.54340311 \pm 2.4 \cdot 10^{-7} \) |
\(a_{820}= -0.15412428 \pm 2.8 \cdot 10^{-7} \) | \(a_{821}= +1.29763592 \pm 2.3 \cdot 10^{-7} \) | \(a_{822}= +0.10156218 \pm 2.9 \cdot 10^{-7} \) |
\(a_{823}= +0.33159891 \pm 1.9 \cdot 10^{-7} \) | \(a_{824}= +0.37426125 \pm 2.3 \cdot 10^{-7} \) | \(a_{825}= +0.00784379 \pm 2.2 \cdot 10^{-7} \) |
\(a_{826}= +1.22137140 \pm 2.4 \cdot 10^{-7} \) | \(a_{827}= +1.66031889 \pm 2.2 \cdot 10^{-7} \) | \(a_{828}= +0.27354999 \pm 2.2 \cdot 10^{-7} \) |
\(a_{829}= +1.54117711 \pm 2.2 \cdot 10^{-7} \) | \(a_{830}= +0.22791996 \pm 2.7 \cdot 10^{-7} \) | \(a_{831}= -0.53591557 \pm 1.9 \cdot 10^{-7} \) |
\(a_{832}= +0.57111022 \pm 2.3 \cdot 10^{-7} \) | \(a_{833}= +1.45250981 \pm 1.9 \cdot 10^{-7} \) | \(a_{834}= -0.01480559 \pm 2.5 \cdot 10^{-7} \) |
\(a_{835}= -1.45794426 \pm 2.0 \cdot 10^{-7} \) | \(a_{836}= -0.04381600 \pm 2.7 \cdot 10^{-7} \) | \(a_{837}= -0.12899501 \pm 2.0 \cdot 10^{-7} \) |
\(a_{838}= +0.61032736 \pm 2.5 \cdot 10^{-7} \) | \(a_{839}= -0.12831279 \pm 1.8 \cdot 10^{-7} \) | \(a_{840}= +0.55938141 \pm 2.4 \cdot 10^{-7} \) |
\(a_{841}= -0.11008971 \pm 1.4 \cdot 10^{-7} \) | \(a_{842}= +0.37767257 \pm 2.9 \cdot 10^{-7} \) | \(a_{843}= -0.71752252 \pm 2.0 \cdot 10^{-7} \) |
\(a_{844}= -1.07965337 \pm 2.0 \cdot 10^{-7} \) | \(a_{845}= -0.15021783 \pm 2.1 \cdot 10^{-7} \) | \(a_{846}= -0.06016312 \pm 3.0 \cdot 10^{-7} \) |
\(a_{847}= -1.66647761 \pm 2.1 \cdot 10^{-7} \) | \(a_{848}= +0.06032192 \pm 1.9 \cdot 10^{-7} \) | \(a_{849}= -0.18415193 \pm 2.0 \cdot 10^{-7} \) |
\(a_{850}= -0.10712070 \pm 1.7 \cdot 10^{-7} \) | \(a_{851}= -0.60165946 \pm 2.0 \cdot 10^{-7} \) | \(a_{852}= -0.00890802 \pm 2.0 \cdot 10^{-7} \) |
\(a_{853}= +1.65924954 \pm 2.0 \cdot 10^{-7} \) | \(a_{854}= -0.46637865 \pm 1.6 \cdot 10^{-7} \) | \(a_{855}= -0.56565705 \pm 2.2 \cdot 10^{-7} \) |
\(a_{856}= +0.55234766 \pm 2.1 \cdot 10^{-7} \) | \(a_{857}= +0.40313166 \pm 1.9 \cdot 10^{-7} \) | \(a_{858}= -0.02205729 \pm 2.3 \cdot 10^{-7} \) |
\(a_{859}= -0.14903403 \pm 2.1 \cdot 10^{-7} \) | \(a_{860}= +0.21619058 \pm 1.9 \cdot 10^{-7} \) | \(a_{861}= -0.17574779 \pm 2.2 \cdot 10^{-7} \) |
\(a_{862}= +0.82239256 \pm 2.5 \cdot 10^{-7} \) | \(a_{863}= +0.20378597 \pm 2.1 \cdot 10^{-7} \) | \(a_{864}= -0.73221129 \pm 2.0 \cdot 10^{-7} \) |
\(a_{865}= +0.74739508 \pm 2.7 \cdot 10^{-7} \) | \(a_{866}= -1.09018204 \pm 2.7 \cdot 10^{-7} \) | \(a_{867}= -0.14142143 \pm 2.5 \cdot 10^{-7} \) |
\(a_{868}= -0.19636920 \pm 5.1 \cdot 10^{-7} \) | \(a_{869}= -0.13431181 \pm 2.2 \cdot 10^{-7} \) | \(a_{870}= +0.19029205 \pm 3.0 \cdot 10^{-7} \) |
\(a_{871}= -0.68248492 \pm 1.7 \cdot 10^{-7} \) | \(a_{872}= +1.47810739 \pm 2.6 \cdot 10^{-7} \) | \(a_{873}= +0.50084726 \pm 2.3 \cdot 10^{-7} \) |
\(a_{874}= -0.22161498 \pm 2.1 \cdot 10^{-7} \) | \(a_{875}= +1.81217408 \pm 2.2 \cdot 10^{-7} \) | \(a_{876}= -0.27761757 \pm 2.9 \cdot 10^{-7} \) |
\(a_{877}= -1.86378380 \pm 2.2 \cdot 10^{-7} \) | \(a_{878}= +0.51566734 \pm 2.6 \cdot 10^{-7} \) | \(a_{879}= +0.03265724 \pm 1.9 \cdot 10^{-7} \) |
\(a_{880}= +0.00582238 \pm 1.5 \cdot 10^{-7} \) | \(a_{881}= +0.44155190 \pm 2.1 \cdot 10^{-7} \) | \(a_{882}= -0.91386713 \pm 2.4 \cdot 10^{-7} \) |
\(a_{883}= +0.78634812 \pm 2.1 \cdot 10^{-7} \) | \(a_{884}= -0.56164902 \pm 2.3 \cdot 10^{-7} \) | \(a_{885}= -0.42015204 \pm 2.2 \cdot 10^{-7} \) |
\(a_{886}= -0.42638738 \pm 2.9 \cdot 10^{-7} \) | \(a_{887}= -0.87579588 \pm 1.9 \cdot 10^{-7} \) | \(a_{888}= +0.46056206 \pm 2.9 \cdot 10^{-7} \) |
\(a_{889}= +1.33695922 \pm 2.0 \cdot 10^{-7} \) | \(a_{890}= +0.61113594 \pm 2.1 \cdot 10^{-7} \) | \(a_{891}= -0.05064672 \pm 1.7 \cdot 10^{-7} \) |
\(a_{892}= -0.51848128 \pm 2.9 \cdot 10^{-7} \) | \(a_{893}= -0.09087788 \pm 1.4 \cdot 10^{-7} \) | \(a_{894}= -0.02588316 \pm 2.5 \cdot 10^{-7} \) |
\(a_{895}= +1.05939876 \pm 2.4 \cdot 10^{-7} \) | \(a_{896}= -1.18865575 \pm 2.0 \cdot 10^{-7} \) | \(a_{897}= +0.20800991 \pm 2.3 \cdot 10^{-7} \) |
\(a_{898}= -0.21189461 \pm 2.5 \cdot 10^{-7} \) | \(a_{899}= -0.16943076 \pm 2.1 \cdot 10^{-7} \) | \(a_{900}= -0.12566167 \pm 2.3 \cdot 10^{-7} \) |
\(a_{901}= +0.64504554 \pm 1.6 \cdot 10^{-7} \) | \(a_{902}= +0.01413763 \pm 1.7 \cdot 10^{-7} \) | \(a_{903}= +0.24652194 \pm 1.9 \cdot 10^{-7} \) |
\(a_{904}= -0.23082664 \pm 2.5 \cdot 10^{-7} \) | \(a_{905}= +0.99453694 \pm 1.7 \cdot 10^{-7} \) | \(a_{906}= +0.13861465 \pm 2.4 \cdot 10^{-7} \) |
\(a_{907}= +0.29042735 \pm 1.7 \cdot 10^{-7} \) | \(a_{908}= -0.74704862 \pm 2.9 \cdot 10^{-7} \) | \(a_{909}= -0.81167441 \pm 2.1 \cdot 10^{-7} \) |
\(a_{910}= -0.94398025 \pm 1.9 \cdot 10^{-7} \) | \(a_{911}= +1.37120154 \pm 2.0 \cdot 10^{-7} \) | \(a_{912}= -0.02195040 \pm 1.7 \cdot 10^{-7} \) |
\(a_{913}= +0.03898103 \pm 1.4 \cdot 10^{-7} \) | \(a_{914}= -0.66480269 \pm 2.5 \cdot 10^{-7} \) | \(a_{915}= +0.16043436 \pm 1.9 \cdot 10^{-7} \) |
\(a_{916}= -0.45356720 \pm 3.2 \cdot 10^{-7} \) | \(a_{917}= -2.71958203 \pm 2.5 \cdot 10^{-7} \) | \(a_{918}= -0.33839161 \pm 2.4 \cdot 10^{-7} \) |
\(a_{919}= -1.12757621 \pm 2.2 \cdot 10^{-7} \) | \(a_{920}= +0.42435227 \pm 2.2 \cdot 10^{-7} \) | \(a_{921}= +0.07674639 \pm 2.3 \cdot 10^{-7} \) |
\(a_{922}= -0.21689083 \pm 2.0 \cdot 10^{-7} \) | \(a_{923}= +0.03812783 \pm 2.0 \cdot 10^{-7} \) | \(a_{924}= +0.03772009 \pm 2.5 \cdot 10^{-7} \) |
\(a_{925}= +0.27638652 \pm 1.6 \cdot 10^{-7} \) | \(a_{926}= +0.21770525 \pm 2.8 \cdot 10^{-7} \) | \(a_{927}= +0.32580667 \pm 2.2 \cdot 10^{-7} \) |
\(a_{928}= -0.96173576 \pm 2.1 \cdot 10^{-7} \) | \(a_{929}= +1.01418390 \pm 2.0 \cdot 10^{-7} \) | \(a_{930}= -0.03622986 \pm 7.2 \cdot 10^{-7} \) |
\(a_{931}= -1.38041893 \pm 1.6 \cdot 10^{-7} \) | \(a_{932}= +0.23345708 \pm 3.0 \cdot 10^{-7} \) | \(a_{933}= -0.22220696 \pm 1.5 \cdot 10^{-7} \) |
\(a_{934}= +0.18069481 \pm 2.6 \cdot 10^{-7} \) | \(a_{935}= +0.06226097 \pm 1.4 \cdot 10^{-7} \) | \(a_{936}= +0.89626259 \pm 2.3 \cdot 10^{-7} \) |
\(a_{937}= +0.68331639 \pm 2.1 \cdot 10^{-7} \) | \(a_{938}= -0.62596217 \pm 1.9 \cdot 10^{-7} \) | \(a_{939}= +0.27542167 \pm 2.4 \cdot 10^{-7} \) |
\(a_{940}= +0.06860872 \pm 2.8 \cdot 10^{-7} \) | \(a_{941}= -1.14582569 \pm 2.0 \cdot 10^{-7} \) | \(a_{942}= +0.04119514 \pm 2.6 \cdot 10^{-7} \) |
\(a_{943}= -0.13332401 \pm 1.8 \cdot 10^{-7} \) | \(a_{944}= +0.09177186 \pm 2.5 \cdot 10^{-7} \) | \(a_{945}= +1.06043223 \pm 2.0 \cdot 10^{-7} \) |
\(a_{946}= -0.01983089 \pm 2.0 \cdot 10^{-7} \) | \(a_{947}= +0.36397686 \pm 2.2 \cdot 10^{-7} \) | \(a_{948}= -0.38227606 \pm 3.9 \cdot 10^{-7} \) |
\(a_{949}= +1.18825077 \pm 2.1 \cdot 10^{-7} \) | \(a_{950}= +0.10180409 \pm 3.3 \cdot 10^{-7} \) | \(a_{951}= +0.15097232 \pm 2.1 \cdot 10^{-7} \) |
\(a_{952}= -1.30655086 \pm 1.6 \cdot 10^{-7} \) | \(a_{953}= -1.89886469 \pm 2.4 \cdot 10^{-7} \) | \(a_{954}= -0.40583954 \pm 3.2 \cdot 10^{-7} \) |
\(a_{955}= +0.66657015 \pm 2.4 \cdot 10^{-7} \) | \(a_{956}= +0.82186417 \pm 2.7 \cdot 10^{-7} \) | \(a_{957}= +0.03254555 \pm 2.6 \cdot 10^{-7} \) |
\(a_{958}= +0.04295782 \pm 2.9 \cdot 10^{-7} \) | \(a_{959}= +0.74338471 \pm 2.2 \cdot 10^{-7} \) | \(a_{960}= -0.18019125 \pm 3.2 \cdot 10^{-7} \) |
\(a_{961}= +0.03225806 \pm 1.7 \cdot 10^{-6} \) | \(a_{962}= -0.77721833 \pm 2.2 \cdot 10^{-7} \) | \(a_{963}= +0.48083672 \pm 1.7 \cdot 10^{-7} \) |
\(a_{964}= +0.07767578 \pm 1.7 \cdot 10^{-7} \) | \(a_{965}= -1.54874124 \pm 1.8 \cdot 10^{-7} \) | \(a_{966}= +0.19078273 \pm 1.5 \cdot 10^{-7} \) |
\(a_{967}= +0.56775162 \pm 1.9 \cdot 10^{-7} \) | \(a_{968}= +0.96773263 \pm 2.8 \cdot 10^{-7} \) | \(a_{969}= -0.23472408 \pm 1.7 \cdot 10^{-7} \) |
\(a_{970}= +0.30632951 \pm 2.3 \cdot 10^{-7} \) | \(a_{971}= +0.51980668 \pm 2.1 \cdot 10^{-7} \) | \(a_{972}= -0.61163564 \pm 3.1 \cdot 10^{-7} \) |
\(a_{973}= -0.10836957 \pm 1.7 \cdot 10^{-7} \) | \(a_{974}= +0.32997558 \pm 3.0 \cdot 10^{-7} \) | \(a_{975}= -0.09555428 \pm 1.5 \cdot 10^{-7} \) |
\(a_{976}= -0.03504293 \pm 3.5 \cdot 10^{-7} \) | \(a_{977}= -1.57428295 \pm 2.4 \cdot 10^{-7} \) | \(a_{978}= -0.13935001 \pm 2.7 \cdot 10^{-7} \) |
\(a_{979}= +0.10452226 \pm 2.0 \cdot 10^{-7} \) | \(a_{980}= +1.04215431 \pm 2.3 \cdot 10^{-7} \) | \(a_{981}= +1.28674085 \pm 2.2 \cdot 10^{-7} \) |
\(a_{982}= -0.41166192 \pm 2.0 \cdot 10^{-7} \) | \(a_{983}= -0.49207599 \pm 1.6 \cdot 10^{-7} \) | \(a_{984}= +0.10205770 \pm 5.0 \cdot 10^{-7} \) |
\(a_{985}= +0.11937851 \pm 1.6 \cdot 10^{-7} \) | \(a_{986}= -0.44446639 \pm 2.6 \cdot 10^{-7} \) | \(a_{987}= +0.07823446 \pm 1.9 \cdot 10^{-7} \) |
\(a_{988}= +0.53377329 \pm 2.1 \cdot 10^{-7} \) | \(a_{989}= +0.18701398 \pm 1.6 \cdot 10^{-7} \) | \(a_{990}= -0.03917237 \pm 1.7 \cdot 10^{-7} \) |
\(a_{991}= +0.05229813 \pm 2.0 \cdot 10^{-7} \) | \(a_{992}= +0.18310568 \pm 2.9 \cdot 10^{-7} \) | \(a_{993}= +0.26082643 \pm 2.3 \cdot 10^{-7} \) |
\(a_{994}= +0.03497012 \pm 1.9 \cdot 10^{-7} \) | \(a_{995}= -0.53866282 \pm 1.8 \cdot 10^{-7} \) | \(a_{996}= +0.11094717 \pm 3.1 \cdot 10^{-7} \) |
\(a_{997}= -1.05909441 \pm 2.2 \cdot 10^{-7} \) | \(a_{998}= +0.99884277 \pm 2.6 \cdot 10^{-7} \) | \(a_{999}= +0.87309811 \pm 1.5 \cdot 10^{-7} \) |
\(a_{1000}= -1.05233936 \pm 3.2 \cdot 10^{-7} \) |
Displaying $a_n$ with $n$ up to: 60 180 1000